/usr/share/pyshared/sympy/geometry/polygon.py is in python-sympy 0.7.1.rc1-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 | from sympy.core import Basic, S, C, sympify, oo, pi, Symbol
from sympy.functions.elementary.piecewise import Piecewise
from sympy.functions.elementary.trigonometric import cos, sin
from sympy.simplify import simplify
from sympy.geometry.exceptions import GeometryError
from sympy.solvers import solve
from entity import GeometryEntity
from point import Point
from ellipse import Circle
from line import Line, Segment, Ray
from util import _symbol
import warnings
class Polygon(GeometryEntity):
"""A two-dimensional polygon.
A simple polygon in space. Can be constructed from a sequence of points
or from a center, radius, number of sides and rotation angle.
Parameters
----------
vertices : sequence of Points
Attributes
----------
area
angles
perimeter
vertices
centroid
sides
Raises
------
GeometryError
If all parameters are not Points.
If the Polygon has intersecting sides.
See Also
--------
Point
Segment
Triangle
Notes
-----
Polygons are treated as closed paths rather than 2D areas so
some calculations can be be negative or positive (e.g., area)
based on the orientation of the points.
Any consecutive identical points are reduced to a single point
and any points collinear and between two points will be removed
unless they are needed to define an explicit intersection (see examples).
A Triangle, Segment or Point will be returned when there are 3 or
fewer points provided.
Examples
--------
>>> from sympy import Point, Polygon, pi
>>> p1, p2, p3, p4, p5 = [(0, 0), (1, 0), (5, 1), (0, 1), (3, 0)]
>>> Polygon(p1, p2, p3, p4)
Polygon(Point(0, 0), Point(1, 0), Point(5, 1), Point(0, 1))
>>> Polygon(p1, p2)
Segment(Point(0, 0), Point(1, 0))
>>> Polygon(p1, p2, p5)
Segment(Point(0, 0), Point(3, 0))
While the sides of a polygon are not allowed to cross implicitly, they
can do so explicitly. For example, a polygon shaped like a Z with the top
left connecting to the bottom right of the Z must have the point in the
middle of the Z explicitly given:
>>> mid = Point(1, 1)
>>> Polygon((0, 2), (2, 2), mid, (0, 0), (2, 0), mid).area
0
>>> Polygon((0, 2), (2, 2), mid, (2, 0), (0, 0), mid).area
-2
When the the keyword `n` is used to define the number of sides of the
Polygon then a RegularPolygon is created and the other arguments are
interpreted as center, radius and rotation. The unrotated RegularPolygon
will always have a vertex at Point(r, 0) where `r` is the radius of the
circle that circumscribes the RegularPolygon. Its method `spin` can be
used to increment that angle.
>>> p = Polygon((0,0), 1, n=3)
>>> p
RegularPolygon(Point(0, 0), 1, 3, 0)
>>> p[0]
Point(1, 0)
>>> p.vertices[0]
Point(1, 0)
>>> p.args[0]
Point(0, 0)
>>> p.spin(pi/2)
>>> p[0]
Point(0, 1)
"""
def __new__(cls, *args, **kwargs):
if kwargs.get('n', 0):
n = kwargs.pop('n')
args = list(args)
# return a virtual polygon with n sides
if len(args) == 2: # center, radius
args.append(n)
elif len(args) == 3: # center, radius, rotation
args.insert(2, n)
return RegularPolygon(*args, **kwargs)
vertices = [Point(a) for a in args]
# remove consecutive duplicates
nodup = []
for p in vertices:
if nodup and p == nodup[-1]:
continue
nodup.append(p)
if len(nodup) > 1 and nodup[-1] == nodup[0]:
nodup.pop() # last point was same as first
# remove collinear points unless they are shared points
got = set()
shared = set()
for p in nodup:
if p in got:
shared.add(p)
else:
got.add(p)
i = -3
while i < len(nodup) - 3 and len(nodup) > 2:
a, b, c = sorted([nodup[i], nodup[i + 1], nodup[i + 2]])
if b not in shared and Point.is_collinear(a, b, c):
nodup[i] = a
nodup[i + 1] = None
nodup.pop(i + 1)
i += 1
vertices = filter(lambda x: x is not None, nodup)
if len(vertices) > 3:
rv = GeometryEntity.__new__(cls, *vertices, **kwargs)
elif len(vertices) == 3:
return Triangle(*vertices, **kwargs)
elif len(vertices) == 2:
return Segment(*vertices, **kwargs)
else:
return Point(*vertices, **kwargs)
# reject polygons that have intersecting sides unless the
# intersection is a shared point or a generalized intersection.
# A self-intersecting polygon is easier to detect than a
# random set of segments since only those sides that are not
# part of the convex hull can possibly intersect with other
# sides of the polygon...but for now we use the n**2 algorithm
# and check all sides with intersection with any preceding sides
hit = _symbol('hit')
if not rv.is_convex:
sides = rv.sides
for i, si in enumerate(sides):
pts = si[0], si[1]
ai = si.arbitrary_point(hit)
for j in xrange(i):
sj = sides[j]
if sj[0] not in pts and sj[1] not in pts:
aj = si.arbitrary_point(hit)
tx = (solve(ai[0] - aj[0]) or [S.Zero])[0]
if tx.is_number and 0 <= tx <= 1:
ty = (solve(ai[1] - aj[1]) or [S.Zero])[0]
if (tx or ty) and ty.is_number and 0 <= ty <= 1:
print ai, aj
raise GeometryError("Polygon has intersecting sides.")
return rv
@property
def area(self):
"""
The area of the polygon.
Notes
-----
The area calculation can be positive or negative based on the
orientation of the points.
Examples
--------
>>> from sympy import Point, Polygon
>>> p1, p2, p3, p4 = map(Point, [(0, 0), (1, 0), (5, 1), (0, 1)])
>>> poly = Polygon(p1, p2, p3, p4)
>>> poly.area
3
"""
area = 0
for i in xrange(len(self)):
pi = self[i - 1]
pii = self[i]
area += pi[0]*pii[1] - pii[0]*pi[1]
return simplify(area) / 2
@property
def angles(self):
"""The internal angle at each vertex.
Returns
-------
angles : dict
A dictionary where each key is a vertex and each value is the
internal angle at that vertex. The vertices are represented as
Points.
See Also
--------
Point
Examples
--------
>>> from sympy import Point, Polygon
>>> p1, p2, p3, p4 = map(Point, [(0, 0), (1, 0), (5, 1), (0, 1)])
>>> poly = Polygon(p1, p2, p3, p4)
>>> poly.angles[p1]
pi/2
>>> poly.angles[p2]
acos(-4*17**(1/2)/17)
"""
def tarea(a, b, c):
return (b[0] - a[0])*(c[1] - a[1]) - (c[0] - a[0])*(b[1] - a[1])
def isright(a, b, c):
return bool(tarea(a, b, c) <= 0)
# Determine orientation of points
cw = isright(self[-1], self[0], self[1])
ret = {}
for i in xrange(len(self)):
a, b, c = self[i-2], self[i-1], self[i]
ang = Line.angle_between(Line(b, a), Line(b, c))
if cw ^ isright(a, b, c):
ret[b] = 2*S.Pi - ang
else:
ret[b] = ang
return ret
@property
def perimeter(self):
"""The perimeter of the polygon.
Returns
-------
perimeter : number or Basic instance
Examples
--------
>>> from sympy import Point, Polygon
>>> p1, p2, p3, p4 = map(Point, [(0, 0), (1, 0), (5, 1), (0, 1)])
>>> poly = Polygon(p1, p2, p3, p4)
>>> poly.perimeter
17**(1/2) + 7
"""
p = 0
for i in xrange(len(self)):
p += Point.distance(self[i - 1], self[i])
return simplify(p)
@property
def vertices(self):
"""The vertices of the polygon.
Returns
-------
vertices : tuple of Points
See Also
--------
Point
Notes
-----
When iterating over the vertices, it is more efficient to index self
rather than to request the vertices and index them. Only use the
vertices when you want to process all of them at once. This is even
more important with RegularPolygons that calculate each vertex.
Examples
--------
>>> from sympy import Point, Polygon
>>> p1, p2, p3, p4 = map(Point, [(0, 0), (1, 0), (5, 1), (0, 1)])
>>> poly = Polygon(p1, p2, p3, p4)
>>> poly.vertices
(Point(0, 0), Point(1, 0), Point(5, 1), Point(0, 1))
>>> print poly[0]
Point(0, 0)
"""
return self[:]
@property
def centroid(self):
"""The centroid of the polygon.
Returns
-------
centroid : Point
See Also
--------
Point
Examples
--------
>>> from sympy import Point, Polygon
>>> p1, p2, p3, p4 = map(Point, [(0, 0), (1, 0), (5, 1), (0, 1)])
>>> poly = Polygon(p1, p2, p3, p4)
>>> poly.centroid
Point(31/18, 11/18)
"""
A = 1/(6*self.area)
cx, cy = 0, 0
for i in xrange(len(self)):
pi = self[i - 1]
pii = self[i]
v = pi[0]*pii[1] - pii[0]*pi[1]
cx += v*(pi[0] + pii[0])
cy += v*(pi[1] + pii[1])
return Point(simplify(A*cx), simplify(A*cy))
@property
def sides(self):
"""The line segments that form the sides of the polygon.
Returns
-------
sides : list of sides
Each side is a Segment.
Note
----
The Segments that represent the sides are an undirected
line segment so cannot be used to tell the orientation of
the polygon.
See Also
--------
Point
Segment
Examples
--------
>>> from sympy import Point, Polygon
>>> p1, p2, p3, p4 = map(Point, [(0, 0), (1, 0), (5, 1), (0, 1)])
>>> poly = Polygon(p1, p2, p3, p4)
>>> poly.sides
[Segment(Point(0, 0), Point(1, 0)),
Segment(Point(1, 0), Point(5, 1)),
Segment(Point(0, 1), Point(5, 1)), Segment(Point(0, 0), Point(0, 1))]
"""
res = []
for i in xrange(-len(self), 0):
res.append(Segment(self[i], self[i + 1]))
return res
def is_convex(self):
"""Is the polygon convex?
A polygon is convex if all its interior angles are less than 180
degrees.
Returns
-------
is_convex : boolean
True if this polygon is convex, False otherwise.
Examples
--------
>>> from sympy import Point, Polygon
>>> p1, p2, p3, p4 = map(Point, [(0, 0), (1, 0), (5, 1), (0, 1)])
>>> poly = Polygon(p1, p2, p3, p4)
>>> poly.is_convex()
True
"""
def tarea(a, b, c):
return (b[0] - a[0])*(c[1] - a[1]) - (c[0] - a[0])*(b[1] - a[1])
def isright(a, b, c):
return bool(tarea(a, b, c) <= 0)
# Determine orientation of points
cw = isright(self[-2], self[-1], self[0])
for i in xrange(1, len(self)):
if cw ^ isright(self[i - 2], self[i - 1], self[i]):
return False
return True
def encloses_point(self, p):
"""
Return True if p is enclosed by (is inside of) self.
Notes
-----
Being on the border of self is considered False.
Parameters
----------
p : Point
Returns
-------
encloses_point : True, False or None
Examples
--------
>>> from sympy import Polygon, Point
>>> from sympy.abc import t
>>> p = Polygon((0, 0),(4, 0), (4, 4))
>>> p.encloses_point(Point(2, 1))
True
>>> p.encloses_point(Point(2, 2))
False
>>> p.encloses_point(Point(5, 5))
False
Adapted from
------------
[1] http://www.ariel.com.au/a/python-point-int-poly.html
[2] http://local.wasp.uwa.edu.au/~pbourke/geometry/insidepoly/
"""
from sympy import Symbol
if p in self:
return False
def concrete(p):
x, y = p
return x.is_number and y.is_number
# move to p, checking that the result is numeric
lit = []
for v in self.vertices:
lit.append(v - p)
if not concrete(lit[-1]):
return None
self = Polygon(*lit)
# polygon closure is assumed in the following test but Polygon removes duplicate pts so
# the last point has to be added so all sides are computed. Using Polygon.sides is
# not good since Segments are unordered.
indices = range(-len(self), 1)
if self.is_convex():
orientation = None
for i in indices:
x0, y0 = self[i]
x1, y1 = self[i + 1]
test = ((-y0)*(x1 - x0) - (-x0)*(y1 - y0)).is_negative
if orientation is None:
orientation = test
elif test is not orientation:
return False
return True
hit_odd = False
p1x, p1y = self[0]
for i in indices[1:]:
p2x, p2y = self[i]
if 0 > min(p1y, p2y):
if 0 <= max(p1y, p2y):
if 0 <= max(p1x, p2x):
if p1y != p2y:
xinters = (-p1y)*(p2x - p1x)/(p2y - p1y) + p1x
if p1x == p2x or 0 <= xinters:
hit_odd = not hit_odd
p1x, p1y = p2x, p2y
return hit_odd
def arbitrary_point(self, parameter='t'):
"""A parameterized point on the polygon.
The parameter, varying from 0 to 1, assigns points to the position on
the perimeter that is that fraction of the total perimeter. So the
point evaluated at t=1/2 would return the point from the first vertex
that is 1/2 way around the polygon.
Parameters
----------
parameter : str, optional
Default value is 't'.
Returns
-------
arbitrary_point : Point
Raises
------
ValueError
When `parameter` already appears in the Polygon's definition.
See Also
--------
Point
Examples
--------
>>> from sympy import Polygon, S, Symbol
>>> t = Symbol('t', real=True)
>>> tri = Polygon((0, 0), (1, 0), (1, 1))
>>> p = tri.arbitrary_point('t')
>>> perimeter = tri.perimeter
>>> s1, s2 = [s.length for s in tri.sides[:2]]
>>> p.subs(t, (s1 + s2/2)/perimeter)
Point(1, 1/2)
"""
t = _symbol(parameter)
if t.name in (f.name for f in self.free_symbols):
raise ValueError('Symbol %s already appears in object and cannot be used as a parameter.' % t.name)
sides = []
perimeter = self.perimeter
perim_fraction_start = 0
for s in self.sides:
side_perim_fraction = s.length/perimeter
perim_fraction_end = perim_fraction_start + side_perim_fraction
pt = s.arbitrary_point(parameter).subs(
t, (t - perim_fraction_start)/side_perim_fraction)
sides.append((pt, (perim_fraction_start <= t < perim_fraction_end)))
perim_fraction_start = perim_fraction_end
return Piecewise(*sides)
def plot_interval(self, parameter='t'):
"""The plot interval for the default geometric plot of the polygon.
Parameters
----------
parameter : str, optional
Default value is 't'.
Returns
-------
plot_interval : list (plot interval)
[parameter, lower_bound, upper_bound]
Examples
--------
>>> from sympy import Polygon
>>> p = Polygon((0, 0), (1, 0), (1, 1))
>>> p.plot_interval()
[t, 0, 1]
"""
t = Symbol(parameter, real=True)
return [t, 0, 1]
def intersection(self, o):
"""The intersection of two polygons.
The intersection may be empty and can contain individual Points and
complete Line Segments.
Parameters
----------
other: Polygon
Returns
-------
intersection : list
The list of Segments and Points
Examples
--------
>>> from sympy import Point, Polygon
>>> p1, p2, p3, p4 = map(Point, [(0, 0), (1, 0), (5, 1), (0, 1)])
>>> poly1 = Polygon(p1, p2, p3, p4)
>>> p5, p6, p7 = map(Point, [(3, 2), (1, -1), (0, 2)])
>>> poly2 = Polygon(p5, p6, p7)
>>> poly1.intersection(poly2)
[Point(2/3, 0), Point(9/5, 1/5), Point(7/3, 1), Point(1/3, 1)]
"""
res = []
for side in self.sides:
inter = side.intersection(o)
if inter is not None:
res.extend(inter)
return res
def distance(self, o):
if isinstance(o, Point):
dist = oo
for side in self.sides:
current = side.distance(o)
if current == 0:
return S(0)
elif current < dist:
dist = current
return dist
elif isinstance(o, Polygon) and self.is_convex() and o.is_convex():
return self._do_poly_distance(o)
raise NotImplementedError()
def _do_poly_distance(self, e2):
"""
Calculates the least distance between the exteriors of two
convex polygons e1 and e2. Does not check for the convexity
of the polygons as it is assumed only called by Polygon.distance
which does such checks.
Notes
-----
- Prints a warning if the two polygons possibly intersect as the return
value will not be valid in such a case. For a more through test of
intersection use intersection().
Example
-------
>>> from sympy.geometry import Point, Polygon
>>> square = Polygon(Point(0, 0), Point(0, 1), Point(1, 1), Point(1, 0))
>>> triangle = Polygon(Point(1, 2), Point(2, 2), Point(2, 1))
>>> square._do_poly_distance(triangle)
2**(1/2)/2
Description of method used
--------------------------
Method:
[1] http://cgm.cs.mcgill.ca/~orm/mind2p.html
Uses rotating calipers:
[2] http://en.wikipedia.org/wiki/Rotating_calipers
and antipodal points:
[3] http://en.wikipedia.org/wiki/Antipodal_point
"""
e1 = self
'''Tests for a possible intersection between the polygons and outputs a warning'''
e1_center = e1.centroid
e2_center = e2.centroid
e1_max_radius = S(0)
e2_max_radius = S(0)
for vertex in e1.vertices:
r = Point.distance(e1_center, vertex)
if e1_max_radius < r:
e1_max_radius = r
for vertex in e2.vertices:
r = Point.distance(e2_center, vertex)
if e2_max_radius < r:
e2_max_radius = r
center_dist = Point.distance(e1_center, e2_center)
if center_dist <= e1_max_radius + e2_max_radius:
warnings.warn("Polygons may intersect producing erroneous output")
'''
Find the upper rightmost vertex of e1 and the lowest leftmost vertex of e2
'''
e1_ymax = (S(0), -oo)
e2_ymin = (S(0), oo)
for vertex in e1.vertices:
if vertex[1] > e1_ymax[1] or (vertex[1] == e1_ymax[1] and vertex[0] > e1_ymax[0]):
e1_ymax = vertex
for vertex in e2.vertices:
if vertex[1] < e2_ymin[1] or (vertex[1] == e2_ymin[1] and vertex[0] < e2_ymin[0]):
e2_ymin = vertex
min_dist = Point.distance(e1_ymax, e2_ymin)
'''
Produce a dictionary with vertices of e1 as the keys and, for each vertex, the points
to which the vertex is connected as its value. The same is then done for e2.
'''
e1_connections = {}
e2_connections = {}
for side in e1.sides:
if side.p1 in e1_connections:
e1_connections[side.p1].append(side.p2)
else:
e1_connections[side.p1] = [side.p2]
if side.p2 in e1_connections:
e1_connections[side.p2].append(side.p1)
else:
e1_connections[side.p2] = [side.p1]
for side in e2.sides:
if side.p1 in e2_connections:
e2_connections[side.p1].append(side.p2)
else:
e2_connections[side.p1] = [side.p2]
if side.p2 in e2_connections:
e2_connections[side.p2].append(side.p1)
else:
e2_connections[side.p2] = [side.p1]
e1_current = e1_ymax
e2_current = e2_ymin
support_line = Line(Point(S(0), S(0)), Point(S(1), S(0)))
'''
Determine which point in e1 and e2 will be selected after e2_ymin and e1_ymax,
this information combined with the above produced dictionaries determines the
path that will be taken around the polygons
'''
point1 = e1_connections[e1_ymax][0]
point2 = e1_connections[e1_ymax][1]
angle1 = support_line.angle_between(Line(e1_ymax, point1))
angle2 = support_line.angle_between(Line(e1_ymax, point2))
if angle1 < angle2: e1_next = point1
elif angle2 < angle1: e1_next = point2
elif Point.distance(e1_ymax, point1) > Point.distance(e1_ymax, point2):
e1_next = point2
else: e1_next = point1
point1 = e2_connections[e2_ymin][0]
point2 = e2_connections[e2_ymin][1]
angle1 = support_line.angle_between(Line(e2_ymin, point1))
angle2 = support_line.angle_between(Line(e2_ymin, point2))
if angle1 > angle2: e2_next = point1
elif angle2 > angle1: e2_next = point2
elif Point.distance(e2_ymin, point1) > Point.distance(e2_ymin, point2):
e2_next = point2
else: e2_next = point1
'''
Loop which determins the distance between anti-podal pairs and updates the
minimum distance accordingly. It repeats until it reaches the starting position.
'''
while True:
e1_angle = support_line.angle_between(Line(e1_current, e1_next))
e2_angle = pi - support_line.angle_between(Line(e2_current, e2_next))
if e1_angle < e2_angle:
support_line = Line(e1_current, e1_next)
e1_segment = Segment(e1_current, e1_next)
min_dist_current = e1_segment.distance(e2_current)
if min_dist_current.evalf() < min_dist.evalf(): min_dist = min_dist_current
if e1_connections[e1_next][0] != e1_current:
e1_current = e1_next
e1_next = e1_connections[e1_next][0]
else:
e1_current = e1_next
e1_next = e1_connections[e1_next][1]
elif e1_angle > e2_angle:
support_line = Line(e2_next, e2_current)
e2_segment = Segment(e2_current, e2_next)
min_dist_current = e2_segment.distance(e1_current)
if min_dist_current.evalf() < min_dist.evalf(): min_dist = min_dist_current
if e2_connections[e2_next][0] != e2_current:
e2_current = e2_next
e2_next = e2_connections[e2_next][0]
else:
e2_current = e2_next
e2_next = e2_connections[e2_next][1]
else:
support_line = Line(e1_current, e1_next)
e1_segment = Segment(e1_current, e1_next)
e2_segment = Segment(e2_current, e2_next)
min1 = e1_segment.distance(e2_next)
min2 = e2_segment.distance(e1_next)
min_dist_current = min(min1, min2)
if min_dist_current.evalf() < min_dist.evalf(): min_dist = min_dist_current
if e1_connections[e1_next][0] != e1_current:
e1_current = e1_next
e1_next = e1_connections[e1_next][0]
else:
e1_current = e1_next
e1_next = e1_connections[e1_next][1]
if e2_connections[e2_next][0] != e2_current:
e2_current = e2_next
e2_next = e2_connections[e2_next][0]
else:
e2_current = e2_next
e2_next = e2_connections[e2_next][1]
if e1_current == e1_ymax and e2_current == e2_ymin: break
return min_dist
def __eq__(self, o):
if not isinstance(o, Polygon) or len(self) != len(o):
return False
# See if self can ever be traversed (cw or ccw) from any of its
# vertices to match all points of o
n = len(self)
o0 = o[0]
for i0 in xrange(n):
if self[i0] == o0:
if all(self[(i0 + i) % n] == o[i] for i in xrange(1, n)):
return True
if all(self[(i0 - i) % n] == o[i] for i in xrange(1, n)):
return True
return False
def __hash__(self):
return super(Polygon, self).__hash__()
def __contains__(self, o):
"""
Return True if o is contained within the boundary lines of self.altitudes
Parameters
----------
other : GeometryEntity
Returns
-------
contained in : bool
The points (and sides, if applicable) are contained in self.
See Also
--------
encloses
Examples
--------
>>> from sympy import Line, Segment, Point
>>> p = Point(0, 0)
>>> q = Point(1, 1)
>>> s = Segment(p, q*2)
>>> l = Line(p, q)
>>> p in q
False
>>> p in s
True
>>> q*3 in s
False
>>> s in l
True
"""
if isinstance(o, Polygon):
return self == o
elif isinstance(o, Segment):
return any(o in s for s in self.sides)
elif isinstance(o, Point):
if o in self.vertices:
return True
for side in self.sides:
if o in side:
return True
return False
class RegularPolygon(Polygon):
"""
A regular polygon.
Such a polygon has all internal angles equal and all sides the same length.
Parameters
----------
center : Point
radius : number or Basic instance
The distance from the center to a vertex
n : int
The number of sides
Attributes
----------
vertices
center
radius
rotation
apothem
interior_angle
exterior_angle
circumcircle
incircle
angles
Raises
------
GeometryError
If the `center` is not a Point, or the `radius` is not a number or Basic
instance, or the number of sides, `n`, is less than three.
See Also
--------
Point
Note
----
A RegularPolygon can be instantiated with Polygon with the kwarg n.
Regular polygons are instantiated with a center, radius, number of sides
and a rotation angle. They return a vertex when indexed rather than the
argument at that index.
Examples
--------
>>> from sympy.geometry import RegularPolygon, Point
>>> r = RegularPolygon(Point(0, 0), 5, 3)
>>> r
RegularPolygon(Point(0, 0), 5, 3, 0)
>>> r[0]
Point(5, 0)
"""
def __new__(self, c, r, n, rot=0, **kwargs):
r, n, rot = sympify([r, n, rot])
c = Point(c)
if not isinstance(r, Basic):
raise GeometryError("RegularPolygon.__new__ requires r to be a number or Basic instance")
if n < 3:
raise GeometryError("RegularPolygon.__new__ requires n >= 3")
obj = GeometryEntity.__new__(self, c, r, n, **kwargs)
obj._n = n
obj._center = c
obj._radius = r
obj._rot = rot
return obj
@property
def args(self):
return self._center, self._radius, self._n, self._rot
def __str__(self):
return 'RegularPolygon(%s, %s, %s, %s)' % tuple(self.args)
def __repr__(self):
return 'RegularPolygon(%s, %s, %s, %s)' % tuple(self.args)
@property
def center(self):
"""The center of the RegularPolygon
This is also the center of the circumscribing circle.
Returns
-------
center : Point
See Also
--------
Point
Examples
--------
>>> from sympy.geometry import RegularPolygon, Point
>>> rp = RegularPolygon(Point(0, 0), 5, 4)
>>> rp.center
Point(0, 0)
"""
return self._center
@property
def circumcenter(self):
"""alias for center"""
return self.center
@property
def radius(self):
"""Radius of the RegularPolygon
This is also the radius of the circumscribing circle.
Returns
-------
radius : number or instance of Basic
Examples
--------
>>> from sympy import Symbol
>>> from sympy.geometry import RegularPolygon, Point
>>> radius = Symbol('r')
>>> rp = RegularPolygon(Point(0, 0), radius, 4)
>>> rp.radius
r
"""
return self._radius
@property
def circumradius(self):
"""alias for radius"""
return self.radius
@property
def rotation(self):
"""CCW angle by which the RegularPolygon is rotated
Returns
-------
rotation : number or instance of Basic
Examples
--------
>>> from sympy import pi
>>> from sympy.geometry import RegularPolygon, Point
>>> RegularPolygon(Point(0, 0), 3, 4, pi).rotation
pi
"""
return self._rot
@property
def apothem(self):
"""The inradius of the RegularPolygon.
The apothem/inradius is the radius of the inscribed circle.
Returns
-------
apothem : number or instance of Basic
Examples
--------
>>> from sympy import Symbol
>>> from sympy.geometry import RegularPolygon, Point
>>> radius = Symbol('r')
>>> rp = RegularPolygon(Point(0, 0), radius, 4)
>>> rp.apothem
2**(1/2)*r/2
"""
return self.radius * cos(S.Pi/self._n)
@property
def inradius(self):
"""alias for apothem"""
return self.apothem
@property
def interior_angle(self):
"""Measure of the interior angles.
Returns
-------
interior_angle : number
Examples
--------
>>> from sympy.geometry import RegularPolygon, Point
>>> rp = RegularPolygon(Point(0, 0), 4, 8)
>>> rp.interior_angle
3*pi/4
"""
return (self._n - 2)*S.Pi/self._n
@property
def exterior_angle(self):
"""Measure of the exterior angles.
Returns
-------
exterior_angle : number
Examples
--------
>>> from sympy.geometry import RegularPolygon, Point
>>> rp = RegularPolygon(Point(0, 0), 4, 8)
>>> rp.exterior_angle
pi/4
"""
return 2*S.Pi/self._n
@property
def circumcircle(self):
"""The circumcircle of the RegularPolygon.
Returns
-------
circumcircle : Circle
See Also
--------
Circle
Examples
--------
>>> from sympy.geometry import RegularPolygon, Point
>>> rp = RegularPolygon(Point(0, 0), 4, 8)
>>> rp.circumcircle
Circle(Point(0, 0), 4)
"""
return Circle(self.center, self.radius)
@property
def incircle(self):
"""The incircle of the RegularPolygon.
Returns
-------
incircle : Circle
See Also
--------
Circle
Examples
--------
>>> from sympy.geometry import RegularPolygon, Point
>>> rp = RegularPolygon(Point(0, 0), 4, 8)
>>> rp.incircle
Circle(Point(0, 0), 4*cos(pi/8))
"""
return Circle(self.center, self.apothem)
@property
def angles(self):
ret = {}
ang = self.interior_angle
for v in self.vertices:
ret[v] = ang
return ret
def encloses_point(self, p):
"""
Return True if p is enclosed by (is inside of) self.
Notes
-----
Being on the border of self is considered False.
The general Polygon.encloses_point method is called only if
a point is not within or beyond the incircle or circumcircle,
respectively.
Parameters
----------
p : Point
Returns
-------
encloses_point : True, False or None
Examples
--------
>>> from sympy import RegularPolygon, S, Point, Symbol
>>> p = RegularPolygon((0, 0), 3, 4)
>>> p.encloses_point(Point(0, 0))
True
>>> r, R = p.inradius, p.circumradius
>>> p.encloses_point(Point((r + R)/2, 0))
True
>>> p.encloses_point(Point(R/2, R/2 + (R - r)/10))
False
>>> t = Symbol('t', real=True)
>>> p.encloses_point(p.arbitrary_point().subs(t, S.Half))
False
>>> p.encloses_point(Point(5, 5))
False
"""
c = self.center
d = Segment(c, p).length
if d >= self.radius:
return False
elif d < self.inradius:
return True
else:
# now enumerate the RegularPolygon like a general polygon.
return Polygon.encloses_point(self, p)
def spin(self, angle):
"""Increment *in place* the virtual Polygon's rotation by ccw angle.
See also: rotate method which moves the center.
>>> from sympy import Polygon, Point, pi
>>> r = Polygon(Point(0,0), 1, n=3)
>>> r[0]
Point(1, 0)
>>> r.spin(pi/6)
>>> r[0]
Point(3**(1/2)/2, 1/2)
"""
self._rot += angle
def rotate(self, angle, pt=None):
"""Override GeometryEntity.rotate to first rotate the RegularPolygon
about its center.
>>> from sympy import Point, RegularPolygon, Polygon, pi
>>> t = RegularPolygon(Point(1, 0), 1, 3)
>>> t[0] # vertex on x-axis
Point(2, 0)
>>> t.rotate(pi/2).vertices[0] # vertex on y axis now
Point(0, 2)
"""
r = type(self)(*self.args) # need a copy or else changes are in-place
r._rot += angle
return GeometryEntity.rotate(r, angle, pt)
@property
def vertices(self):
"""The vertices of the RegularPolygon.
Returns
-------
vertices : list
Each vertex is a Point.
See Also
--------
Point
Examples
--------
>>> from sympy.geometry import RegularPolygon, Point
>>> rp = RegularPolygon(Point(0, 0), 5, 4)
>>> rp.vertices
[Point(5, 0), Point(0, 5), Point(-5, 0), Point(0, -5)]
"""
return [self[i] for i in xrange(len(self))]
def __getitem__(self, k):
"""
>>> from sympy import Polygon, Point
>>> r = Polygon(Point(0, 0), 1, n=3)
>>> r[0]
Point(1, 0)
Note that iteration and indexing do not give the same results.
>>> for ri in r:
... print ri
Point(0, 0)
1
3
0
"""
if k < -self._n or k >= self._n:
raise IndexError('virtual tuple index out of range')
c = self._center
r = self._radius
rot = self._rot
v = 2*S.Pi/self._n
return Point(c[0] + r*cos(k*v + rot), c[1] + r*sin(k*v + rot))
def __iter__(self):
for i in [self._center, self._radius, self._n, self._rot]:
yield i
def __eq__(self, o):
if not isinstance(o, Polygon) or len(self) != len(o):
return False
elif not isinstance(o, RegularPolygon):
return Polygon.__eq__(o, self)
return self.args == o.args
def __len__(self):
return self._n
class Triangle(Polygon):
"""
A polygon with three vertices and three sides.
Parameters
----------
points : sequence of Points
Attributes
----------
vertices
altitudes
orthocenter
circumcenter
circumradius
circumcircle
inradius
incircle
medians
medial
Raises
------
GeometryError
If the number of vertices is not equal to three, or one of the vertices
is not a Point.
See Also
--------
Point
Examples
--------
>>> from sympy.geometry import Triangle, Point
>>> Triangle(Point(0, 0), Point(4, 0), Point(4, 3))
Triangle(Point(0, 0), Point(4, 0), Point(4, 3))
"""
def __new__(cls, *args, **kwargs):
if len(args) != 3:
raise GeometryError("Triangle.__new__ requires three points")
vertices = [Point(a) for a in args]
# remove consecutive duplicates
nodup = []
for p in vertices:
if nodup and p == nodup[-1]:
continue
nodup.append(p)
if len(nodup) > 1 and nodup[-1] == nodup[0]:
nodup.pop() # last point was same as first
# remove collinear points
i = -3
while i < len(nodup) - 3 and len(nodup) > 2:
a, b, c = sorted([nodup[i], nodup[i + 1], nodup[i + 2]])
if Point.is_collinear(a, b, c):
nodup[i] = a
nodup[i + 1] = None
nodup.pop(i + 1)
i += 1
vertices = filter(lambda x: x is not None, nodup)
if len(vertices) == 3:
return GeometryEntity.__new__(cls, *vertices, **kwargs)
elif len(vertices) == 2:
return Segment(*vertices, **kwargs)
else:
return Point(*vertices, **kwargs)
@property
def vertices(self):
"""The triangle's vertices
Returns
-------
vertices : tuple
Each element in the tuple is a Point
See Also
--------
Point
Examples
--------
>>> from sympy.geometry import Triangle, Point
>>> t = Triangle(Point(0, 0), Point(4, 0), Point(4, 3))
>>> t.vertices
(Point(0, 0), Point(4, 0), Point(4, 3))
"""
return self[:]
def is_similar(t1, t2):
"""Is another triangle similar to this one.
Two triangles are similar if one can be uniformly scaled to the other.
Parameters
----------
other: Triangle
Returns
-------
is_similar : boolean
Examples
--------
>>> from sympy.geometry import Triangle, Point
>>> t1 = Triangle(Point(0, 0), Point(4, 0), Point(4, 3))
>>> t2 = Triangle(Point(0, 0), Point(-4, 0), Point(-4, -3))
>>> t1.is_similar(t2)
True
>>> t2 = Triangle(Point(0, 0), Point(-4, 0), Point(-4, -4))
>>> t1.is_similar(t2)
False
"""
if not isinstance(t2, Polygon) or len(t2) != 3:
return False
s1_1, s1_2, s1_3 = [side.length for side in t1.sides]
s2 = [side.length for side in t2.sides]
def _are_similar(u1, u2, u3, v1, v2, v3):
e1 = simplify(u1/v1)
e2 = simplify(u2/v2)
e3 = simplify(u3/v3)
return bool(e1 == e2) and bool(e2 == e3)
# There's only 6 permutations, so write them out
return _are_similar(s1_1, s1_2, s1_3, *s2) or \
_are_similar(s1_1, s1_3, s1_2, *s2) or \
_are_similar(s1_2, s1_1, s1_3, *s2) or \
_are_similar(s1_2, s1_3, s1_1, *s2) or \
_are_similar(s1_3, s1_1, s1_2, *s2) or \
_are_similar(s1_3, s1_2, s1_1, *s2)
def is_equilateral(self):
"""Is the triangle equilateral
Returns
-------
is_equilateral : boolean
Examples
--------
>>> from sympy.geometry import Triangle, Point
>>> t1 = Triangle(Point(0, 0), Point(4, 0), Point(4, 3))
>>> t1.is_equilateral()
False
>>> from sympy import sqrt
>>> t2 = Triangle(Point(0, 0), Point(10, 0), Point(5, 5*sqrt(3)))
>>> t2.is_equilateral()
True
"""
s = self.sides
return bool(s[0].length == s[1].length) and bool(s[1].length == s[2].length)
def is_right(self):
"""Is the triangle right-angled.
Returns
-------
is_right : boolean
Examples
--------
>>> from sympy.geometry import Triangle, Point
>>> t1 = Triangle(Point(0, 0), Point(4, 0), Point(4, 3))
>>> t1.is_right()
True
"""
s = self.sides
return Segment.is_perpendicular(s[0], s[1]) or \
Segment.is_perpendicular(s[1], s[2]) or \
Segment.is_perpendicular(s[0], s[2])
@property
def altitudes(self):
"""The altitudes of the triangle.
An altitude of a triangle is a straight line through a vertex and
perpendicular to the opposite side.
Returns
-------
altitudes : dict
The dictionary consists of keys which are vertices and values
which are Segments.
See Also
--------
Point
Segment
Examples
--------
>>> from sympy.geometry import Point, Triangle
>>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1)
>>> t = Triangle(p1, p2, p3)
>>> t.altitudes[p1]
Segment(Point(0, 0), Point(1/2, 1/2))
"""
s = self.sides
v = self.vertices
return {v[0]: s[1].perpendicular_segment(v[0]),
v[1]: s[2].perpendicular_segment(v[1]),
v[2]: s[0].perpendicular_segment(v[2])}
@property
def orthocenter(self):
"""The orthocenter of the triangle.
The orthocenter is the intersection of the altitudes of a triangle.
It may lie inside, outside or on the triangle.
Returns
-------
orthocenter : Point
See Also
--------
Point
Examples
--------
>>> from sympy.geometry import Point, Triangle
>>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1)
>>> t = Triangle(p1, p2, p3)
>>> t.orthocenter
Point(0, 0)
"""
a = self.altitudes
v = self.vertices
return a[v[0]].intersection(a[v[1]])[0]
@property
def circumcenter(self):
"""The circumcenter of the triangle
The circumcenter is the center of the circumcircle.
Returns
-------
circumcenter : Point
See Also
--------
Point
Examples
--------
>>> from sympy.geometry import Point, Triangle
>>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1)
>>> t = Triangle(p1, p2, p3)
>>> t.circumcenter
Point(1/2, 1/2)
"""
a,b,c = [x.perpendicular_bisector() for x in self.sides]
return a.intersection(b)[0]
@property
def circumradius(self):
"""The radius of the circumcircle of the triangle.
Returns
-------
circumradius : number of Basic instance
Examples
--------
>>> from sympy import Symbol
>>> from sympy.geometry import Point, Triangle
>>> a = Symbol('a')
>>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, a)
>>> t = Triangle(p1, p2, p3)
>>> t.circumradius
(a**2/4 + 1/4)**(1/2)
"""
return Point.distance(self.circumcenter, self.vertices[0])
@property
def circumcircle(self):
"""The circle which passes through the three vertices of the triangle.
Returns
-------
circumcircle : Circle
See Also
--------
Circle
Examples
--------
>>> from sympy.geometry import Point, Triangle
>>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1)
>>> t = Triangle(p1, p2, p3)
>>> t.circumcircle
Circle(Point(1/2, 1/2), 2**(1/2)/2)
"""
return Circle(self.circumcenter, self.circumradius)
def bisectors(self):
"""The angle bisectors of the triangle.
An angle bisector of a triangle is a straight line through a vertex
which cuts the corresponding angle in half.
Returns
-------
bisectors : dict
Each key is a vertex (Point) and each value is the corresponding
bisector (Segment).
See Also
--------
Point
Segment
Examples
--------
>>> from sympy.geometry import Point, Triangle, Segment
>>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1)
>>> t = Triangle(p1, p2, p3)
>>> from sympy import sqrt
>>> t.bisectors()[p2] == Segment(Point(0, sqrt(2) - 1), Point(1, 0))
True
"""
s = self.sides
v = self.vertices
c = self.incenter
l1 = Segment(v[0], Line(v[0], c).intersection(s[1])[0])
l2 = Segment(v[1], Line(v[1], c).intersection(s[2])[0])
l3 = Segment(v[2], Line(v[2], c).intersection(s[0])[0])
return {v[0]: l1, v[1]: l2, v[2]: l3}
@property
def incenter(self):
"""The center of the incircle.
The incircle is the circle which lies inside the triangle and touches
all three sides.
Returns
-------
incenter : Point
See Also
--------
incircle
Point
Examples
--------
>>> from sympy.geometry import Point, Triangle
>>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1)
>>> t = Triangle(p1, p2, p3)
>>> t.incenter
Point(-2**(1/2)/2 + 1, -2**(1/2)/2 + 1)
"""
s = self.sides
v = self.vertices
A,B,C = v[0],v[1],v[2]
a,b,c = s[1].length,s[2].length,s[0].length
x = simplify((a*A[0] + b*B[0] + c*C[0]) / (a+b+c))
y = simplify((a*A[1] + b*B[1] + c*C[1]) / (a+b+c))
return Point(x, y)
@property
def inradius(self):
"""The radius of the incircle.
Returns
-------
inradius : number of Basic instance
See Also
--------
incircle
Examples
--------
>>> from sympy.geometry import Point, Triangle
>>> p1, p2, p3 = Point(0, 0), Point(4, 0), Point(0, 3)
>>> t = Triangle(p1, p2, p3)
>>> t.inradius
1
"""
return simplify(2 * self.area / self.perimeter)
@property
def incircle(self):
"""The incircle of the triangle.
The incircle is the circle which lies inside the triangle and touches
all three sides.
Returns
-------
incircle : Circle
See Also
--------
Circle
Examples
--------
>>> from sympy.geometry import Point, Triangle
>>> p1, p2, p3 = Point(0, 0), Point(2, 0), Point(0, 2)
>>> t = Triangle(p1, p2, p3)
>>> t.incircle
Circle(Point(-2**(1/2) + 2, -2**(1/2) + 2), -2**(1/2) + 2)
"""
return Circle(self.incenter, self.inradius)
@property
def medians(self):
"""The medians of the triangle.
A median of a triangle is a straight line through a vertex and the
midpoint of the opposite side, and divides the triangle into two
equal areas.
Returns
-------
medians : dict
Each key is a vertex (Point) and each value is the median (Segment)
at that point.
See Also
--------
Point
Segment
Examples
--------
>>> from sympy.geometry import Point, Triangle
>>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1)
>>> t = Triangle(p1, p2, p3)
>>> t.medians[p1]
Segment(Point(0, 0), Point(1/2, 1/2))
"""
s = self.sides
v = self.vertices
return {v[0]: Segment(s[1].midpoint, v[0]),
v[1]: Segment(s[2].midpoint, v[1]),
v[2]: Segment(s[0].midpoint, v[2])}
@property
def medial(self):
"""The medial triangle of the triangle.
The triangle which is formed from the midpoints of the three sides.
Returns
-------
medial : Triangle
Examples
--------
>>> from sympy.geometry import Point, Triangle
>>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1)
>>> t = Triangle(p1, p2, p3)
>>> t.medial
Triangle(Point(1/2, 0), Point(1/2, 1/2), Point(0, 1/2))
"""
s = self.sides
return Triangle(s[0].midpoint, s[1].midpoint, s[2].midpoint)
#@property
#def excircles(self):
# """Returns a list of the three excircles for this triangle."""
# pass
|