This file is indexed.

/usr/share/pyshared/sympy/assumptions/refine.py is in python-sympy 0.7.1.rc1-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
from sympy.core import S, Add
from sympy.assumptions import Q, ask
from sympy.logic.boolalg import fuzzy_not

def refine(expr, assumptions=True):
    """
    Simplify an expression using assumptions.

    Gives the form of expr that would be obtained if symbols
    in it were replaced by explicit numerical expressions satisfying
    the assumptions.

    Examples::

        >>> from sympy import refine, sqrt, Q
        >>> from sympy.abc import x
        >>> refine(sqrt(x**2), Q.real(x))
        Abs(x)
        >>> refine(sqrt(x**2), Q.positive(x))
        x

    """
    if not expr.is_Atom:
        args = [refine(arg, assumptions) for arg in expr.args]
        # TODO: this will probably not work with Integral or Polynomial
        expr = expr.func(*args)
    name = expr.__class__.__name__
    handler = handlers_dict.get(name, None)
    if handler is None: return expr
    new_expr = handler(expr, assumptions)
    if (new_expr is None) or (expr == new_expr):
        return expr
    return refine(new_expr, assumptions)

def refine_abs(expr, assumptions):
    """
    Handler for the absolute value.

    Examples::

    >>> from sympy import Symbol, Q, refine, Abs
    >>> from sympy.assumptions.refine import refine_abs
    >>> from sympy.abc import x
    >>> refine_abs(Abs(x), Q.real(x))
    >>> refine_abs(Abs(x), Q.positive(x))
    x
    >>> refine_abs(Abs(x), Q.negative(x))
    -x

    """
    arg = expr.args[0]
    if ask(Q.real(arg), assumptions) and \
            fuzzy_not(ask(Q.negative(arg), assumptions)):
        # if it's nonnegative
        return arg
    if ask(Q.negative(arg), assumptions):
        return -arg

def refine_Pow(expr, assumptions):
    """
    Handler for instances of Pow.

    >>> from sympy import Symbol, Q
    >>> from sympy.assumptions.refine import refine_Pow
    >>> from sympy.abc import x,y,z
    >>> refine_Pow((-1)**x, Q.real(x))
    >>> refine_Pow((-1)**x, Q.even(x))
    1
    >>> refine_Pow((-1)**x, Q.odd(x))
    -1

    For powers of -1, even parts of the exponent can be simplified:

    >>> refine_Pow((-1)**(x+y), Q.even(x))
    (-1)**y
    >>> refine_Pow((-1)**(x+y+z), Q.odd(x) & Q.odd(z))
    (-1)**y
    >>> refine_Pow((-1)**(x+y+2), Q.odd(x))
    (-1)**(y + 1)
    >>> refine_Pow((-1)**(x+3), True)
    (-1)**(x + 1)

    """
    from sympy.core import Pow, Rational
    from sympy.functions import sign
    if ask(Q.real(expr.base), assumptions):
        if expr.base.is_number:
            if ask(Q.even(expr.exp), assumptions):
                return abs(expr.base) ** expr.exp
            if ask(Q.odd(expr.exp), assumptions):
                return sign(expr.base) * abs(expr.base) ** expr.exp
        if isinstance(expr.exp, Rational):
            if type(expr.base) is Pow:
                return abs(expr.base.base) ** (expr.base.exp * expr.exp)

        if expr.base is S.NegativeOne:
            if expr.exp.is_Add:

                # For powers of (-1) we can remove
                #  - even terms
                #  - pairs of odd terms
                #  - a single odd term + 1
                #  - A numerical constant N can be replaced with mod(N,2)

                coeff, terms = expr.exp.as_coeff_add()
                terms = set(terms)
                even_terms = set([])
                odd_terms = set([])
                initial_number_of_terms = len(terms)

                for t in terms:
                    if ask(Q.even(t), assumptions):
                        even_terms.add(t)
                    elif ask(Q.odd(t), assumptions):
                        odd_terms.add(t)

                terms -= even_terms
                if len(odd_terms)%2:
                    terms -= odd_terms
                    new_coeff = (coeff + S.One) % 2
                else:
                    terms -= odd_terms
                    new_coeff = coeff % 2

                if new_coeff != coeff or len(terms) < initial_number_of_terms:
                    terms.add(new_coeff)
                    return expr.base**(Add(*terms))


def refine_exp(expr, assumptions):
    """
    Handler for exponential function.

    >>> from sympy import Symbol, Q, exp, I, pi
    >>> from sympy.assumptions.refine import refine_exp
    >>> from sympy.abc import x
    >>> refine_exp(exp(pi*I*2*x), Q.real(x))
    >>> refine_exp(exp(pi*I*2*x), Q.integer(x))
    1

    """
    arg = expr.args[0]
    if arg.is_Mul:
        coeff = arg.as_coefficient(S.Pi*S.ImaginaryUnit)
        if coeff:
            if ask(Q.integer(2*coeff), assumptions):
                if ask(Q.even(coeff), assumptions):
                    return S.One
                elif ask(Q.odd(coeff), assumptions):
                    return S.NegativeOne
                elif ask(Q.even(coeff + S.Half), assumptions):
                    return -S.ImaginaryUnit
                elif ask(Q.odd(coeff + S.Half), assumptions):
                    return S.ImaginaryUnit

handlers_dict = {
    'Abs'        : refine_abs,
    'Pow'        : refine_Pow,
    'exp'        : refine_exp,
}