This file is indexed.

/usr/share/pyshared/sympy/geometry/polygon.py is in python-sympy 0.7.1.rc1-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
from sympy.core import Basic, S, C, sympify, oo, pi, Symbol
from sympy.functions.elementary.piecewise import Piecewise
from sympy.functions.elementary.trigonometric import cos, sin
from sympy.simplify import simplify
from sympy.geometry.exceptions import GeometryError
from sympy.solvers import solve
from entity import GeometryEntity
from point import Point
from ellipse import Circle
from line import Line, Segment, Ray
from util import _symbol

import warnings

class Polygon(GeometryEntity):
    """A two-dimensional polygon.

    A simple polygon in space. Can be constructed from a sequence of points
    or from a center, radius, number of sides and rotation angle.

    Parameters
    ----------
    vertices : sequence of Points

    Attributes
    ----------
    area
    angles
    perimeter
    vertices
    centroid
    sides

    Raises
    ------
    GeometryError
        If all parameters are not Points.

        If the Polygon has intersecting sides.

    See Also
    --------
    Point
    Segment
    Triangle

    Notes
    -----
    Polygons are treated as closed paths rather than 2D areas so
    some calculations can be be negative or positive (e.g., area)
    based on the orientation of the points.

    Any consecutive identical points are reduced to a single point
    and any points collinear and between two points will be removed
    unless they are needed to define an explicit intersection (see examples).

    A Triangle, Segment or Point will be returned when there are 3 or
    fewer points provided.

    Examples
    --------
    >>> from sympy import Point, Polygon, pi
    >>> p1, p2, p3, p4, p5 = [(0, 0), (1, 0), (5, 1), (0, 1), (3, 0)]
    >>> Polygon(p1, p2, p3, p4)
    Polygon(Point(0, 0), Point(1, 0), Point(5, 1), Point(0, 1))
    >>> Polygon(p1, p2)
    Segment(Point(0, 0), Point(1, 0))
    >>> Polygon(p1, p2, p5)
    Segment(Point(0, 0), Point(3, 0))

    While the sides of a polygon are not allowed to cross implicitly, they
    can do so explicitly. For example, a polygon shaped like a Z with the top
    left connecting to the bottom right of the Z must have the point in the
    middle of the Z explicitly given:

    >>> mid = Point(1, 1)
    >>> Polygon((0, 2), (2, 2), mid, (0, 0), (2, 0), mid).area
    0
    >>> Polygon((0, 2), (2, 2), mid, (2, 0), (0, 0), mid).area
    -2

    When the the keyword `n` is used to define the number of sides of the
    Polygon then a RegularPolygon is created and the other arguments are
    interpreted as center, radius and rotation. The unrotated RegularPolygon
    will always have a vertex at Point(r, 0) where `r` is the radius of the
    circle that circumscribes the RegularPolygon. Its method `spin` can be
    used to increment that angle.

    >>> p = Polygon((0,0), 1, n=3)
    >>> p
    RegularPolygon(Point(0, 0), 1, 3, 0)
    >>> p[0]
    Point(1, 0)
    >>> p.vertices[0]
    Point(1, 0)
    >>> p.args[0]
    Point(0, 0)
    >>> p.spin(pi/2)
    >>> p[0]
    Point(0, 1)

    """

    def __new__(cls, *args, **kwargs):
        if kwargs.get('n', 0):
            n = kwargs.pop('n')
            args = list(args)
            # return a virtual polygon with n sides
            if len(args) == 2: # center, radius
                args.append(n)
            elif len(args) == 3: # center, radius, rotation
                args.insert(2, n)
            return RegularPolygon(*args, **kwargs)

        vertices = [Point(a) for a in args]

        # remove consecutive duplicates
        nodup = []
        for p in vertices:
            if nodup and p == nodup[-1]:
                continue
            nodup.append(p)
        if len(nodup) > 1 and nodup[-1] == nodup[0]:
            nodup.pop() # last point was same as first

        # remove collinear points unless they are shared points
        got = set()
        shared = set()
        for p in nodup:
            if p in got:
                shared.add(p)
            else:
                got.add(p)
        i = -3
        while i < len(nodup) - 3 and len(nodup) > 2:
            a, b, c = sorted([nodup[i], nodup[i + 1], nodup[i + 2]])
            if b not in shared and Point.is_collinear(a, b, c):
                nodup[i] = a
                nodup[i + 1] = None
                nodup.pop(i + 1)
            i += 1

        vertices = filter(lambda x: x is not None, nodup)

        if len(vertices) > 3:
            rv = GeometryEntity.__new__(cls, *vertices, **kwargs)
        elif len(vertices) == 3:
            return Triangle(*vertices, **kwargs)
        elif len(vertices) == 2:
            return Segment(*vertices, **kwargs)
        else:
            return Point(*vertices, **kwargs)

        # reject polygons that have intersecting sides unless the
        # intersection is a shared point or a generalized intersection.
        # A self-intersecting polygon is easier to detect than a
        # random set of segments since only those sides that are not
        # part of the convex hull can possibly intersect with other
        # sides of the polygon...but for now we use the n**2 algorithm
        # and check all sides with intersection with any preceding sides
        hit = _symbol('hit')
        if not rv.is_convex:
            sides = rv.sides
            for i, si in enumerate(sides):
                pts = si[0], si[1]
                ai = si.arbitrary_point(hit)
                for j in xrange(i):
                    sj = sides[j]
                    if sj[0] not in pts and sj[1] not in pts:
                        aj = si.arbitrary_point(hit)
                        tx = (solve(ai[0] - aj[0]) or [S.Zero])[0]
                        if tx.is_number and 0 <= tx <= 1:
                            ty = (solve(ai[1] - aj[1]) or [S.Zero])[0]
                            if (tx or ty) and ty.is_number and 0 <= ty <= 1:
                                print ai, aj
                                raise GeometryError("Polygon has intersecting sides.")

        return rv

    @property
    def area(self):
        """
        The area of the polygon.

        Notes
        -----
        The area calculation can be positive or negative based on the
        orientation of the points.

        Examples
        --------
        >>> from sympy import Point, Polygon
        >>> p1, p2, p3, p4 = map(Point, [(0, 0), (1, 0), (5, 1), (0, 1)])
        >>> poly = Polygon(p1, p2, p3, p4)
        >>> poly.area
        3

        """
        area = 0
        for i in xrange(len(self)):
            pi = self[i - 1]
            pii = self[i]
            area += pi[0]*pii[1] - pii[0]*pi[1]
        return simplify(area) / 2

    @property
    def angles(self):
        """The internal angle at each vertex.

        Returns
        -------
        angles : dict
            A dictionary where each key is a vertex and each value is the
            internal angle at that vertex. The vertices are represented as
            Points.

        See Also
        --------
        Point

        Examples
        --------
        >>> from sympy import Point, Polygon
        >>> p1, p2, p3, p4 = map(Point, [(0, 0), (1, 0), (5, 1), (0, 1)])
        >>> poly = Polygon(p1, p2, p3, p4)
        >>> poly.angles[p1]
        pi/2
        >>> poly.angles[p2]
        acos(-4*17**(1/2)/17)

        """
        def tarea(a, b, c):
            return (b[0] - a[0])*(c[1] - a[1]) - (c[0] - a[0])*(b[1] - a[1])

        def isright(a, b, c):
            return bool(tarea(a, b, c) <= 0)

        # Determine orientation of points
        cw = isright(self[-1], self[0], self[1])

        ret = {}
        for i in xrange(len(self)):
            a, b, c = self[i-2], self[i-1], self[i]
            ang = Line.angle_between(Line(b, a), Line(b, c))
            if cw ^ isright(a, b, c):
                ret[b] = 2*S.Pi - ang
            else:
                ret[b] = ang
        return ret

    @property
    def perimeter(self):
        """The perimeter of the polygon.

        Returns
        -------
        perimeter : number or Basic instance

        Examples
        --------
        >>> from sympy import Point, Polygon
        >>> p1, p2, p3, p4 = map(Point, [(0, 0), (1, 0), (5, 1), (0, 1)])
        >>> poly = Polygon(p1, p2, p3, p4)
        >>> poly.perimeter
        17**(1/2) + 7
        """
        p = 0
        for i in xrange(len(self)):
            p += Point.distance(self[i - 1], self[i])
        return simplify(p)

    @property
    def vertices(self):
        """The vertices of the polygon.

        Returns
        -------
        vertices : tuple of Points

        See Also
        --------
        Point

        Notes
        -----
        When iterating over the vertices, it is more efficient to index self
        rather than to request the vertices and index them. Only use the
        vertices when you want to process all of them at once. This is even
        more important with RegularPolygons that calculate each vertex.

        Examples
        --------
        >>> from sympy import Point, Polygon
        >>> p1, p2, p3, p4 = map(Point, [(0, 0), (1, 0), (5, 1), (0, 1)])
        >>> poly = Polygon(p1, p2, p3, p4)
        >>> poly.vertices
        (Point(0, 0), Point(1, 0), Point(5, 1), Point(0, 1))
        >>> print poly[0]
        Point(0, 0)

        """
        return self[:]

    @property
    def centroid(self):
        """The centroid of the polygon.

        Returns
        -------
        centroid : Point

        See Also
        --------
        Point

        Examples
        --------
        >>> from sympy import Point, Polygon
        >>> p1, p2, p3, p4 = map(Point, [(0, 0), (1, 0), (5, 1), (0, 1)])
        >>> poly = Polygon(p1, p2, p3, p4)
        >>> poly.centroid
        Point(31/18, 11/18)

        """
        A = 1/(6*self.area)
        cx, cy = 0, 0
        for i in xrange(len(self)):
            pi = self[i - 1]
            pii = self[i]
            v = pi[0]*pii[1] - pii[0]*pi[1]
            cx += v*(pi[0] + pii[0])
            cy += v*(pi[1] + pii[1])
        return Point(simplify(A*cx), simplify(A*cy))

    @property
    def sides(self):
        """The line segments that form the sides of the polygon.

        Returns
        -------
        sides : list of sides
            Each side is a Segment.

        Note
        ----
        The Segments that represent the sides are an undirected
        line segment so cannot be used to tell the orientation of
        the polygon.

        See Also
        --------
        Point
        Segment

        Examples
        --------
        >>> from sympy import Point, Polygon
        >>> p1, p2, p3, p4 = map(Point, [(0, 0), (1, 0), (5, 1), (0, 1)])
        >>> poly = Polygon(p1, p2, p3, p4)
        >>> poly.sides
        [Segment(Point(0, 0), Point(1, 0)),
        Segment(Point(1, 0), Point(5, 1)),
        Segment(Point(0, 1), Point(5, 1)), Segment(Point(0, 0), Point(0, 1))]

        """
        res = []
        for i in xrange(-len(self), 0):
            res.append(Segment(self[i], self[i + 1]))
        return res

    def is_convex(self):
        """Is the polygon convex?

        A polygon is convex if all its interior angles are less than 180
        degrees.

        Returns
        -------
        is_convex : boolean
            True if this polygon is convex, False otherwise.

        Examples
        --------
        >>> from sympy import Point, Polygon
        >>> p1, p2, p3, p4 = map(Point, [(0, 0), (1, 0), (5, 1), (0, 1)])
        >>> poly = Polygon(p1, p2, p3, p4)
        >>> poly.is_convex()
        True

        """
        def tarea(a, b, c):
            return (b[0] - a[0])*(c[1] - a[1]) - (c[0] - a[0])*(b[1] - a[1])

        def isright(a, b, c):
            return bool(tarea(a, b, c) <= 0)

        # Determine orientation of points
        cw = isright(self[-2], self[-1], self[0])
        for i in xrange(1, len(self)):
            if cw ^ isright(self[i - 2], self[i - 1], self[i]):
                return False

        return True

    def encloses_point(self, p):
        """
        Return True if p is enclosed by (is inside of) self.

        Notes
        -----
        Being on the border of self is considered False.

        Parameters
        ----------
        p : Point

        Returns
        -------
        encloses_point : True, False or None

        Examples
        --------
        >>> from sympy import Polygon, Point
        >>> from sympy.abc import t
        >>> p = Polygon((0, 0),(4, 0), (4, 4))
        >>> p.encloses_point(Point(2, 1))
        True
        >>> p.encloses_point(Point(2, 2))
        False
        >>> p.encloses_point(Point(5, 5))
        False

        Adapted from
        ------------
        [1] http://www.ariel.com.au/a/python-point-int-poly.html
        [2] http://local.wasp.uwa.edu.au/~pbourke/geometry/insidepoly/
        """
        from sympy import Symbol

        if p in self:
            return False

        def concrete(p):
            x, y = p
            return x.is_number and y.is_number

        # move to p, checking that the result is numeric
        lit = []
        for v in self.vertices:
            lit.append(v - p)
            if not concrete(lit[-1]):
                return None
        self = Polygon(*lit)

        # polygon closure is assumed in the following test but Polygon removes duplicate pts so
        # the last point has to be added so all sides are computed. Using Polygon.sides is
        # not good since Segments are unordered.
        indices = range(-len(self), 1)

        if self.is_convex():
            orientation = None
            for i in indices:
                x0, y0 = self[i]
                x1, y1 = self[i + 1]
                test = ((-y0)*(x1 - x0) - (-x0)*(y1 - y0)).is_negative
                if orientation is None:
                    orientation = test
                elif test is not orientation:
                    return False
            return True

        hit_odd = False
        p1x, p1y = self[0]
        for i in indices[1:]:
            p2x, p2y = self[i]
            if 0 > min(p1y, p2y):
                if 0 <= max(p1y, p2y):
                    if 0 <= max(p1x, p2x):
                        if p1y != p2y:
                            xinters = (-p1y)*(p2x - p1x)/(p2y - p1y) + p1x
                        if p1x == p2x or 0 <= xinters:
                            hit_odd = not hit_odd
            p1x, p1y = p2x, p2y
        return hit_odd

    def arbitrary_point(self, parameter='t'):
        """A parameterized point on the polygon.

        The parameter, varying from 0 to 1, assigns points to the position on
        the perimeter that is that fraction of the total perimeter. So the
        point evaluated at t=1/2 would return the point from the first vertex
        that is 1/2 way around the polygon.

        Parameters
        ----------
        parameter : str, optional
            Default value is 't'.

        Returns
        -------
        arbitrary_point : Point

        Raises
        ------
        ValueError
            When `parameter` already appears in the Polygon's definition.

        See Also
        --------
        Point

        Examples
        --------
        >>> from sympy import Polygon, S, Symbol
        >>> t = Symbol('t', real=True)
        >>> tri = Polygon((0, 0), (1, 0), (1, 1))
        >>> p = tri.arbitrary_point('t')
        >>> perimeter = tri.perimeter
        >>> s1, s2 = [s.length for s in tri.sides[:2]]
        >>> p.subs(t, (s1 + s2/2)/perimeter)
        Point(1, 1/2)

        """
        t = _symbol(parameter)
        if t.name in (f.name for f in self.free_symbols):
            raise ValueError('Symbol %s already appears in object and cannot be used as a parameter.' % t.name)
        sides = []
        perimeter = self.perimeter
        perim_fraction_start = 0
        for s in self.sides:
            side_perim_fraction = s.length/perimeter
            perim_fraction_end = perim_fraction_start + side_perim_fraction
            pt  = s.arbitrary_point(parameter).subs(
                  t, (t - perim_fraction_start)/side_perim_fraction)
            sides.append((pt, (perim_fraction_start <= t < perim_fraction_end)))
            perim_fraction_start = perim_fraction_end
        return Piecewise(*sides)

    def plot_interval(self, parameter='t'):
        """The plot interval for the default geometric plot of the polygon.

        Parameters
        ----------
        parameter : str, optional
            Default value is 't'.

        Returns
        -------
        plot_interval : list (plot interval)
            [parameter, lower_bound, upper_bound]

        Examples
        --------
        >>> from sympy import Polygon
        >>> p = Polygon((0, 0), (1, 0), (1, 1))
        >>> p.plot_interval()
        [t, 0, 1]

        """
        t = Symbol(parameter, real=True)
        return [t, 0, 1]

    def intersection(self, o):
        """The intersection of two polygons.

        The intersection may be empty and can contain individual Points and
        complete Line Segments.

        Parameters
        ----------
        other: Polygon

        Returns
        -------
        intersection : list
            The list of Segments and Points

        Examples
        --------
        >>> from sympy import Point, Polygon
        >>> p1, p2, p3, p4 = map(Point, [(0, 0), (1, 0), (5, 1), (0, 1)])
        >>> poly1 = Polygon(p1, p2, p3, p4)
        >>> p5, p6, p7 = map(Point, [(3, 2), (1, -1), (0, 2)])
        >>> poly2 = Polygon(p5, p6, p7)
        >>> poly1.intersection(poly2)
        [Point(2/3, 0), Point(9/5, 1/5), Point(7/3, 1), Point(1/3, 1)]

        """
        res = []
        for side in self.sides:
            inter = side.intersection(o)
            if inter is not None:
                res.extend(inter)
        return res

    def distance(self, o):
        if isinstance(o, Point):
            dist = oo
            for side in self.sides:
                current = side.distance(o)
                if current == 0:
                    return S(0)
                elif current < dist:
                    dist = current
            return dist
        elif isinstance(o, Polygon) and self.is_convex() and o.is_convex():
            return self._do_poly_distance(o)
        raise NotImplementedError()

    def _do_poly_distance(self, e2):
        """
        Calculates the least distance between the exteriors of two
        convex polygons e1 and e2. Does not check for the convexity
        of the polygons as it is assumed only called by Polygon.distance
        which does such checks.

        Notes
        -----
            - Prints a warning if the two polygons possibly intersect as the return
              value will not be valid in such a case. For a more through test of
              intersection use intersection().

        Example
        -------
            >>> from sympy.geometry import Point, Polygon
            >>> square = Polygon(Point(0, 0), Point(0, 1), Point(1, 1), Point(1, 0))
            >>> triangle = Polygon(Point(1, 2), Point(2, 2), Point(2, 1))
            >>> square._do_poly_distance(triangle)
            2**(1/2)/2

        Description of method used
        --------------------------
        Method:
        [1] http://cgm.cs.mcgill.ca/~orm/mind2p.html
        Uses rotating calipers:
        [2] http://en.wikipedia.org/wiki/Rotating_calipers
        and antipodal points:
        [3] http://en.wikipedia.org/wiki/Antipodal_point
        """
        e1 = self

        '''Tests for a possible intersection between the polygons and outputs a warning'''
        e1_center = e1.centroid
        e2_center = e2.centroid
        e1_max_radius = S(0)
        e2_max_radius = S(0)
        for vertex in e1.vertices:
            r = Point.distance(e1_center, vertex)
            if e1_max_radius < r:
                e1_max_radius = r
        for vertex in e2.vertices:
            r = Point.distance(e2_center, vertex)
            if e2_max_radius < r:
                e2_max_radius = r
        center_dist = Point.distance(e1_center, e2_center)
        if center_dist <= e1_max_radius + e2_max_radius:
            warnings.warn("Polygons may intersect producing erroneous output")

        '''
        Find the upper rightmost vertex of e1 and the lowest leftmost vertex of e2
        '''
        e1_ymax = (S(0), -oo)
        e2_ymin = (S(0), oo)

        for vertex in e1.vertices:
            if vertex[1] > e1_ymax[1] or (vertex[1] == e1_ymax[1] and vertex[0] > e1_ymax[0]):
                e1_ymax = vertex
        for vertex in e2.vertices:
            if vertex[1] < e2_ymin[1] or (vertex[1] == e2_ymin[1] and vertex[0] < e2_ymin[0]):
                e2_ymin = vertex
        min_dist = Point.distance(e1_ymax, e2_ymin)

        '''
        Produce a dictionary with vertices of e1 as the keys and, for each vertex, the points
        to which the vertex is connected as its value. The same is then done for e2.
        '''
        e1_connections = {}
        e2_connections = {}

        for side in e1.sides:
            if side.p1 in e1_connections:
                e1_connections[side.p1].append(side.p2)
            else:
                e1_connections[side.p1] = [side.p2]

            if side.p2 in e1_connections:
                e1_connections[side.p2].append(side.p1)
            else:
                e1_connections[side.p2] = [side.p1]

        for side in e2.sides:
            if side.p1 in e2_connections:
                e2_connections[side.p1].append(side.p2)
            else:
                e2_connections[side.p1] = [side.p2]

            if side.p2 in e2_connections:
                e2_connections[side.p2].append(side.p1)
            else:
                e2_connections[side.p2] = [side.p1]

        e1_current = e1_ymax
        e2_current = e2_ymin
        support_line = Line(Point(S(0), S(0)), Point(S(1), S(0)))

        '''
        Determine which point in e1 and e2 will be selected after e2_ymin and e1_ymax,
        this information combined with the above produced dictionaries determines the
        path that will be taken around the polygons
        '''
        point1 = e1_connections[e1_ymax][0]
        point2 = e1_connections[e1_ymax][1]
        angle1 = support_line.angle_between(Line(e1_ymax, point1))
        angle2 = support_line.angle_between(Line(e1_ymax, point2))
        if angle1 < angle2: e1_next = point1
        elif angle2 < angle1: e1_next = point2
        elif Point.distance(e1_ymax, point1) > Point.distance(e1_ymax, point2):
            e1_next = point2
        else: e1_next = point1

        point1 = e2_connections[e2_ymin][0]
        point2 = e2_connections[e2_ymin][1]
        angle1 = support_line.angle_between(Line(e2_ymin, point1))
        angle2 = support_line.angle_between(Line(e2_ymin, point2))
        if angle1 > angle2: e2_next = point1
        elif angle2 > angle1: e2_next = point2
        elif Point.distance(e2_ymin, point1) > Point.distance(e2_ymin, point2):
            e2_next = point2
        else: e2_next = point1

        '''
        Loop which determins the distance between anti-podal pairs and updates the
        minimum distance accordingly. It repeats until it reaches the starting position.
        '''
        while True:
            e1_angle = support_line.angle_between(Line(e1_current, e1_next))
            e2_angle = pi - support_line.angle_between(Line(e2_current, e2_next))

            if e1_angle < e2_angle:
                support_line = Line(e1_current, e1_next)
                e1_segment = Segment(e1_current, e1_next)
                min_dist_current = e1_segment.distance(e2_current)

                if min_dist_current.evalf() < min_dist.evalf(): min_dist = min_dist_current

                if e1_connections[e1_next][0] != e1_current:
                    e1_current = e1_next
                    e1_next = e1_connections[e1_next][0]
                else:
                    e1_current = e1_next
                    e1_next = e1_connections[e1_next][1]
            elif e1_angle > e2_angle:
                support_line = Line(e2_next, e2_current)
                e2_segment = Segment(e2_current, e2_next)
                min_dist_current = e2_segment.distance(e1_current)

                if min_dist_current.evalf() < min_dist.evalf(): min_dist = min_dist_current

                if e2_connections[e2_next][0] != e2_current:
                    e2_current = e2_next
                    e2_next = e2_connections[e2_next][0]
                else:
                    e2_current = e2_next
                    e2_next = e2_connections[e2_next][1]
            else:
                support_line = Line(e1_current, e1_next)
                e1_segment = Segment(e1_current, e1_next)
                e2_segment = Segment(e2_current, e2_next)
                min1 = e1_segment.distance(e2_next)
                min2 = e2_segment.distance(e1_next)

                min_dist_current = min(min1, min2)
                if min_dist_current.evalf() < min_dist.evalf(): min_dist = min_dist_current

                if e1_connections[e1_next][0] != e1_current:
                    e1_current = e1_next
                    e1_next = e1_connections[e1_next][0]
                else:
                    e1_current = e1_next
                    e1_next = e1_connections[e1_next][1]

                if e2_connections[e2_next][0] != e2_current:
                    e2_current = e2_next
                    e2_next = e2_connections[e2_next][0]
                else:
                    e2_current = e2_next
                    e2_next = e2_connections[e2_next][1]
            if e1_current == e1_ymax and e2_current == e2_ymin: break
        return min_dist

    def __eq__(self, o):
        if not isinstance(o, Polygon) or len(self) != len(o):
            return False

        # See if self can ever be traversed (cw or ccw) from any of its
        # vertices to match all points of o
        n = len(self)
        o0 = o[0]
        for i0 in xrange(n):
            if self[i0] == o0:
                if all(self[(i0 + i) % n] == o[i] for i in xrange(1, n)):
                    return True
                if all(self[(i0 - i) % n] == o[i] for i in xrange(1, n)):
                    return True
        return False

    def __hash__(self):
        return super(Polygon, self).__hash__()

    def __contains__(self, o):
        """
        Return True if o is contained within the boundary lines of self.altitudes

        Parameters
        ----------
        other : GeometryEntity

        Returns
        -------
        contained in : bool
            The points (and sides, if applicable) are contained in self.

        See Also
        --------
        encloses

        Examples
        --------
        >>> from sympy import Line, Segment, Point
        >>> p = Point(0, 0)
        >>> q = Point(1, 1)
        >>> s = Segment(p, q*2)
        >>> l = Line(p, q)
        >>> p in q
        False
        >>> p in s
        True
        >>> q*3 in s
        False
        >>> s in l
        True

        """

        if isinstance(o, Polygon):
            return self == o
        elif isinstance(o, Segment):
            return any(o in s for s in self.sides)
        elif isinstance(o, Point):
            if o in self.vertices:
                return True
            for side in self.sides:
                if o in side:
                    return True

        return False


class RegularPolygon(Polygon):
    """
    A regular polygon.

    Such a polygon has all internal angles equal and all sides the same length.

    Parameters
    ----------
    center : Point
    radius : number or Basic instance
        The distance from the center to a vertex
    n : int
        The number of sides

    Attributes
    ----------
    vertices
    center
    radius
    rotation
    apothem
    interior_angle
    exterior_angle
    circumcircle
    incircle
    angles

    Raises
    ------
    GeometryError
        If the `center` is not a Point, or the `radius` is not a number or Basic
        instance, or the number of sides, `n`, is less than three.

    See Also
    --------
    Point

    Note
    ----
    A RegularPolygon can be instantiated with Polygon with the kwarg n.

    Regular polygons are instantiated with a center, radius, number of sides
    and a rotation angle. They return a vertex when indexed rather than the
    argument at that index.

    Examples
    --------
    >>> from sympy.geometry import RegularPolygon, Point
    >>> r = RegularPolygon(Point(0, 0), 5, 3)
    >>> r
    RegularPolygon(Point(0, 0), 5, 3, 0)
    >>> r[0]
    Point(5, 0)

    """

    def __new__(self, c, r, n, rot=0, **kwargs):
        r, n, rot = sympify([r, n, rot])
        c = Point(c)
        if not isinstance(r, Basic):
            raise GeometryError("RegularPolygon.__new__ requires r to be a number or Basic instance")
        if n < 3:
            raise GeometryError("RegularPolygon.__new__ requires n >= 3")

        obj = GeometryEntity.__new__(self, c, r, n, **kwargs)
        obj._n = n
        obj._center = c
        obj._radius = r
        obj._rot = rot
        return obj

    @property
    def args(self):
        return self._center, self._radius, self._n, self._rot

    def __str__(self):
        return 'RegularPolygon(%s, %s, %s, %s)' % tuple(self.args)

    def __repr__(self):
        return 'RegularPolygon(%s, %s, %s, %s)' % tuple(self.args)

    @property
    def center(self):
        """The center of the RegularPolygon

        This is also the center of the circumscribing circle.

        Returns
        -------
        center : Point

        See Also
        --------
        Point

        Examples
        --------
        >>> from sympy.geometry import RegularPolygon, Point
        >>> rp = RegularPolygon(Point(0, 0), 5, 4)
        >>> rp.center
        Point(0, 0)

        """
        return self._center

    @property
    def circumcenter(self):
        """alias for center"""
        return self.center

    @property
    def radius(self):
        """Radius of the RegularPolygon

        This is also the radius of the circumscribing circle.

        Returns
        -------
        radius : number or instance of Basic

        Examples
        --------
        >>> from sympy import Symbol
        >>> from sympy.geometry import RegularPolygon, Point
        >>> radius = Symbol('r')
        >>> rp = RegularPolygon(Point(0, 0), radius, 4)
        >>> rp.radius
        r

        """
        return self._radius

    @property
    def circumradius(self):
        """alias for radius"""
        return self.radius

    @property
    def rotation(self):
        """CCW angle by which the RegularPolygon is rotated

        Returns
        -------
        rotation : number or instance of Basic

        Examples
        --------
        >>> from sympy import pi
        >>> from sympy.geometry import RegularPolygon, Point
        >>> RegularPolygon(Point(0, 0), 3, 4, pi).rotation
        pi

        """
        return self._rot

    @property
    def apothem(self):
        """The inradius of the RegularPolygon.

        The apothem/inradius is the radius of the inscribed circle.

        Returns
        -------
        apothem : number or instance of Basic

        Examples
        --------
        >>> from sympy import Symbol
        >>> from sympy.geometry import RegularPolygon, Point
        >>> radius = Symbol('r')
        >>> rp = RegularPolygon(Point(0, 0), radius, 4)
        >>> rp.apothem
        2**(1/2)*r/2

        """
        return self.radius * cos(S.Pi/self._n)

    @property
    def inradius(self):
        """alias for apothem"""
        return self.apothem

    @property
    def interior_angle(self):
        """Measure of the interior angles.

        Returns
        -------
        interior_angle : number

        Examples
        --------
        >>> from sympy.geometry import RegularPolygon, Point
        >>> rp = RegularPolygon(Point(0, 0), 4, 8)
        >>> rp.interior_angle
        3*pi/4

        """
        return (self._n - 2)*S.Pi/self._n

    @property
    def exterior_angle(self):
        """Measure of the exterior angles.

        Returns
        -------
        exterior_angle : number

        Examples
        --------
        >>> from sympy.geometry import RegularPolygon, Point
        >>> rp = RegularPolygon(Point(0, 0), 4, 8)
        >>> rp.exterior_angle
        pi/4

        """
        return 2*S.Pi/self._n

    @property
    def circumcircle(self):
        """The circumcircle of the RegularPolygon.

        Returns
        -------
        circumcircle : Circle

        See Also
        --------
        Circle

        Examples
        --------
        >>> from sympy.geometry import RegularPolygon, Point
        >>> rp = RegularPolygon(Point(0, 0), 4, 8)
        >>> rp.circumcircle
        Circle(Point(0, 0), 4)

        """
        return Circle(self.center, self.radius)

    @property
    def incircle(self):
        """The incircle of the RegularPolygon.

        Returns
        -------
        incircle : Circle

        See Also
        --------
        Circle

        Examples
        --------
        >>> from sympy.geometry import RegularPolygon, Point
        >>> rp = RegularPolygon(Point(0, 0), 4, 8)
        >>> rp.incircle
        Circle(Point(0, 0), 4*cos(pi/8))

        """
        return Circle(self.center, self.apothem)

    @property
    def angles(self):
        ret = {}
        ang = self.interior_angle
        for v in self.vertices:
            ret[v] = ang
        return ret

    def encloses_point(self, p):
        """
        Return True if p is enclosed by (is inside of) self.

        Notes
        -----
        Being on the border of self is considered False.

        The general Polygon.encloses_point method is called only if
        a point is not within or beyond the incircle or circumcircle,
        respectively.

        Parameters
        ----------
        p : Point

        Returns
        -------
        encloses_point : True, False or None

        Examples
        --------
        >>> from sympy import RegularPolygon, S, Point, Symbol
        >>> p = RegularPolygon((0, 0), 3, 4)
        >>> p.encloses_point(Point(0, 0))
        True
        >>> r, R = p.inradius, p.circumradius
        >>> p.encloses_point(Point((r + R)/2, 0))
        True
        >>> p.encloses_point(Point(R/2, R/2 + (R - r)/10))
        False
        >>> t = Symbol('t', real=True)
        >>> p.encloses_point(p.arbitrary_point().subs(t, S.Half))
        False
        >>> p.encloses_point(Point(5, 5))
        False

        """

        c = self.center
        d = Segment(c, p).length
        if d >= self.radius:
            return False
        elif d < self.inradius:
            return True
        else:
            # now enumerate the RegularPolygon like a general polygon.
            return Polygon.encloses_point(self, p)

    def spin(self, angle):
        """Increment *in place* the virtual Polygon's rotation by ccw angle.

        See also: rotate method which moves the center.

        >>> from sympy import Polygon, Point, pi
        >>> r = Polygon(Point(0,0), 1, n=3)
        >>> r[0]
        Point(1, 0)
        >>> r.spin(pi/6)
        >>> r[0]
        Point(3**(1/2)/2, 1/2)

        """
        self._rot += angle

    def rotate(self, angle, pt=None):
        """Override GeometryEntity.rotate to first rotate the RegularPolygon
        about its center.

        >>> from sympy import Point, RegularPolygon, Polygon, pi
        >>> t = RegularPolygon(Point(1, 0), 1, 3)
        >>> t[0] # vertex on x-axis
        Point(2, 0)
        >>> t.rotate(pi/2).vertices[0] # vertex on y axis now
        Point(0, 2)
        """

        r = type(self)(*self.args) # need a copy or else changes are in-place
        r._rot += angle
        return GeometryEntity.rotate(r, angle, pt)

    @property
    def vertices(self):
        """The vertices of the RegularPolygon.

        Returns
        -------
        vertices : list
            Each vertex is a Point.

        See Also
        --------
        Point

        Examples
        --------
        >>> from sympy.geometry import RegularPolygon, Point
        >>> rp = RegularPolygon(Point(0, 0), 5, 4)
        >>> rp.vertices
        [Point(5, 0), Point(0, 5), Point(-5, 0), Point(0, -5)]

        """
        return [self[i] for i in xrange(len(self))]

    def __getitem__(self, k):
        """
        >>> from sympy import Polygon, Point
        >>> r = Polygon(Point(0, 0), 1, n=3)
        >>> r[0]
        Point(1, 0)

        Note that iteration and indexing do not give the same results.
        >>> for ri in r:
        ...     print ri
        Point(0, 0)
        1
        3
        0
        """
        if k < -self._n or k >= self._n:
            raise IndexError('virtual tuple index out of range')
        c = self._center
        r = self._radius
        rot = self._rot
        v = 2*S.Pi/self._n
        return Point(c[0] + r*cos(k*v + rot), c[1] + r*sin(k*v + rot))

    def __iter__(self):
        for i in [self._center, self._radius, self._n, self._rot]:
            yield i

    def __eq__(self, o):
        if not isinstance(o, Polygon) or len(self) != len(o):
            return False
        elif not isinstance(o, RegularPolygon):
            return Polygon.__eq__(o, self)
        return self.args == o.args

    def __len__(self):
        return self._n

class Triangle(Polygon):
    """
    A polygon with three vertices and three sides.

    Parameters
    ----------
    points : sequence of Points

    Attributes
    ----------
    vertices
    altitudes
    orthocenter
    circumcenter
    circumradius
    circumcircle
    inradius
    incircle
    medians
    medial

    Raises
    ------
    GeometryError
        If the number of vertices is not equal to three, or one of the vertices
        is not a Point.

    See Also
    --------
    Point

    Examples
    --------
    >>> from sympy.geometry import Triangle, Point
    >>> Triangle(Point(0, 0), Point(4, 0), Point(4, 3))
    Triangle(Point(0, 0), Point(4, 0), Point(4, 3))

    """

    def __new__(cls, *args, **kwargs):
        if len(args) != 3:
            raise GeometryError("Triangle.__new__ requires three points")

        vertices = [Point(a) for a in args]

        # remove consecutive duplicates
        nodup = []
        for p in vertices:
            if nodup and p == nodup[-1]:
                continue
            nodup.append(p)
        if len(nodup) > 1 and nodup[-1] == nodup[0]:
            nodup.pop() # last point was same as first

        # remove collinear points
        i = -3
        while i < len(nodup) - 3 and len(nodup) > 2:
            a, b, c = sorted([nodup[i], nodup[i + 1], nodup[i + 2]])
            if Point.is_collinear(a, b, c):
                nodup[i] = a
                nodup[i + 1] = None
                nodup.pop(i + 1)
            i += 1

        vertices = filter(lambda x: x is not None, nodup)

        if len(vertices) == 3:
            return GeometryEntity.__new__(cls, *vertices, **kwargs)
        elif len(vertices) == 2:
            return Segment(*vertices, **kwargs)
        else:
            return Point(*vertices, **kwargs)

    @property
    def vertices(self):
        """The triangle's vertices

        Returns
        -------
        vertices : tuple
            Each element in the tuple is a Point

        See Also
        --------
        Point

        Examples
        --------
        >>> from sympy.geometry import Triangle, Point
        >>> t = Triangle(Point(0, 0), Point(4, 0), Point(4, 3))
        >>> t.vertices
        (Point(0, 0), Point(4, 0), Point(4, 3))

        """
        return self[:]

    def is_similar(t1, t2):
        """Is another triangle similar to this one.

        Two triangles are similar if one can be uniformly scaled to the other.

        Parameters
        ----------
        other: Triangle

        Returns
        -------
        is_similar : boolean

        Examples
        --------
        >>> from sympy.geometry import Triangle, Point
        >>> t1 = Triangle(Point(0, 0), Point(4, 0), Point(4, 3))
        >>> t2 = Triangle(Point(0, 0), Point(-4, 0), Point(-4, -3))
        >>> t1.is_similar(t2)
        True

        >>> t2 = Triangle(Point(0, 0), Point(-4, 0), Point(-4, -4))
        >>> t1.is_similar(t2)
        False

        """
        if not isinstance(t2, Polygon) or len(t2) != 3:
            return False

        s1_1, s1_2, s1_3 = [side.length for side in t1.sides]
        s2 = [side.length for side in t2.sides]
        def _are_similar(u1, u2, u3, v1, v2, v3):
            e1 = simplify(u1/v1)
            e2 = simplify(u2/v2)
            e3 = simplify(u3/v3)
            return bool(e1 == e2) and bool(e2 == e3)

        # There's only 6 permutations, so write them out
        return _are_similar(s1_1, s1_2, s1_3, *s2) or \
               _are_similar(s1_1, s1_3, s1_2, *s2) or \
               _are_similar(s1_2, s1_1, s1_3, *s2) or \
               _are_similar(s1_2, s1_3, s1_1, *s2) or \
               _are_similar(s1_3, s1_1, s1_2, *s2) or \
               _are_similar(s1_3, s1_2, s1_1, *s2)

    def is_equilateral(self):
        """Is the triangle equilateral

        Returns
        -------
        is_equilateral : boolean

        Examples
        --------
        >>> from sympy.geometry import Triangle, Point
        >>> t1 = Triangle(Point(0, 0), Point(4, 0), Point(4, 3))
        >>> t1.is_equilateral()
        False

        >>> from sympy import sqrt
        >>> t2 = Triangle(Point(0, 0), Point(10, 0), Point(5, 5*sqrt(3)))
        >>> t2.is_equilateral()
        True

        """
        s = self.sides
        return bool(s[0].length == s[1].length) and bool(s[1].length == s[2].length)

    def is_right(self):
        """Is the triangle right-angled.

        Returns
        -------
        is_right : boolean

        Examples
        --------
        >>> from sympy.geometry import Triangle, Point
        >>> t1 = Triangle(Point(0, 0), Point(4, 0), Point(4, 3))
        >>> t1.is_right()
        True

        """
        s = self.sides
        return Segment.is_perpendicular(s[0], s[1]) or \
               Segment.is_perpendicular(s[1], s[2]) or \
               Segment.is_perpendicular(s[0], s[2])

    @property
    def altitudes(self):
        """The altitudes of the triangle.

        An altitude of a triangle is a straight line through a vertex and
        perpendicular to the opposite side.

        Returns
        -------
        altitudes : dict
            The dictionary consists of keys which are vertices and values
            which are Segments.

        See Also
        --------
        Point
        Segment

        Examples
        --------
        >>> from sympy.geometry import Point, Triangle
        >>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1)
        >>> t = Triangle(p1, p2, p3)
        >>> t.altitudes[p1]
        Segment(Point(0, 0), Point(1/2, 1/2))

        """
        s = self.sides
        v = self.vertices
        return {v[0]: s[1].perpendicular_segment(v[0]),
                v[1]: s[2].perpendicular_segment(v[1]),
                v[2]: s[0].perpendicular_segment(v[2])}

    @property
    def orthocenter(self):
        """The orthocenter of the triangle.

        The orthocenter is the intersection of the altitudes of a triangle.
        It may lie inside, outside or on the triangle.

        Returns
        -------
        orthocenter : Point

        See Also
        --------
        Point

        Examples
        --------
        >>> from sympy.geometry import Point, Triangle
        >>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1)
        >>> t = Triangle(p1, p2, p3)
        >>> t.orthocenter
        Point(0, 0)

        """
        a = self.altitudes
        v = self.vertices
        return a[v[0]].intersection(a[v[1]])[0]

    @property
    def circumcenter(self):
        """The circumcenter of the triangle

        The circumcenter is the center of the circumcircle.

        Returns
        -------
        circumcenter : Point

        See Also
        --------
        Point

        Examples
        --------
        >>> from sympy.geometry import Point, Triangle
        >>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1)
        >>> t = Triangle(p1, p2, p3)
        >>> t.circumcenter
        Point(1/2, 1/2)

        """
        a,b,c = [x.perpendicular_bisector() for x in self.sides]
        return a.intersection(b)[0]

    @property
    def circumradius(self):
        """The radius of the circumcircle of the triangle.

        Returns
        -------
        circumradius : number of Basic instance

        Examples
        --------
        >>> from sympy import Symbol
        >>> from sympy.geometry import Point, Triangle
        >>> a = Symbol('a')
        >>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, a)
        >>> t = Triangle(p1, p2, p3)
        >>> t.circumradius
        (a**2/4 + 1/4)**(1/2)

        """
        return Point.distance(self.circumcenter, self.vertices[0])

    @property
    def circumcircle(self):
        """The circle which passes through the three vertices of the triangle.

        Returns
        -------
        circumcircle : Circle

        See Also
        --------
        Circle

        Examples
        --------
        >>> from sympy.geometry import Point, Triangle
        >>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1)
        >>> t = Triangle(p1, p2, p3)
        >>> t.circumcircle
        Circle(Point(1/2, 1/2), 2**(1/2)/2)

        """
        return Circle(self.circumcenter, self.circumradius)

    def bisectors(self):
        """The angle bisectors of the triangle.

        An angle bisector of a triangle is a straight line through a vertex
        which cuts the corresponding angle in half.

        Returns
        -------
        bisectors : dict
            Each key is a vertex (Point) and each value is the corresponding
            bisector (Segment).

        See Also
        --------
        Point
        Segment

        Examples
        --------
        >>> from sympy.geometry import Point, Triangle, Segment
        >>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1)
        >>> t = Triangle(p1, p2, p3)
        >>> from sympy import sqrt
        >>> t.bisectors()[p2] == Segment(Point(0, sqrt(2) - 1), Point(1, 0))
        True

        """
        s = self.sides
        v = self.vertices
        c = self.incenter
        l1 = Segment(v[0], Line(v[0], c).intersection(s[1])[0])
        l2 = Segment(v[1], Line(v[1], c).intersection(s[2])[0])
        l3 = Segment(v[2], Line(v[2], c).intersection(s[0])[0])
        return {v[0]: l1, v[1]: l2, v[2]: l3}

    @property
    def incenter(self):
        """The center of the incircle.

        The incircle is the circle which lies inside the triangle and touches
        all three sides.

        Returns
        -------
        incenter : Point

        See Also
        --------
        incircle
        Point

        Examples
        --------
        >>> from sympy.geometry import Point, Triangle
        >>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1)
        >>> t = Triangle(p1, p2, p3)
        >>> t.incenter
        Point(-2**(1/2)/2 + 1, -2**(1/2)/2 + 1)

        """
        s = self.sides
        v = self.vertices
        A,B,C = v[0],v[1],v[2]
        a,b,c = s[1].length,s[2].length,s[0].length
        x = simplify((a*A[0] + b*B[0] + c*C[0]) / (a+b+c))
        y = simplify((a*A[1] + b*B[1] + c*C[1]) / (a+b+c))
        return Point(x, y)

    @property
    def inradius(self):
        """The radius of the incircle.

        Returns
        -------
        inradius : number of Basic instance

        See Also
        --------
        incircle

        Examples
        --------
        >>> from sympy.geometry import Point, Triangle
        >>> p1, p2, p3 = Point(0, 0), Point(4, 0), Point(0, 3)
        >>> t = Triangle(p1, p2, p3)
        >>> t.inradius
        1

        """
        return simplify(2 * self.area / self.perimeter)

    @property
    def incircle(self):
        """The incircle of the triangle.

        The incircle is the circle which lies inside the triangle and touches
        all three sides.

        Returns
        -------
        incircle : Circle

        See Also
        --------
        Circle

        Examples
        --------
        >>> from sympy.geometry import Point, Triangle
        >>> p1, p2, p3 = Point(0, 0), Point(2, 0), Point(0, 2)
        >>> t = Triangle(p1, p2, p3)
        >>> t.incircle
        Circle(Point(-2**(1/2) + 2, -2**(1/2) + 2), -2**(1/2) + 2)

        """
        return Circle(self.incenter, self.inradius)

    @property
    def medians(self):
        """The medians of the triangle.

        A median of a triangle is a straight line through a vertex and the
        midpoint of the opposite side, and divides the triangle into two
        equal areas.

        Returns
        -------
        medians : dict
            Each key is a vertex (Point) and each value is the median (Segment)
            at that point.

        See Also
        --------
        Point
        Segment

        Examples
        --------
        >>> from sympy.geometry import Point, Triangle
        >>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1)
        >>> t = Triangle(p1, p2, p3)
        >>> t.medians[p1]
        Segment(Point(0, 0), Point(1/2, 1/2))

        """
        s = self.sides
        v = self.vertices
        return {v[0]: Segment(s[1].midpoint, v[0]),
                v[1]: Segment(s[2].midpoint, v[1]),
                v[2]: Segment(s[0].midpoint, v[2])}

    @property
    def medial(self):
        """The medial triangle of the triangle.

        The triangle which is formed from the midpoints of the three sides.

        Returns
        -------
        medial : Triangle

        Examples
        --------
        >>> from sympy.geometry import Point, Triangle
        >>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1)
        >>> t = Triangle(p1, p2, p3)
        >>> t.medial
        Triangle(Point(1/2, 0), Point(1/2, 1/2), Point(0, 1/2))

        """
        s = self.sides
        return Triangle(s[0].midpoint, s[1].midpoint, s[2].midpoint)

    #@property
    #def excircles(self):
    #    """Returns a list of the three excircles for this triangle."""
    #    pass