This file is indexed.

/usr/share/pyshared/sympy/concrete/summations.py is in python-sympy 0.7.1.rc1-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
from sympy.core import (Expr, S, C, sympify, Wild, Dummy, Derivative)
from sympy.functions.elementary.piecewise import piecewise_fold
from sympy.concrete.gosper import gosper_sum
from sympy.polys import apart, PolynomialError
from sympy.solvers import solve

class Sum(Expr):
    """Represents unevaluated summation."""

    def __new__(cls, function, *symbols, **assumptions):
        from sympy.integrals.integrals import _process_limits

        # Any embedded piecewise functions need to be brought out to the
        # top level so that integration can go into piecewise mode at the
        # earliest possible moment.
        function = piecewise_fold(sympify(function))

        if function is S.NaN:
            return S.NaN

        if not symbols:
            raise ValueError("Summation variables must be given")

        limits, sign = _process_limits(*symbols)

        # Only limits with lower and upper bounds are supported; the indefinite Sum
        # is not supported
        if any(len(l) != 3 or None in l for l in limits):
            raise ValueError('Sum requires values for lower and upper bounds.')

        obj = Expr.__new__(cls, **assumptions)
        arglist = [sign*function]
        arglist.extend(limits)
        obj._args = tuple(arglist)

        return obj

    @property
    def function(self):
        return self._args[0]

    @property
    def limits(self):
        return self._args[1:]

    @property
    def variables(self):
        """Return a list of the summation variables

        >>> from sympy import Sum
        >>> from sympy.abc import x, i
        >>> Sum(x**i, (i, 1, 3)).variables
        [i]
        """
        return [l[0] for l in self.limits]

    @property
    def free_symbols(self):
        """
        This method returns the symbols that will exist when the
        summation is evaluated. This is useful if one is trying to
        determine whether a sum is dependent on a certain
        symbol or not.

        >>> from sympy import Sum
        >>> from sympy.abc import x, y
        >>> Sum(x, (x, y, 1)).free_symbols
        set([y])
        """
        from sympy.integrals.integrals import _free_symbols

        return _free_symbols(self.function, self.limits)

    def doit(self, **hints):
        #if not hints.get('sums', True):
        #    return self
        f = self.function
        for limit in self.limits:
            f = eval_sum(f, limit)
            if f is None:
                return self

        if hints.get('deep', True):
            return f.doit(**hints)
        else:
            return f

    def _eval_summation(self, f, x):
        return

    def _eval_derivative(self, x):
        """
        Differentiate wrt x as long as x is not in the free symbols of any of
        the upper or lower limits.

        Sum(a*b*x, (x, 1, a)) can be differentiated wrt x or b but not `a`
        since the value of the sum is discontinuous in `a`. In a case
        involving a limit variable, the unevaluated derivative is returned.

        """

        # diff already confirmed that x is in the free symbols of self, but we
        # don't want to differentiate wrt any free symbol in the upper or lower
        # limits
        # XXX remove this test for free_symbols when the default _eval_derivative is in
        if x not in self.free_symbols:
            return S.Zero

        # get limits and the function
        f, limits = self.function, list(self.limits)

        limit = limits.pop(-1)

        if limits: # f is the argument to a Sum
            f = Sum(f, *limits)

        if len(limit) == 3:
            _, a, b = limit
            if x in a.free_symbols or x in b.free_symbols:
                return None
            df = Derivative(f, x, **{'evaluate': True})
            rv = Sum(df, limit)
            if limit[0] not in df.free_symbols:
                rv = rv.doit()
            return rv
        else:
            return NotImplementedError('Lower and upper bound expected.')

    def euler_maclaurin(self, m=0, n=0, eps=0, eval_integral=True):
        """
        Return an Euler-Maclaurin approximation of self, where m is the
        number of leading terms to sum directly and n is the number of
        terms in the tail.

        With m = n = 0, this is simply the corresponding integral
        plus a first-order endpoint correction.

        Returns (s, e) where s is the Euler-Maclaurin approximation
        and e is the estimated error (taken to be the magnitude of
        the first omitted term in the tail):

            >>> from sympy.abc import k, a, b
            >>> from sympy import Sum
            >>> Sum(1/k, (k, 2, 5)).doit().evalf()
            1.28333333333333
            >>> s, e = Sum(1/k, (k, 2, 5)).euler_maclaurin()
            >>> s
            -log(2) + 7/20 + log(5)
            >>> from sympy import sstr
            >>> print sstr((s.evalf(), e.evalf()), full_prec=True)
            (1.26629073187416, 0.0175000000000000)

        The endpoints may be symbolic:

            >>> s, e = Sum(1/k, (k, a, b)).euler_maclaurin()
            >>> s
            -log(a) + log(b) + 1/(2*b) + 1/(2*a)
            >>> e
            Abs(-1/(12*b**2) + 1/(12*a**2))

        If the function is a polynomial of degree at most 2n+1, the
        Euler-Maclaurin formula becomes exact (and e = 0 is returned):

            >>> Sum(k, (k, 2, b)).euler_maclaurin()
            (b**2/2 + b/2 - 1, 0)
            >>> Sum(k, (k, 2, b)).doit()
            b**2/2 + b/2 - 1

        With a nonzero eps specified, the summation is ended
        as soon as the remainder term is less than the epsilon.
        """
        m = int(m)
        n = int(n)
        f = self.function
        assert len(self.limits) == 1
        i, a, b = self.limits[0]
        s = S.Zero
        if m:
            for k in range(m):
                term = f.subs(i, a+k)
                if (eps and term and abs(term.evalf(3)) < eps):
                    return s, abs(term)
                s += term
            a += m
        x = Dummy('x')
        I = C.Integral(f.subs(i, x), (x, a, b))
        if eval_integral:
            I = I.doit()
        s += I
        def fpoint(expr):
            if b is S.Infinity:
                return expr.subs(i, a), 0
            return expr.subs(i, a), expr.subs(i, b)
        fa, fb = fpoint(f)
        iterm = (fa + fb)/2
        g = f.diff(i)
        for k in xrange(1, n+2):
            ga, gb = fpoint(g)
            term = C.bernoulli(2*k)/C.factorial(2*k)*(gb-ga)
            if (eps and term and abs(term.evalf(3)) < eps) or (k > n):
                break
            s += term
            g = g.diff(i, 2)
        return s + iterm, abs(term)

    def _eval_subs(self, old, new):
        if self == old:
            return new
        newlimits = []
        for lim in self.limits:
            if lim[0] == old:
                return self
            newlimits.append( (lim[0],lim[1].subs(old,new),lim[2].subs(old,new)) )

        return Sum(self.args[0].subs(old, new), *newlimits)


def summation(f, *symbols, **kwargs):
    """
    Compute the summation of f with respect to symbols.

    The notation for symbols is similar to the notation used in Integral.
    summation(f, (i, a, b)) computes the sum of f with respect to i from a to b,
    i.e.,

                                b
                              ____
                              \   `
    summation(f, (i, a, b)) =  )    f
                              /___,
                              i = a


    If it cannot compute the sum, it returns an unevaluated Sum object.
    Repeated sums can be computed by introducing additional symbols tuples::

    >>> from sympy import summation, oo, symbols, log
    >>> i, n, m = symbols('i n m', integer=True)

    >>> summation(2*i - 1, (i, 1, n))
    n**2
    >>> summation(1/2**i, (i, 0, oo))
    2
    >>> summation(1/log(n)**n, (n, 2, oo))
    Sum(log(n)**(-n), (n, 2, oo))
    >>> summation(i, (i, 0, n), (n, 0, m))
    m**3/6 + m**2/2 + m/3

    >>> from sympy.abc import x
    >>> from sympy import factorial
    >>> summation(x**n/factorial(n), (n, 0, oo))
    exp(x)

    """
    return Sum(f, *symbols, **kwargs).doit(deep=False)

def telescopic_direct(L, R, n, limits):
    """Returns the direct summation of the terms of a telescopic sum

    L is the term with lower index
    R is the term with higher index
    n difference between the indexes of L and R

    For example:

    >>> from sympy.concrete.summations import telescopic_direct
    >>> from sympy.abc import k, a, b
    >>> telescopic_direct(1/k, -1/(k+2), 2, (k, a, b))
    -1/(b + 2) - 1/(b + 1) + 1/(a + 1) + 1/a

    """
    (i, a, b) = limits
    s = 0
    for m in xrange(n):
        s += L.subs(i,a+m) + R.subs(i,b-m)
    return s

def telescopic(L, R, limits):
    '''Tries to perform the summation using the telescopic property

    return None if not possible
    '''
    (i, a, b) = limits
    if L.is_Add or R.is_Add:
        return None

    # We want to solve(L.subs(i, i + m) + R, m)
    # First we try a simple match since this does things that
    # solve doesn't do, e.g. solve(f(k+m)-f(k), m) fails

    k = Wild("k")
    sol = (-R).match(L.subs(i, i + k))
    s = None
    if sol and k in sol:
        s = sol[k]
        if not (s.is_Integer and L.subs(i,i + s) == -R):
            #sometimes match fail(f(x+2).match(-f(x+k))->{k: -2 - 2x}))
            s = None

    # But there are things that match doesn't do that solve
    # can do, e.g. determine that 1/(x + m) = 1/(1 - x) when m = 1

    if s is None:
        m = Dummy('m')
        try:
            sol = solve(L.subs(i, i + m) + R, m) or []
        except NotImplementedError:
            return None
        sol = [si for si in sol if si.is_Integer and
                                   (L.subs(i,i + si) + R).expand().is_zero]
        if len(sol) != 1:
            return None
        s = sol[0]

    if s < 0:
        return telescopic_direct(R, L, abs(s), (i, a, b))
    elif s > 0:
        return telescopic_direct(L, R, s, (i, a, b))

def eval_sum(f, limits):
    (i, a, b) = limits
    if f is S.Zero:
        return S.Zero

    if i not in f.free_symbols:
        return f*(b - a + 1)

    definite = a.is_Integer and b.is_Integer
    # Doing it directly may be faster if there are very few terms.
    if definite and (b-a < 100):
        return eval_sum_direct(f, (i, a, b))
    # Try to do it symbolically. Even when the number of terms is known,
    # this can save time when b-a is big.
    # We should try to transform to partial fractions
    value = eval_sum_symbolic(f.expand(), (i, a, b))
    if value is not None:
        return value
    # Do it directly
    if definite:
        return eval_sum_direct(f, (i, a, b))

def eval_sum_symbolic(f, limits):
    (i, a, b) = limits
    if not f.has(i):
        return f*(b-a+1)

    # Linearity
    if f.is_Mul:
        L, R = f.as_two_terms()

        if not L.has(i):
            sR = eval_sum_symbolic(R, (i, a, b))
            if sR: return L*sR

        if not R.has(i):
            sL = eval_sum_symbolic(L, (i, a, b))
            if sL: return R*sL

        try:
            f = apart(f, i) # see if it becomes an Add
        except PolynomialError:
            pass

    if f.is_Add:
        L, R = f.as_two_terms()
        lrsum = telescopic(L, R, (i, a, b))

        if lrsum:
            return lrsum

        lsum = eval_sum_symbolic(L, (i, a, b))
        rsum = eval_sum_symbolic(R, (i, a, b))

        if None not in (lsum, rsum):
            return lsum + rsum

    # Polynomial terms with Faulhaber's formula
    n = Wild('n')
    result = f.match(i**n)

    if result is not None:
        n = result[n]

        if n.is_Integer:
            if n >= 0:
                return ((C.bernoulli(n+1, b+1) - C.bernoulli(n+1, a))/(n+1)).expand()
            elif a.is_Integer and a >= 1:
                if n == -1:
                    return C.harmonic(b) - C.harmonic(a - 1)
                else:
                    return C.harmonic(b, abs(n)) - C.harmonic(a - 1, abs(n))

    # Geometric terms
    c1 = C.Wild('c1', exclude=[i])
    c2 = C.Wild('c2', exclude=[i])
    c3 = C.Wild('c3', exclude=[i])

    e = f.match(c1**(c2*i+c3))

    if e is not None:
        c1 = c1.subs(e)
        c2 = c2.subs(e)
        c3 = c3.subs(e)

        # TODO: more general limit handling
        return c1**c3 * (c1**(a*c2) - c1**(c2+b*c2)) / (1 - c1**c2)

    r = gosper_sum(f, (i, a, b))
    if not r in (None, S.NaN):
        return r

    return eval_sum_hyper(f, (i, a, b))

def _eval_sum_hyper(f, i, a):
    """ Returns (res, cond). Sums from a to oo. """
    from sympy.functions import hyper
    from sympy.simplify import hyperexpand, hypersimp, fraction
    from sympy.polys.polytools import Poly, factor

    if a != 0:
        return _eval_sum_hyper(f.subs(i, i + a), i, 0)

    if f.subs(i, 0) == 0:
        return _eval_sum_hyper(f.subs(i, i + 1), i, 0)

    hs = hypersimp(f, i)
    if hs is None:
        return None

    numer, denom = fraction(factor(hs))
    top, topl = numer.as_coeff_mul(i)
    bot, botl = denom.as_coeff_mul(i)
    ab = [top, bot]
    factors = [topl, botl]
    params = [[], []]
    for k in range(2):
        for fac in factors[k]:
            mul = 1
            if fac.is_Pow:
                mul = fac.exp
                fac = fac.base
                if not mul.is_Integer:
                    return None
            p = Poly(fac, i)
            if p.degree() != 1:
                return None
            m, n = p.all_coeffs()
            ab[k] *= m**mul
            params[k] += [n/m]*mul

    # Add "1" to numerator parameters, to account for implicit n! in
    # hypergeometric series.
    ap = params[0] + [1]
    bq = params[1]
    x  = ab[0]/ab[1]
    h = hyper(ap, bq, x)

    return f.subs(i, 0)*hyperexpand(h), h.convergence_statement

def eval_sum_hyper(f, (i, a, b)):
    from sympy.functions import Piecewise
    from sympy import oo, And

    if b != oo:
        if a == -oo:
            res = _eval_sum_hyper(f.subs(i, -i), i, -b)
            if res is not None:
                return Piecewise(res, (Sum(f, (i, a, b)), True))
        else:
            return None

    if a == -oo:
        res1 = _eval_sum_hyper(f.subs(i, -i), i, 1)
        res2 = _eval_sum_hyper(f, i, 0)
        if res1 is None or res2 is None:
            return None
        res1, cond1 = res1
        res2, cond2 = res2
        cond = And(cond1, cond2)
        if cond is False:
            return None
        return Piecewise((res1 + res2, cond), (Sum(f, (i, a, b)), True))

    # Now b == oo, a != -oo
    res = _eval_sum_hyper(f, i, a)
    if res is not None:
        return Piecewise(res, (Sum(f, (i, a, b)), True))

def eval_sum_direct(expr, limits):
    (i, a, b) = limits
    s = S.Zero
    if i in expr.free_symbols:
        for j in xrange(a, b+1):
            s += expr.subs(i, j)
    else:
        for j in xrange(a, b+1):
            s += expr
    return s