This file is indexed.

/usr/share/pyshared/sympy/geometry/ellipse.py is in python-sympy 0.7.1.rc1-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
"""Elliptical geometrical entities.

Contains
--------
Ellipse
Circle

"""

from sympy.core import S, C, sympify, symbol, Dummy
from sympy.core.logic import fuzzy_bool
from sympy.simplify import simplify, trigsimp
from sympy.functions.elementary.miscellaneous import sqrt, Max, Min
from sympy.functions.elementary.complexes import im
from sympy.geometry.exceptions import GeometryError
from sympy.solvers import solve_poly_system, solve
from entity import GeometryEntity
from point import Point
from line import LinearEntity, Line
from util import _symbol, idiff

class Ellipse(GeometryEntity):
    """An elliptical GeometryEntity.

    Parameters
    ----------
    center : Point, optional
        Default value is Point(0, 0)
    hradius : number or sympy expression, optional
    vradius : number or sympy expression, optional
    eccentricity : number or sympy expression, optional
        Two of `hradius`, `vradius` and `eccentricity` must be supplied to
        create an Ellipse. The third is derived from the two supplied.

    Attributes
    ----------
    center
    hradius
    vradius
    area
    circumference
    eccentricity
    periapsis
    apoapsis
    focus_distance
    foci

    Raises
    ------
    GeometryError
        When `hradius`, `vradius` and `eccentricity` are incorrectly supplied as
        parameters.
    TypeError
        When `center` is not a Point.

    See Also
    --------
    Point

    Notes
    -----
    Constructed from a center and two radii, the first being the horizontal
    radius (along the x-axis) and the second being the vertical radius (along
    the y-axis).

    When symbolic value for hradius and vradius are used, any calculation that
    refers to the foci or the major or minor axis will assume that the ellipse
    has its major radius on the x-axis. If this is not true then a manual
    rotation is necessary.

    Examples
    --------
    >>> from sympy import Ellipse, Point, Rational
    >>> e1 = Ellipse(Point(0, 0), 5, 1)
    >>> e1.hradius, e1.vradius
    (5, 1)
    >>> e2 = Ellipse(Point(3, 1), hradius=3, eccentricity=Rational(4, 5))
    >>> e2
    Ellipse(Point(3, 1), 3, 9/5)

    Plotting example
    ----------------
    >>> from sympy import Circle, Plot, Segment
    >>> c1 = Circle(Point(0,0), 1)
    >>> Plot(c1)                                # doctest: +SKIP
    [0]: cos(t), sin(t), 'mode=parametric'
    >>> p = Plot()                              # doctest: +SKIP
    >>> p[0] = c1                               # doctest: +SKIP
    >>> radius = Segment(c1.center, c1.random_point())  # doctest: +SKIP
    >>> p[1] = radius                           # doctest: +SKIP
    >>> p                                       # doctest: +SKIP
    [0]: cos(t), sin(t), 'mode=parametric'
    [1]: t*cos(1.546086215036205357975518382),
    t*sin(1.546086215036205357975518382), 'mode=parametric'

    """

    def __new__(cls, center=None, hradius=None, vradius=None, eccentricity=None,
                **kwargs):
        hradius = sympify(hradius)
        vradius = sympify(vradius)

        eccentricity = sympify(eccentricity)

        if center is None:
            center = Point(0, 0)
        else:
            center = Point(center)

        if len(filter(None, (hradius, vradius, eccentricity))) != 2:
            raise ValueError('Exactly two arguments of "hradius", '\
                '"vradius", and "eccentricity" must not be None."')

        if eccentricity is not None:
            if hradius is None:
                hradius = vradius / sqrt(1 - eccentricity**2)
            elif vradius is None:
                vradius = hradius * sqrt(1 - eccentricity**2)

        if hradius == vradius:
            return Circle(center, hradius, **kwargs)

        return GeometryEntity.__new__(cls, center, hradius, vradius, **kwargs)

    @property
    def center(self):
        """The center of the ellipse.

        Returns
        -------
        center : number

        Examples
        --------
        >>> from sympy import Point, Ellipse
        >>> p1 = Point(0, 0)
        >>> e1 = Ellipse(p1, 3, 1)
        >>> e1.center
        Point(0, 0)

        """
        return self.__getitem__(0)

    @property
    def hradius(self):
        """The horizontal radius of the ellipse.

        Returns
        -------
        hradius : number

        Examples
        --------
        >>> from sympy import Point, Ellipse
        >>> p1 = Point(0, 0)
        >>> e1 = Ellipse(p1, 3, 1)
        >>> e1.hradius
        3

        """
        return self.__getitem__(1)

    @property
    def vradius(self):
        """The vertical radius of the ellipse.

        Returns
        -------
        vradius : number

        Examples
        --------
        >>> from sympy import Point, Ellipse
        >>> p1 = Point(0, 0)
        >>> e1 = Ellipse(p1, 3, 1)
        >>> e1.vradius
        1

        """
        return self.__getitem__(2)

    @property
    def minor(self):
        """Shorter axis of the ellipse (if it can be determined) else vradius.

        Returns
        -------
        minor : number or expression

        Examples
        --------
        >>> from sympy import Point, Ellipse, Symbol
        >>> p1 = Point(0, 0)
        >>> e1 = Ellipse(p1, 3, 1)
        >>> e1.minor
        1

        >>> a = Symbol('a')
        >>> b = Symbol('b')
        >>> Ellipse(p1, a, b).minor
        b
        >>> Ellipse(p1, b, a).minor
        a

        >>> m = Symbol('m')
        >>> M = m + 1
        >>> Ellipse(p1, m, M).minor
        m

        """
        rv = Min(*self[1:3])
        if rv.func is Min:
            return self.vradius
        return rv

    @property
    def major(self):
        """Longer axis of the ellipse (if it can be determined) else hradius.

        Returns
        -------
        major : number or expression

        Examples
        --------
        >>> from sympy import Point, Ellipse, Symbol
        >>> p1 = Point(0, 0)
        >>> e1 = Ellipse(p1, 3, 1)
        >>> e1.major
        3

        >>> a = Symbol('a')
        >>> b = Symbol('b')
        >>> Ellipse(p1, a, b).major
        a
        >>> Ellipse(p1, b, a).major
        b

        >>> m = Symbol('m')
        >>> M = m + 1
        >>> Ellipse(p1, m, M).major
        m + 1

        """
        rv = Max(*self[1:3])
        if rv.func is Max:
            return self.hradius
        return rv


    @property
    def area(self):
        """The area of the ellipse.

        Returns
        -------
        area : number

        Examples
        --------
        >>> from sympy import Point, Ellipse
        >>> p1 = Point(0, 0)
        >>> e1 = Ellipse(p1, 3, 1)
        >>> e1.area
        3*pi

        """
        return simplify(S.Pi * self.hradius * self.vradius)

    @property
    def circumference(self):
        """The circumference of the ellipse.

        Examples
        --------
        >>> from sympy import Point, Ellipse
        >>> p1 = Point(0, 0)
        >>> e1 = Ellipse(p1, 3, 1)
        >>> e1.circumference
        12*Integral(((-8*_x**2/9 + 1)/(-_x**2 + 1))**(1/2), (_x, 0, 1))

        """
        if self.eccentricity == 1:
            return 2*pi*self.hradius
        else:
            x = C.Dummy('x', real=True)
            return 4*self.major*\
                   C.Integral(sqrt((1 - (self.eccentricity*x)**2)/(1 - x**2)),
                              (x, 0, 1))

    @property
    def eccentricity(self):
        """The eccentricity of the ellipse.

        Returns
        -------
        eccentricity : number

        Examples
        --------
        >>> from sympy import Point, Ellipse, sqrt
        >>> p1 = Point(0, 0)
        >>> e1 = Ellipse(p1, 3, sqrt(2))
        >>> e1.eccentricity
        7**(1/2)/3

        """
        return self.focus_distance / self.major

    @property
    def periapsis(self):
        """The periapsis of the ellipse.

        The shortest distance between the focus and the contour.

        Returns
        -------
        periapsis : number

        Examples
        --------
        >>> from sympy import Point, Ellipse
        >>> p1 = Point(0, 0)
        >>> e1 = Ellipse(p1, 3, 1)
        >>> e1.periapsis
        -2*2**(1/2) + 3

        """
        return self.major * (1 - self.eccentricity)

    @property
    def apoapsis(self):
        """The periapsis of the ellipse.

        The greatest distance between the focus and the contour.

        Returns
        -------
        apoapsis : number

        Examples
        --------
        >>> from sympy import Point, Ellipse
        >>> p1 = Point(0, 0)
        >>> e1 = Ellipse(p1, 3, 1)
        >>> e1.apoapsis
        2*2**(1/2) + 3

        """
        return self.major * (1 + self.eccentricity)

    @property
    def focus_distance(self):
        """The focale distance of the ellipse.

        The distance between the center and one focus.

        Returns
        -------
        focus_distance : number

        Examples
        --------
        >>> from sympy import Point, Ellipse
        >>> p1 = Point(0, 0)
        >>> e1 = Ellipse(p1, 3, 1)
        >>> e1.focus_distance
        2*2**(1/2)

        """
        return Point.distance(self.center, self.foci[0])

    @property
    def foci(self):
        """The foci of the ellipse.

        Notes
        -----
        The foci can only be calculated if the major/minor axes are known.

        Raises
        ------
        ValueError
            When the major and minor axis cannot be determined.

        See Also
        --------
        Point

        Examples
        --------
        >>> from sympy import Point, Ellipse
        >>> p1 = Point(0, 0)
        >>> e1 = Ellipse(p1, 3, 1)
        >>> e1.foci
        (Point(-2*2**(1/2), 0), Point(2*2**(1/2), 0))

        """
        c = self.center
        hr, vr = self.hradius, self.vradius
        if hr == vr:
            return (c, c)


        # calculate focus distance manually, since focus_distance calls this routine
        fd = sqrt(self.major**2 - self.minor**2)
        if hr == self.minor:
            # foci on the y-axis
            return (c + Point(0, -fd), c + Point(0, fd))
        elif hr == self.major:
            # foci on the x-axis
            return (c + Point(-fd, 0), c + Point(fd, 0))

    def encloses_point(self, p):
        """
        Return True if p is enclosed by (is inside of) self.

        Notes
        -----
        Being on the border of self is considered False.

        Parameters
        ----------
        p : Point

        Returns
        -------
        encloses_point : True, False or None

        Examples
        --------
        >>> from sympy import Ellipse, S
        >>> from sympy.abc import t
        >>> e = Ellipse((0, 0), 3, 2)
        >>> e.encloses_point((0, 0))
        True
        >>> e.encloses_point(e.arbitrary_point(t).subs(t, S.Half))
        False
        >>> e.encloses_point((4, 0))
        False

        """
        if p in self:
            return False

        if len(self.foci) == 2:
            # if the combined distance from the foci to p (h1 + h2) is less
            # than the combined distance from the foci to the minor axis
            # (which is the same as the major axis length) then p is inside
            # the ellipse
            h1, h2 = [f.distance(p) for f in self.foci]
            test = 2*self.major - (h1 + h2)
        else:
            test = self.radius - self.center.distance(p)

        return fuzzy_bool(test.is_positive)

    def tangent_lines(self, p):
        """Tangent lines between `p` and the ellipse.

        If `p` is on the ellipse, returns the tangent line through point `p`.
        Otherwise, returns the tangent line(s) from `p` to the ellipse, or
        None if no tangent line is possible (e.g., `p` inside ellipse).

        Parameters
        ----------
        p : Point

        Returns
        -------
        tangent_lines : list with 1 or 2 Lines

        Raises
        ------
        NotImplementedError
            Can only find tangent lines for a point, `p`, on the ellipse.

        See Also
        --------
        Point
        Line

        Examples
        --------
        >>> from sympy import Point, Ellipse
        >>> e1 = Ellipse(Point(0, 0), 3, 2)
        >>> e1.tangent_lines(Point(3, 0))
        [Line(Point(3, 0), Point(3, -12))]

        >>> # This will plot an ellipse together with a tangent line.
        >>> from sympy import Point, Ellipse, Plot
        >>> e = Ellipse(Point(0,0), 3, 2)
        >>> t = e.tangent_lines(e.random_point()) # doctest: +SKIP
        >>> p = Plot() # doctest: +SKIP
        >>> p[0] = e # doctest: +SKIP
        >>> p[1] = t # doctest: +SKIP

        """
        from sympy import solve

        if self.encloses_point(p):
            return []

        if p in self:
            rise = (self.vradius ** 2)*(self.center[0] - p[0])
            run = (self.hradius ** 2)*(p[1] - self.center[1])
            p2 = Point(simplify(p[0] + run),
                       simplify(p[1] + rise))
            return [Line(p, p2)]
        else:
            if len(self.foci) == 2:
                f1, f2 = self.foci
                maj = self.hradius
                test = (2*maj -
                        Point.distance(f1, p) -
                        Point.distance(f2, p))
            else:
                test = self.radius - Point.distance(self.center, p)
            if test.is_number and test.is_positive:
                return []
            # else p is outside the ellipse or we can't tell. In case of the
            # latter, the solutions returned will only be valid if
            # the point is not inside the ellipse; if it is, nan will result.
            x, y = Dummy('x'), Dummy('y')
            eq = self.equation(x, y)
            dydx = idiff(eq, y, x)
            slope = Line(p, Point(x, y)).slope
            tangent_points = solve([w.as_numer_denom()[0] for w in [slope - dydx, eq]], [x, y])

            # handle horizontal and vertical tangent lines
            if len(tangent_points) == 1:
                assert tangent_points[0][0] == p[0] or tangent_points[0][1] == p[1]
                return [Line(p, Point(p[0]+1, p[1])), Line(p, Point(p[0], p[1]+1))]

            # others
            return [Line(p, tangent_points[0]), Line(p, tangent_points[1])]

    def is_tangent(self, o):
        """Is `o` tangent to the ellipse?

        Parameters
        ----------
        o : GeometryEntity
            An Ellipse, LinearEntity or Polygon

        Raises
        ------
        NotImplementedError
            When the wrong type of argument is supplied.

        Returns
        -------
        is_tangent: boolean
            True if o is tangent to the ellipse, False otherwise.

        Examples
        --------
        >>> from sympy import Point, Ellipse, Line
        >>> p0, p1, p2 = Point(0, 0), Point(3, 0), Point(3, 3)
        >>> e1 = Ellipse(p0, 3, 2)
        >>> l1 = Line(p1, p2)
        >>> e1.is_tangent(l1)
        True

        """
        inter = None
        if isinstance(o, Ellipse):
            inter = self.intersection(o)
            return (inter is not None and isinstance(inter[0], Point)
                    and len(inter) == 1)
        elif isinstance(o, LinearEntity):
            inter = self._do_line_intersection(o)
            if inter is not None and len(inter) == 1:
                return inter[0] in o
            else:
                return False
        elif isinstance(o, Polygon):
            c = 0
            for seg in o.sides:
                inter = self._do_line_intersection(seg)
                c += len([True for point in inter if point in seg])
            return c == 1
        else:
            raise NotImplementedError("Unknown argument type")

    def arbitrary_point(self, parameter='t'):
        """A parameterized point on the ellipse.

        Parameters
        ----------
        parameter : str, optional
            Default value is 't'.

        Returns
        -------
        arbitrary_point : Point

        Raises
        ------
        ValueError
            When `parameter` already appears in the functions.

        See Also
        --------
        Point

        Examples
        --------
        >>> from sympy import Point, Ellipse
        >>> e1 = Ellipse(Point(0, 0), 3, 2)
        >>> e1.arbitrary_point()
        Point(3*cos(t), 2*sin(t))

        """
        t = _symbol(parameter)
        if t.name in (f.name for f in self.free_symbols):
            raise ValueError('Symbol %s already appears in object and cannot be used as a parameter.' % t.name)
        return Point(self.center[0] + self.hradius*C.cos(t),
                self.center[1] + self.vradius*C.sin(t))

    def plot_interval(self, parameter='t'):
        """The plot interval for the default geometric plot of the Ellipse.

        Parameters
        ----------
        parameter : str, optional
            Default value is 't'.

        Returns
        -------
        plot_interval : list
            [parameter, lower_bound, upper_bound]

        Examples
        --------
        >>> from sympy import Point, Ellipse
        >>> e1 = Ellipse(Point(0, 0), 3, 2)
        >>> e1.plot_interval()
        [t, -pi, pi]

        """
        t = _symbol(parameter)
        return [t, -S.Pi, S.Pi]

    def random_point(self):
        """A random point on the ellipse.

        Returns
        -------
        point : Point

        See Also
        --------
        Point

        Note
        ----
        A random point may not appear to be on the ellipse, ie, `p in e` may
        return False. This is because the coordinates of the point will be
        floating point values, and when these values are substituted into the
        equation for the ellipse the result may not be zero because of floating
        point rounding error.

        Examples
        --------
        >>> from sympy import Point, Ellipse
        >>> e1 = Ellipse(Point(0, 0), 3, 2)
        >>> p1 = e1.random_point()
        >>> # a random point may not appear to be on the ellipse because of
        >>> # floating point rounding error
        >>> p1 in e1 # doctest: +SKIP
        True
        >>> p1 # doctest +ELLIPSIS
        Point(...)

        """
        from random import random
        t = _symbol('t')
        p = self.arbitrary_point(t)
        # get a random value in [-pi, pi)
        subs_val = float(S.Pi)*(2*random() - 1)
        return Point(p[0].subs(t, subs_val), p[1].subs(t, subs_val))

    def equation(self, x='x', y='y'):
        """The equation of the ellipse.

        Parameters
        ----------
        x : str, optional
            Label for the x-axis. Default value is 'x'.
        y : str, optional
            Label for the y-axis. Default value is 'y'.

        Returns
        -------
        equation : sympy expression

        Examples
        --------
        >>> from sympy import Point, Ellipse
        >>> e1 = Ellipse(Point(1, 0), 3, 2)
        >>> e1.equation()
        y**2/4 + (x/3 - 1/3)**2 - 1

        """
        x = _symbol(x)
        y = _symbol(y)
        t1 = ((x - self.center[0]) / self.hradius)**2
        t2 = ((y - self.center[1]) / self.vradius)**2
        return t1 + t2 - 1

    def _do_line_intersection(self, o):
        """
        Find the intersection of a LinearEntity and the ellipse.

        All LinearEntities are treated as a line and filtered at
        the end to see that they lie in o.
        """
        def dot(p1, p2):
            sum = 0
            for ind in xrange(len(p1.args)):
                sum += p1[ind] * p2[ind]
            return simplify(sum)

        hr_sq = self.hradius ** 2
        vr_sq = self.vradius ** 2
        lp = o.points

        ldir = lp[1] - lp[0]
        diff = lp[0] - self.center
        mdir = (ldir[0] / hr_sq, ldir[1] / vr_sq)
        mdiff = (diff[0] / hr_sq, diff[1] / vr_sq)

        a = dot(ldir, mdir)
        b = dot(ldir, mdiff)
        c = dot(diff, mdiff) - 1
        det = simplify(b*b - a*c);

        result = []
        if det == 0:
            t = -b / a
            result.append(lp[0] + (lp[1] - lp[0]) * t)
        else:
            is_good = True
            try:
                is_good = (det > 0)
            except NotImplementedError: #symbolic, allow
                is_good = True

            if is_good:
                root = sqrt(det)
                t_a = (-b - root) / a
                t_b = (-b + root) / a
                result.append( lp[0] + (lp[1] - lp[0]) * t_a )
                result.append( lp[0] + (lp[1] - lp[0]) * t_b )

        return [r for r in result if r in o]

    def _do_circle_intersection(self, o):
        """The intersection of an Ellipse and a Circle.

        Private helper method for `intersection`.

        """
        variables = self.equation().atoms(C.Symbol)
        if len(variables) > 2:
            return None
        if self.center == o.center:
            a, b, r = o.major, o.minor, self.radius
            x = a*sqrt(simplify((r**2 - b**2)/(a**2 - b**2)))
            y = b*sqrt(simplify((a**2 - r**2)/(a**2 - b**2)))
            return list(set([Point(x, y), Point(x, -y), Point(-x, y),
                             Point(-x, -y)]))
        else:
            x, y = variables
            xx = solve(self.equation(), x)
            intersect = []
            for xi in xx:
                yy = solve(o.equation().subs(x, xi), y)
                for yi in yy:
                    intersect.append(Point(xi, yi))
            return list(set(intersect))

    def _do_ellipse_intersection(self, o):
        """The intersection of two ellipses.

        Private helper method for `intersection`.

        """
        x = Dummy('x')
        y = Dummy('y')
        seq = self.equation(x, y)
        oeq = o.equation(x, y)
        result = solve([seq, oeq], [x, y])
        return [Point(*r) for r in result if im(r[0]).is_zero and im(r[1]).is_zero]

    def intersection(self, o):
        """The intersection of this ellipse and another geometrical entity
        `o`.

        Parameters
        ----------
        o : GeometryEntity

        Returns
        -------
        intersection : list of GeometryEntities

        Notes
        -----
        Currently supports intersections with Point, Line, Segment, Ray,
        Circle and Ellipse types.

        Example
        -------
        >>> from sympy import Ellipse, Point, Line, sqrt
        >>> e = Ellipse(Point(0, 0), 5, 7)
        >>> e.intersection(Point(0, 0))
        []
        >>> e.intersection(Point(5, 0))
        [Point(5, 0)]
        >>> e.intersection(Line(Point(0,0), Point(0, 1)))
        [Point(0, -7), Point(0, 7)]
        >>> e.intersection(Line(Point(5,0), Point(5, 1)))
        [Point(5, 0)]
        >>> e.intersection(Line(Point(6,0), Point(6, 1)))
        []
        >>> e = Ellipse(Point(-1, 0), 4, 3)
        >>> e.intersection(Ellipse(Point(1, 0), 4, 3))
        [Point(0, -3*15**(1/2)/4), Point(0, 3*15**(1/2)/4)]
        >>> e.intersection(Ellipse(Point(5, 0), 4, 3))
        [Point(2, -3*7**(1/2)/4), Point(2, 3*7**(1/2)/4)]
        >>> e.intersection(Ellipse(Point(100500, 0), 4, 3))
        []
        >>> e.intersection(Ellipse(Point(0, 0), 3, 4))
        [Point(-363/175, -48*111**(1/2)/175), Point(-363/175, 48*111**(1/2)/175),
        Point(3, 0)]
        >>> e.intersection(Ellipse(Point(-1, 0), 3, 4))
        [Point(-17/5, -12/5), Point(-17/5, 12/5), Point(7/5, -12/5),
        Point(7/5, 12/5)]
        """
        if isinstance(o, Point):
            if o in self:
                return [o]
            else:
                return []

        elif isinstance(o, LinearEntity):
            # LinearEntity may be a ray/segment, so check the points
            # of intersection for coincidence first
            return self._do_line_intersection(o)

        elif isinstance(o, Circle):
            return self._do_circle_intersection(o)

        elif isinstance(o, Ellipse):
            if o == self:
                return self
            else:
                return self._do_ellipse_intersection(o)

        return o.intersection(self)

    def __eq__(self, o):
        """Is the other GeometryEntity the same as this ellipse?"""
        return (self.center == o.center and self.hradius == o.hradius
                and self.vradius == o.vradius)

    def __hash__(self):
        return super(Ellipse, self).__hash__()

    def __contains__(self, o):
        if isinstance(o, Point):
            x = C.Dummy('x', real=True)
            y = C.Dummy('y', real=True)

            res = self.equation(x, y).subs({x: o[0], y: o[1]})
            return trigsimp(simplify(res)) is S.Zero
        elif isinstance(o, Ellipse):
            return self == o
        return False


class Circle(Ellipse):
    """A circle in space.

    Constructed simply from a center and a radius, or from three
    non-collinear points.

    Parameters
    ----------
    center : Point
    radius : number or sympy expression
    points : sequence of three Points

    Attributes
    ----------
    radius (synonymous with hradius, vradius, major and minor)
    circumference
    equation

    Raises
    ------
    GeometryError
        When trying to construct circle from three collinear points.
        When trying to construct circle from incorrect parameters.

    See Also
    --------
    Point

    Examples
    --------
    >>> from sympy.geometry import Point, Circle
    >>> # a circle constructed from a center and radius
    >>> c1 = Circle(Point(0, 0), 5)
    >>> c1.hradius, c1.vradius, c1.radius
    (5, 5, 5)

    >>> # a circle costructed from three points
    >>> c2 = Circle(Point(0, 0), Point(1, 1), Point(1, 0))
    >>> c2.hradius, c2.vradius, c2.radius, c2.center
    (2**(1/2)/2, 2**(1/2)/2, 2**(1/2)/2, Point(1/2, 1/2))

    """
    def __new__(cls, *args, **kwargs):
        c, r = None, None
        if len(args) == 3:
            args = [Point(a) for a in args]
            if Point.is_collinear(*args):
                raise GeometryError("Cannot construct a circle from three collinear points")
            from polygon import Triangle
            t = Triangle(*args)
            c = t.circumcenter
            r = t.circumradius
        elif len(args) == 2:
            # Assume (center, radius) pair
            c = Point(args[0])
            r = sympify(args[1])

        if not (c is None or r is None):
            return GeometryEntity.__new__(cls, c, r, **kwargs)

        raise GeometryError("Circle.__new__ received unknown arguments")

    @property
    def radius(self):
        """The radius of the circle.

        Returns
        -------
        radius : number or sympy expression

        Examples
        --------
        >>> from sympy import Point, Circle
        >>> c1 = Circle(Point(3, 4), 6)
        >>> c1.radius
        6

        """
        return self.__getitem__(1)

    @property
    def major(self):
        return self.radius

    @property
    def minor(self):
        return self.radius

    @property
    def hradius(self):
        return self.radius

    @property
    def vradius(self):
        return self.radius

    @property
    def circumference(self):
        """The circumference of the circle.

        Returns
        -------
        circumference : number or sympy expression

        Examples
        --------
        >>> from sympy import Point, Circle
        >>> c1 = Circle(Point(3, 4), 6)
        >>> c1.circumference
        12*pi

        """
        return 2 * S.Pi * self.radius

    def equation(self, x='x', y='y'):
        """The equation of the circle.

        Parameters
        ----------
        x : str or Symbol, optional
            Default value is 'x'.
        y : str or Symbol, optional
            Default value is 'y'.

        Returns
        -------
        equation : sympy expression

        Examples
        --------
        >>> from sympy import Point, Circle
        >>> c1 = Circle(Point(0, 0), 5)
        >>> c1.equation()
        x**2 + y**2 - 25

        """
        x = _symbol(x)
        y = _symbol(y)
        t1 = (x - self.center[0])**2
        t2 = (y - self.center[1])**2
        return t1 + t2 - self.major**2

    def intersection(self, o):
        """The intersection of this circle with another geometrical entity.

        Parameters
        ----------
        o : GeometryEntity

        Returns
        -------
        intersection : list of GeometryEntities

        Examples
        --------
        >>> from sympy import Point, Circle, Line, Ray
        >>> p1, p2, p3 = Point(0, 0), Point(5, 5), Point(6, 0)
        >>> p4 = Point(5, 0)
        >>> c1 = Circle(p1, 5)
        >>> c1.intersection(p2)
        []
        >>> c1.intersection(p4)
        [Point(5, 0)]
        >>> c1.intersection(Ray(p1, p2))
        [Point(5*2**(1/2)/2, 5*2**(1/2)/2)]
        >>> c1.intersection(Line(p2, p3))
        []

        """
        if isinstance(o, Circle):
            if o.center == self.center:
                if o.radius == self.radius:
                    return o
                return []
            dx,dy = o.center - self.center
            d = sqrt(simplify(dy**2 + dx**2))
            R = o.radius + self.radius
            if d > R or d < abs(self.radius - o.radius):
                return []

            a = simplify((self.radius**2 - o.radius**2 + d**2) / (2*d))

            x2 = self.center[0] + (dx * a/d)
            y2 = self.center[1] + (dy * a/d)

            h = sqrt(simplify(self.radius**2 - a**2))
            rx = -dy * (h/d)
            ry = dx * (h/d)

            xi_1 = simplify(x2 + rx)
            xi_2 = simplify(x2 - rx)
            yi_1 = simplify(y2 + ry)
            yi_2 = simplify(y2 - ry)

            ret = [Point(xi_1, yi_1)]
            if xi_1 != xi_2 or yi_1 != yi_2:
                ret.append(Point(xi_2, yi_2))
            return ret

        return Ellipse.intersection(self, o)

from polygon import Polygon