/usr/share/pyshared/sympy/concrete/summations.py is in python-sympy 0.7.1.rc1-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 | from sympy.core import (Expr, S, C, sympify, Wild, Dummy, Derivative)
from sympy.functions.elementary.piecewise import piecewise_fold
from sympy.concrete.gosper import gosper_sum
from sympy.polys import apart, PolynomialError
from sympy.solvers import solve
class Sum(Expr):
"""Represents unevaluated summation."""
def __new__(cls, function, *symbols, **assumptions):
from sympy.integrals.integrals import _process_limits
# Any embedded piecewise functions need to be brought out to the
# top level so that integration can go into piecewise mode at the
# earliest possible moment.
function = piecewise_fold(sympify(function))
if function is S.NaN:
return S.NaN
if not symbols:
raise ValueError("Summation variables must be given")
limits, sign = _process_limits(*symbols)
# Only limits with lower and upper bounds are supported; the indefinite Sum
# is not supported
if any(len(l) != 3 or None in l for l in limits):
raise ValueError('Sum requires values for lower and upper bounds.')
obj = Expr.__new__(cls, **assumptions)
arglist = [sign*function]
arglist.extend(limits)
obj._args = tuple(arglist)
return obj
@property
def function(self):
return self._args[0]
@property
def limits(self):
return self._args[1:]
@property
def variables(self):
"""Return a list of the summation variables
>>> from sympy import Sum
>>> from sympy.abc import x, i
>>> Sum(x**i, (i, 1, 3)).variables
[i]
"""
return [l[0] for l in self.limits]
@property
def free_symbols(self):
"""
This method returns the symbols that will exist when the
summation is evaluated. This is useful if one is trying to
determine whether a sum is dependent on a certain
symbol or not.
>>> from sympy import Sum
>>> from sympy.abc import x, y
>>> Sum(x, (x, y, 1)).free_symbols
set([y])
"""
from sympy.integrals.integrals import _free_symbols
return _free_symbols(self.function, self.limits)
def doit(self, **hints):
#if not hints.get('sums', True):
# return self
f = self.function
for limit in self.limits:
f = eval_sum(f, limit)
if f is None:
return self
if hints.get('deep', True):
return f.doit(**hints)
else:
return f
def _eval_summation(self, f, x):
return
def _eval_derivative(self, x):
"""
Differentiate wrt x as long as x is not in the free symbols of any of
the upper or lower limits.
Sum(a*b*x, (x, 1, a)) can be differentiated wrt x or b but not `a`
since the value of the sum is discontinuous in `a`. In a case
involving a limit variable, the unevaluated derivative is returned.
"""
# diff already confirmed that x is in the free symbols of self, but we
# don't want to differentiate wrt any free symbol in the upper or lower
# limits
# XXX remove this test for free_symbols when the default _eval_derivative is in
if x not in self.free_symbols:
return S.Zero
# get limits and the function
f, limits = self.function, list(self.limits)
limit = limits.pop(-1)
if limits: # f is the argument to a Sum
f = Sum(f, *limits)
if len(limit) == 3:
_, a, b = limit
if x in a.free_symbols or x in b.free_symbols:
return None
df = Derivative(f, x, **{'evaluate': True})
rv = Sum(df, limit)
if limit[0] not in df.free_symbols:
rv = rv.doit()
return rv
else:
return NotImplementedError('Lower and upper bound expected.')
def euler_maclaurin(self, m=0, n=0, eps=0, eval_integral=True):
"""
Return an Euler-Maclaurin approximation of self, where m is the
number of leading terms to sum directly and n is the number of
terms in the tail.
With m = n = 0, this is simply the corresponding integral
plus a first-order endpoint correction.
Returns (s, e) where s is the Euler-Maclaurin approximation
and e is the estimated error (taken to be the magnitude of
the first omitted term in the tail):
>>> from sympy.abc import k, a, b
>>> from sympy import Sum
>>> Sum(1/k, (k, 2, 5)).doit().evalf()
1.28333333333333
>>> s, e = Sum(1/k, (k, 2, 5)).euler_maclaurin()
>>> s
-log(2) + 7/20 + log(5)
>>> from sympy import sstr
>>> print sstr((s.evalf(), e.evalf()), full_prec=True)
(1.26629073187416, 0.0175000000000000)
The endpoints may be symbolic:
>>> s, e = Sum(1/k, (k, a, b)).euler_maclaurin()
>>> s
-log(a) + log(b) + 1/(2*b) + 1/(2*a)
>>> e
Abs(-1/(12*b**2) + 1/(12*a**2))
If the function is a polynomial of degree at most 2n+1, the
Euler-Maclaurin formula becomes exact (and e = 0 is returned):
>>> Sum(k, (k, 2, b)).euler_maclaurin()
(b**2/2 + b/2 - 1, 0)
>>> Sum(k, (k, 2, b)).doit()
b**2/2 + b/2 - 1
With a nonzero eps specified, the summation is ended
as soon as the remainder term is less than the epsilon.
"""
m = int(m)
n = int(n)
f = self.function
assert len(self.limits) == 1
i, a, b = self.limits[0]
s = S.Zero
if m:
for k in range(m):
term = f.subs(i, a+k)
if (eps and term and abs(term.evalf(3)) < eps):
return s, abs(term)
s += term
a += m
x = Dummy('x')
I = C.Integral(f.subs(i, x), (x, a, b))
if eval_integral:
I = I.doit()
s += I
def fpoint(expr):
if b is S.Infinity:
return expr.subs(i, a), 0
return expr.subs(i, a), expr.subs(i, b)
fa, fb = fpoint(f)
iterm = (fa + fb)/2
g = f.diff(i)
for k in xrange(1, n+2):
ga, gb = fpoint(g)
term = C.bernoulli(2*k)/C.factorial(2*k)*(gb-ga)
if (eps and term and abs(term.evalf(3)) < eps) or (k > n):
break
s += term
g = g.diff(i, 2)
return s + iterm, abs(term)
def _eval_subs(self, old, new):
if self == old:
return new
newlimits = []
for lim in self.limits:
if lim[0] == old:
return self
newlimits.append( (lim[0],lim[1].subs(old,new),lim[2].subs(old,new)) )
return Sum(self.args[0].subs(old, new), *newlimits)
def summation(f, *symbols, **kwargs):
"""
Compute the summation of f with respect to symbols.
The notation for symbols is similar to the notation used in Integral.
summation(f, (i, a, b)) computes the sum of f with respect to i from a to b,
i.e.,
b
____
\ `
summation(f, (i, a, b)) = ) f
/___,
i = a
If it cannot compute the sum, it returns an unevaluated Sum object.
Repeated sums can be computed by introducing additional symbols tuples::
>>> from sympy import summation, oo, symbols, log
>>> i, n, m = symbols('i n m', integer=True)
>>> summation(2*i - 1, (i, 1, n))
n**2
>>> summation(1/2**i, (i, 0, oo))
2
>>> summation(1/log(n)**n, (n, 2, oo))
Sum(log(n)**(-n), (n, 2, oo))
>>> summation(i, (i, 0, n), (n, 0, m))
m**3/6 + m**2/2 + m/3
>>> from sympy.abc import x
>>> from sympy import factorial
>>> summation(x**n/factorial(n), (n, 0, oo))
exp(x)
"""
return Sum(f, *symbols, **kwargs).doit(deep=False)
def telescopic_direct(L, R, n, limits):
"""Returns the direct summation of the terms of a telescopic sum
L is the term with lower index
R is the term with higher index
n difference between the indexes of L and R
For example:
>>> from sympy.concrete.summations import telescopic_direct
>>> from sympy.abc import k, a, b
>>> telescopic_direct(1/k, -1/(k+2), 2, (k, a, b))
-1/(b + 2) - 1/(b + 1) + 1/(a + 1) + 1/a
"""
(i, a, b) = limits
s = 0
for m in xrange(n):
s += L.subs(i,a+m) + R.subs(i,b-m)
return s
def telescopic(L, R, limits):
'''Tries to perform the summation using the telescopic property
return None if not possible
'''
(i, a, b) = limits
if L.is_Add or R.is_Add:
return None
# We want to solve(L.subs(i, i + m) + R, m)
# First we try a simple match since this does things that
# solve doesn't do, e.g. solve(f(k+m)-f(k), m) fails
k = Wild("k")
sol = (-R).match(L.subs(i, i + k))
s = None
if sol and k in sol:
s = sol[k]
if not (s.is_Integer and L.subs(i,i + s) == -R):
#sometimes match fail(f(x+2).match(-f(x+k))->{k: -2 - 2x}))
s = None
# But there are things that match doesn't do that solve
# can do, e.g. determine that 1/(x + m) = 1/(1 - x) when m = 1
if s is None:
m = Dummy('m')
try:
sol = solve(L.subs(i, i + m) + R, m) or []
except NotImplementedError:
return None
sol = [si for si in sol if si.is_Integer and
(L.subs(i,i + si) + R).expand().is_zero]
if len(sol) != 1:
return None
s = sol[0]
if s < 0:
return telescopic_direct(R, L, abs(s), (i, a, b))
elif s > 0:
return telescopic_direct(L, R, s, (i, a, b))
def eval_sum(f, limits):
(i, a, b) = limits
if f is S.Zero:
return S.Zero
if i not in f.free_symbols:
return f*(b - a + 1)
definite = a.is_Integer and b.is_Integer
# Doing it directly may be faster if there are very few terms.
if definite and (b-a < 100):
return eval_sum_direct(f, (i, a, b))
# Try to do it symbolically. Even when the number of terms is known,
# this can save time when b-a is big.
# We should try to transform to partial fractions
value = eval_sum_symbolic(f.expand(), (i, a, b))
if value is not None:
return value
# Do it directly
if definite:
return eval_sum_direct(f, (i, a, b))
def eval_sum_symbolic(f, limits):
(i, a, b) = limits
if not f.has(i):
return f*(b-a+1)
# Linearity
if f.is_Mul:
L, R = f.as_two_terms()
if not L.has(i):
sR = eval_sum_symbolic(R, (i, a, b))
if sR: return L*sR
if not R.has(i):
sL = eval_sum_symbolic(L, (i, a, b))
if sL: return R*sL
try:
f = apart(f, i) # see if it becomes an Add
except PolynomialError:
pass
if f.is_Add:
L, R = f.as_two_terms()
lrsum = telescopic(L, R, (i, a, b))
if lrsum:
return lrsum
lsum = eval_sum_symbolic(L, (i, a, b))
rsum = eval_sum_symbolic(R, (i, a, b))
if None not in (lsum, rsum):
return lsum + rsum
# Polynomial terms with Faulhaber's formula
n = Wild('n')
result = f.match(i**n)
if result is not None:
n = result[n]
if n.is_Integer:
if n >= 0:
return ((C.bernoulli(n+1, b+1) - C.bernoulli(n+1, a))/(n+1)).expand()
elif a.is_Integer and a >= 1:
if n == -1:
return C.harmonic(b) - C.harmonic(a - 1)
else:
return C.harmonic(b, abs(n)) - C.harmonic(a - 1, abs(n))
# Geometric terms
c1 = C.Wild('c1', exclude=[i])
c2 = C.Wild('c2', exclude=[i])
c3 = C.Wild('c3', exclude=[i])
e = f.match(c1**(c2*i+c3))
if e is not None:
c1 = c1.subs(e)
c2 = c2.subs(e)
c3 = c3.subs(e)
# TODO: more general limit handling
return c1**c3 * (c1**(a*c2) - c1**(c2+b*c2)) / (1 - c1**c2)
r = gosper_sum(f, (i, a, b))
if not r in (None, S.NaN):
return r
return eval_sum_hyper(f, (i, a, b))
def _eval_sum_hyper(f, i, a):
""" Returns (res, cond). Sums from a to oo. """
from sympy.functions import hyper
from sympy.simplify import hyperexpand, hypersimp, fraction
from sympy.polys.polytools import Poly, factor
if a != 0:
return _eval_sum_hyper(f.subs(i, i + a), i, 0)
if f.subs(i, 0) == 0:
return _eval_sum_hyper(f.subs(i, i + 1), i, 0)
hs = hypersimp(f, i)
if hs is None:
return None
numer, denom = fraction(factor(hs))
top, topl = numer.as_coeff_mul(i)
bot, botl = denom.as_coeff_mul(i)
ab = [top, bot]
factors = [topl, botl]
params = [[], []]
for k in range(2):
for fac in factors[k]:
mul = 1
if fac.is_Pow:
mul = fac.exp
fac = fac.base
if not mul.is_Integer:
return None
p = Poly(fac, i)
if p.degree() != 1:
return None
m, n = p.all_coeffs()
ab[k] *= m**mul
params[k] += [n/m]*mul
# Add "1" to numerator parameters, to account for implicit n! in
# hypergeometric series.
ap = params[0] + [1]
bq = params[1]
x = ab[0]/ab[1]
h = hyper(ap, bq, x)
return f.subs(i, 0)*hyperexpand(h), h.convergence_statement
def eval_sum_hyper(f, (i, a, b)):
from sympy.functions import Piecewise
from sympy import oo, And
if b != oo:
if a == -oo:
res = _eval_sum_hyper(f.subs(i, -i), i, -b)
if res is not None:
return Piecewise(res, (Sum(f, (i, a, b)), True))
else:
return None
if a == -oo:
res1 = _eval_sum_hyper(f.subs(i, -i), i, 1)
res2 = _eval_sum_hyper(f, i, 0)
if res1 is None or res2 is None:
return None
res1, cond1 = res1
res2, cond2 = res2
cond = And(cond1, cond2)
if cond is False:
return None
return Piecewise((res1 + res2, cond), (Sum(f, (i, a, b)), True))
# Now b == oo, a != -oo
res = _eval_sum_hyper(f, i, a)
if res is not None:
return Piecewise(res, (Sum(f, (i, a, b)), True))
def eval_sum_direct(expr, limits):
(i, a, b) = limits
s = S.Zero
if i in expr.free_symbols:
for j in xrange(a, b+1):
s += expr.subs(i, j)
else:
for j in xrange(a, b+1):
s += expr
return s
|