This file is indexed.

/usr/share/pyshared/sympy/geometry/point.py is in python-sympy 0.7.1.rc1-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
"""Geometrical Points.

Contains
--------
Point

"""

from sympy.core import S, sympify
from sympy.core.compatibility import iterable
from sympy.simplify import simplify
from sympy.geometry.exceptions import GeometryError
from sympy.functions.elementary.miscellaneous import sqrt
from entity import GeometryEntity


class Point(GeometryEntity):
    """A point in a 2-dimensional Euclidean space.

    Parameters
    ----------
    coords : sequence of 2 coordinate values.

    Attributes
    ----------
    coordinates : 2-tuple of numbers or sympy objects.
        Stored in `self`. That is self[0] is the first coordinate value, and
        self[1] is the second coordinate value.

    Raises
    ------
    NotImplementedError
        When trying to create a point with more than two dimensions.
        When `intersection` is called with object other than a Point.
    TypeError
        When trying to add or subtract points with different dimensions.

    Notes
    -----
    Currently only 2-dimensional points are supported.

    Examples
    --------
    >>> from sympy.geometry import Point
    >>> from sympy.abc import x
    >>> Point(1, 2)
    Point(1, 2)
    >>> Point([1, 2])
    Point(1, 2)
    >>> Point(0, x)
    Point(0, x)

    """
    def __new__(cls, *args, **kwargs):
        if iterable(args[0]):
            coords = tuple([sympify(x) for x in args[0]])
        else:
            coords = tuple([sympify(x) for x in args])

        if len(coords) != 2:
            raise NotImplementedError("Only two dimensional points currently supported")

        return GeometryEntity.__new__(cls, *coords)

    @property
    def x(self):
        return self[0]

    @property
    def y(self):
        return self[1]

    @property
    def free_symbols(self):
        return self.x.free_symbols.union(self.y.free_symbols)

    def _eval_subs(self, old, new):
        return type(self)(self.x.subs(old, new), self.y.subs(old, new))

    def is_collinear(*points):
        """Is a sequence of points collinear?

        Test whether or not a set of points are collinear. Returns True if
        the set of points are collinear, or False otherwise.

        Parameters
        ----------
        points : sequence of Point

        Returns
        -------
        is_collinear : boolean

        Notes
        --------------------------
        Slope is preserved everywhere on a line, so the slope between
        any two points on the line should be the same. Take the first
        two points, p1 and p2, and create a translated point v1
        with p1 as the origin. Now for every other point we create
        a translated point, vi with p1 also as the origin. Note that
        these translations preserve slope since everything is
        consistently translated to a new origin of p1. Since slope
        is preserved then we have the following equality:
                v1_slope = vi_slope
          =>    v1.y/v1.x = vi.y/vi.x (due to translation)
          =>    v1.y*vi.x = vi.y*v1.x
          =>    v1.y*vi.x - vi.y*v1.x = 0           (*)
        Hence, if we have a vi such that the equality in (*) is False
        then the points are not collinear. We do this test for every
        point in the list, and if all pass then they are collinear.

        Examples
        --------
        >>> from sympy import Point
        >>> from sympy.abc import x
        >>> p1, p2 = Point(0, 0), Point(1, 1)
        >>> p3, p4, p5 = Point(2, 2), Point(x, x), Point(1, 2)
        >>> Point.is_collinear(p1, p2, p3, p4)
        True
        >>> Point.is_collinear(p1, p2, p3, p5)
        False

        """
        if len(points) == 0:
            return False
        if len(points) <= 2:
            return True # two points always form a line
        points = [Point(a) for a in points]

        # XXX Cross product is used now, but that only extends to three
        #     dimensions. If the concept needs to extend to greater
        #     dimensions then another method would have to be used
        p1 = points[0]
        p2 = points[1]
        v1 = p2 - p1
        for p3 in points[2:]:
            v2 = p3 - p1
            test = simplify(v1[0]*v2[1] - v1[1]*v2[0])
            if simplify(test) != 0:
                return False
        return True

    def is_concyclic(*points):
        """Is a sequence of points concyclic?

        Test whether or not a sequence of points are concyclic (i.e., they lie
        on a circle).

        Parameters
        ----------
        points : sequence of Points

        Returns
        -------
        is_concyclic : boolean
            True if points are concyclic, False otherwise.

        Notes
        -----
        No points are not considered to be concyclic. One or two points
        are definitely concyclic and three points are conyclic iff they
        are not collinear.

        For more than three points, create a circle from the first three
        points. If the circle cannot be created (i.e., they are collinear)
        then all of the points cannot be concyclic. If the circle is created
        successfully then simply check the remaining points for containment
        in the circle.

        Examples
        --------
        >>> from sympy.geometry import Point
        >>> p1, p2 = Point(-1, 0), Point(1, 0)
        >>> p3, p4 = Point(0, 1), Point(-1, 2)
        >>> Point.is_concyclic(p1, p2, p3)
        True
        >>> Point.is_concyclic(p1, p2, p3, p4)
        False

        """
        if len(points) == 0:
            return False
        if len(points) <= 2:
            return True
        points = [Point(p) for p in points]
        if len(points) == 3:
            return (not Point.is_collinear(*points))

        try:
            from ellipse import Circle
            c = Circle(points[0], points[1], points[2])
            for point in points[3:]:
                if point not in c:
                    return False
            return True
        except GeometryError, e:
            # Circle could not be created, because of collinearity of the
            # three points passed in, hence they are not concyclic.
            return False
        """
        # This code is from Maple
        def f(u):
            dd = u[0]**2 + u[1]**2 + 1
            u1 = 2*u[0] / dd
            u2 = 2*u[1] / dd
            u3 = (dd - 2) / dd
            return u1,u2,u3

        u1,u2,u3 = f(points[0])
        v1,v2,v3 = f(points[1])
        w1,w2,w3 = f(points[2])
        p = [v1 - u1, v2 - u2, v3 - u3]
        q = [w1 - u1, w2 - u2, w3 - u3]
        r = [p[1]*q[2] - p[2]*q[1], p[2]*q[0] - p[0]*q[2], p[0]*q[1] - p[1]*q[0]]
        for ind in xrange(3, len(points)):
            s1,s2,s3 = f(points[ind])
            test = simplify(r[0]*(s1-u1) + r[1]*(s2-u2) + r[2]*(s3-u3))
            if test != 0:
                return False
        return True
        """

    def distance(self, p):
        """The Euclidean distance from self to point p.

        Parameters
        ----------
        p : Point

        Returns
        -------
        distance : number or symbolic expression.

        Examples
        --------
        >>> from sympy.geometry import Point
        >>> p1, p2 = Point(1, 1), Point(4, 5)
        >>> p1.distance(p2)
        5

        >>> from sympy.abc import x, y
        >>> p3 = Point(x, y)
        >>> p3.distance(Point(0, 0))
        (x**2 + y**2)**(1/2)

        """
        return sqrt(sum([(a - b)**2 for a, b in zip(self, p)]))

    def midpoint(self, p):
        """The midpoint between self and point p.

        Parameters
        ----------
        p : Point

        Returns
        -------
        midpoint : Point

        Examples
        --------
        >>> from sympy.geometry import Point
        >>> p1, p2 = Point(1, 1), Point(13, 5)
        >>> p1.midpoint(p2)
        Point(7, 3)

        """
        return Point([simplify((a + b)*S.Half) for a, b in zip(self, p)])

    def evalf(self):
        """Evaluate the coordinates of the point.

        This method will, where possible, create and return a new Point
        where the coordinates are evaluated as floating point numbers.

        Returns
        -------
        point : Point

        Examples
        --------
        >>> from sympy import Point, Rational
        >>> p1 = Point(Rational(1, 2), Rational(3, 2))
        >>> p1
        Point(1/2, 3/2)
        >>> p1.evalf()
        Point(0.5, 1.5)

        """
        return Point([x.evalf() for x in self])

    def intersection(self, o):
        """The intersection between this point and another point.

        Parameters
        ----------
        other : Point

        Returns
        -------
        intersection : list of Points

        Notes
        -----
        The return value will either be an empty list if there is no
        intersection, otherwise it will contain this point.

        Examples
        --------
        >>> from sympy import Point
        >>> p1, p2, p3 = Point(0, 0), Point(1, 1), Point(0, 0)
        >>> p1.intersection(p2)
        []
        >>> p1.intersection(p3)
        [Point(0, 0)]

        """
        if isinstance(o, Point):
            if self == o:
                return [self]
            return []

        return o.intersection(self)

    @property
    def length(self):
        return S.Zero

    def __len__(self):
        return 1

    def __add__(self, other):
        """Add two points, or add a factor to this point's coordinates."""
        if isinstance(other, Point):
            if len(other.args) == len(self.args):
                return Point( [simplify(a + b) for a, b in zip(self, other)] )
            else:
                raise TypeError("Points must have the same number of dimensions")
        else:
            raise ValueError('Cannot add non-Point, %s, to a Point' % other)
            other = sympify(other)
            return Point([simplify(a + other) for a in self])

    def __sub__(self, other):
        """Subtract two points, or subtract a factor from this point's
        coordinates."""
        return self + (-other)

    def __mul__(self, factor):
        """Multiply point's coordinates by a factor."""
        factor = sympify(factor)
        return Point([x*factor for x in self])

    def __div__(self, divisor):
        """Divide point's coordinates by a factor."""
        divisor = sympify(divisor)
        return Point([x/divisor for x in self])

    def __neg__(self):
        """Negate the point."""
        return Point([-x for x in self])

    def __abs__(self):
        """Returns the distance between this point and the origin."""
        origin = Point([0]*len(self.args))
        return Point.distance(origin, self)