This file is indexed.

/usr/share/pyshared/sympy/geometry/entity.py is in python-sympy 0.7.1.rc1-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
"""The definition of the base geometrical entity with attributes common to all
derived geometrical entities.

Contains
--------
GeometryEntity

"""

from sympy.core.compatibility import cmp

# How entities are ordered; used by __cmp__ in GeometryEntity
ordering_of_classes = [
    "Point",
    "Segment",
    "Ray",
    "Line",
    "Triangle",
    "RegularPolygon",
    "Polygon",
    "Circle",
    "Ellipse",
    "Curve"
]

class GeometryEntity(tuple):
    """The base class for all geometrical entities.

    This class doesn't represent any particular geometric entity, it only
    provides the implementation of some methods common to all subclasses.

    """

    def __new__(cls, *args, **kwargs):
        return tuple.__new__(cls, args)

    def __getnewargs__(self):
        return tuple(self)

    @property
    def free_symbols(self):
        free = set()
        for a in self.args:
            free |= a.free_symbols
        return free

    def intersection(self, o):
        """
        Returns a list of all of the intersections of self with o.

        Notes
        -----
        An entity is not required to implement this method.

        If two different types of entities can intersect, the item with
        higher index in ordering_of_classes should implement
        intersections with anything having a lower index.

        See Also
        --------
        intersection function in geometry/util.py which computes the
        intersection between more than 2 objects.

        """
        raise NotImplementedError()

    def rotate(self, angle, pt=None):
        """Rotate the object about pt by the given angle (in radians).

        The default pt is the origin, Point(0, 0)

        XXX geometry needs a modify_points method which operates
        on only the points of the object

        >>> from sympy import Point, RegularPolygon, Polygon, pi
        >>> t = Polygon(*RegularPolygon(Point(0, 0), 1, 3).vertices)
        >>> t # vertex on x axis
        Triangle(Point(1, 0), Point(-1/2, 3**(1/2)/2), Point(-1/2, -3**(1/2)/2))
        >>> t.rotate(pi/2) # vertex on y axis now
        Triangle(Point(0, 1), Point(-3**(1/2)/2, -1/2), Point(3**(1/2)/2, -1/2))

        """
        from sympy import cos, sin, Point

        c = cos(angle)
        s = sin(angle)

        if isinstance(self, Point):
            rv = self
            if pt is not None:
                rv -= pt
            x, y = rv
            rv = Point(c*x-s*y, s*x+c*y)
            if pt is not None:
                rv += pt
            return rv

        newargs = []
        for a in self.args:
            if isinstance(a, GeometryEntity):
                newargs.append(a.rotate(angle, pt))
            else:
                newargs.append(a)
        return type(self)(*newargs)

    def scale(self, x=1, y=1):
        """Scale the object by multiplying the x,y-coordinates by x and y.

        >>> from sympy import RegularPolygon, Point, Polygon
        >>> t = Polygon(*RegularPolygon(Point(0, 0), 1, 3).vertices)
        >>> t
        Triangle(Point(1, 0), Point(-1/2, 3**(1/2)/2), Point(-1/2, -3**(1/2)/2))
        >>> t.scale(2)
        Triangle(Point(2, 0), Point(-1, 3**(1/2)/2), Point(-1, -3**(1/2)/2))
        >>> t.scale(2,2)
        Triangle(Point(2, 0), Point(-1, 3**(1/2)), Point(-1, -3**(1/2)))

        """
        from sympy import Point
        if isinstance(self, Point):
            return Point(self[0]*x, self[1]*y)
        newargs = []
        for a in self.args:
            if isinstance(a, GeometryEntity):
                newargs.append(a.scale(x, y))
            else:
                newargs.append(a)
        return type(self)(*newargs)

    def translate(self, x=0, y=0):
        """Shift the object by adding to the x,y-coordinates the values x and y.

        >>> from sympy import RegularPolygon, Point, Polygon
        >>> t = Polygon(*RegularPolygon(Point(0, 0), 1, 3).vertices)
        >>> t
        Triangle(Point(1, 0), Point(-1/2, 3**(1/2)/2), Point(-1/2, -3**(1/2)/2))
        >>> t.translate(2)
        Triangle(Point(3, 0), Point(3/2, 3**(1/2)/2), Point(3/2, -3**(1/2)/2))
        >>> t.translate(2,2)
        Triangle(Point(3, 2), Point(3/2, 3**(1/2)/2 + 2), Point(3/2, -3**(1/2)/2 + 2))

        """
        from sympy import Point
        if not isinstance(x, Point):
            pt = Point(x, y)
        else:
            pt = x
        if isinstance(self, Point):
            return self + pt
        newargs = []
        for a in self.args:
            if isinstance(a, GeometryEntity):
                newargs.append(a.translate(pt))
            else:
                newargs.append(a)
        return type(self)(*newargs)

    def encloses(self, o):
        """
        Return True if o is inside (not on or outside) the boundaries of self.

        The object will be decomposed into Points and individual Entities need
        only define an encloses_point method for their class.
        """
        from sympy.geometry.point import Point
        from sympy.geometry.line import Segment, Ray, Line
        from sympy.geometry.ellipse import Circle, Ellipse
        from sympy.geometry.polygon import Polygon, RegularPolygon

        if isinstance(o, Point):
            return self.encloses_point(o)
        elif isinstance(o, Segment):
            return all(self.encloses_point(x) for x in o.points)
        elif isinstance(o, Ray) or isinstance(o, Line):
            return False
        elif isinstance(o, Ellipse):
            return self.encloses_point(o.center) and not self.intersection(o)
        elif isinstance(o, Polygon):
            if isinstance(o, RegularPolygon):
                if not self.encloses_point(o.center):
                    return False
            return all(self.encloses_point(v) for v in o.vertices)
        raise NotImplementedError()

    def is_similar(self, other):
        """Is this geometrical entity similar to another geometrical entity?

        Two entities are similar if a uniform scaling (enlarging or
        shrinking) of one of the entities will allow one to obtain the other.

        Notes
        -----
        This method is not intended to be used directly but rather
        through the `are_similar` function found in util.py.
        An entity is not required to implement this method.
        If two different types of entities can be similar, it is only
        required that one of them be able to determine this.

        """
        raise NotImplementedError()

    def subs(self, old, new):
        if hasattr(self, '_eval_subs_'):
            return self.subs(old, new)
        elif isinstance(self, GeometryEntity):
            return type(self)(*[a.subs(old, new) for a in self.args])
        else:
            return self

    @property
    def args(self):
        """Return whatever is contained in the object's tuple.

        The contents will not necessarily be Points. This is also
        what will be returned when one does "for x in self".
        """

        return tuple(self)

    def __ne__(self, o):
        """Test inequality of two geometrical entities."""
        return not self.__eq__(o)

    def __radd__(self, a):
        return a.__add__(self)

    def __rsub__(self, a):
        return a.__sub__(self)

    def __rmul__(self, a):
        return a.__mul__(self)

    def __rdiv__(self, a):
        return a.__div__(self)

    def __str__(self):
        """String representation of a GeometryEntity."""
        from sympy.printing import sstr
        return type(self).__name__ + sstr(tuple(self))

    def __repr__(self):
        """String representation of a GeometryEntity that can be evaluated
        by sympy."""
        return type(self).__name__ + repr(tuple(self))

    def __cmp__(self, other):
        """Comparison of two GeometryEntities."""
        n1 = self.__class__.__name__
        n2 = other.__class__.__name__
        c = cmp(n1, n2)
        if not c:
            return 0

        i1 = -1
        for cls in self.__class__.__mro__:
            try:
                i1 = ordering_of_classes.index(cls.__name__)
                break
            except ValueError:
                i1 = -1
        if i1 == -1:
            return c

        i2 = -1
        for cls in other.__class__.__mro__:
            try:
                i2 = ordering_of_classes.index(cls.__name__)
                break
            except ValueError:
                i2 = -1
        if i2 == -1:
            return c

        return cmp(i1, i2)

    def __contains__(self, other):
        """Subclasses should implement this method for anything more complex than equality."""
        if type(self) == type(other):
            return self == other
        raise NotImplementedError()

from sympy.core.sympify import converter
converter[GeometryEntity] = lambda x: x