/usr/share/pyshared/sympy/integrals/integrals.py is in python-sympy 0.7.1.rc1-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 | from sympy.core import (Basic, Expr, S, C, Symbol, Wild, Add, sympify, diff,
oo, Tuple, Dummy, Equality, Interval)
from sympy.core.symbol import Dummy
from sympy.core.compatibility import is_sequence
from sympy.integrals.trigonometry import trigintegrate
from sympy.integrals.deltafunctions import deltaintegrate
from sympy.integrals.rationaltools import ratint
from sympy.integrals.risch import heurisch
from sympy.utilities import xthreaded, flatten
from sympy.polys import Poly, PolynomialError
from sympy.solvers import solve
from sympy.functions import Piecewise, sign
from sympy.geometry import Curve
from sympy.functions.elementary.piecewise import piecewise_fold
from sympy.series import limit
def _free_symbols(function, limits):
"""
Return the symbols that will exist when the function is evaluated as
an Integral or a Sum. This is useful if one is trying to determine
whether the result is dependent on a certain symbol or not.
This is written as a private function so it can be used from Sum as well
as from Integral.
"""
if function.is_zero:
return set()
isyms = function.free_symbols
for xab in limits:
if len(xab) == 1:
isyms.add(xab[0])
continue
# take out the target symbol
if xab[0] in isyms:
isyms.remove(xab[0])
if len(xab) == 3 and xab[1] == xab[2]:
# if two limits are the same the integral is 0
# and there are no symbols
return set()
# add in the new symbols
for i in xab[1:]:
isyms.update(i.free_symbols)
return isyms
def _process_limits(*symbols):
"""Convert the symbols-related limits into propert limits,
storing them as Tuple(symbol, lower, upper). The sign of
the function is also returned when the upper limit is missing
so (x, 1, None) becomes (x, None, 1) and the sign is changed.
"""
limits = []
sign = 1
for V in symbols:
if isinstance(V, Symbol):
limits.append(Tuple(V))
continue
elif is_sequence(V, Tuple):
V = sympify(flatten(V))
if V[0].is_Symbol:
newsymbol = V[0]
if len(V) == 2 and isinstance(V[1], Interval):
V[1:] = [V[1].start, V[1].end]
if len(V) == 3:
if V[1] is None and V[2] is not None:
nlim = [V[2]]
elif V[1] is not None and V[2] is None:
sign *= -1
nlim = [V[1]]
elif V[1] is None and V[2] is None:
nlim = []
else:
nlim = V[1:]
limits.append(Tuple(newsymbol, *nlim ))
continue
elif len(V) == 1 or (len(V) == 2 and V[1] is None):
limits.append(Tuple(newsymbol))
continue
elif len(V) == 2:
limits.append(Tuple(newsymbol, V[1]))
continue
raise ValueError('Invalid limits given: %s' % str(symbols))
return limits, sign
class Integral(Expr):
"""Represents unevaluated integral."""
__slots__ = ['is_commutative']
def __new__(cls, function, *symbols, **assumptions):
# Any embedded piecewise functions need to be brought out to the
# top level so that integration can go into piecewise mode at the
# earliest possible moment.
function = piecewise_fold(sympify(function))
if function is S.NaN:
return S.NaN
if symbols:
limits, sign = _process_limits(*symbols)
else:
# no symbols provided -- let's compute full anti-derivative
limits, sign = [Tuple(s) for s in function.free_symbols], 1
if len(limits) != 1:
raise ValueError("specify integration variables to integrate %s" % function)
while isinstance(function, Integral):
# denest the integrand
limits = list(function.limits) + limits
function = function.function
obj = Expr.__new__(cls, **assumptions)
arglist = [sign*function]
arglist.extend(limits)
obj._args = tuple(arglist)
obj.is_commutative = all(s.is_commutative for s in obj.free_symbols)
return obj
def __getnewargs__(self):
return (self.function,) + tuple([tuple(xab) for xab in self.limits])
@property
def function(self):
return self._args[0]
@property
def limits(self):
return self._args[1:]
@property
def variables(self):
"""Return a list of the integration variables.
>>> from sympy import Integral
>>> from sympy.abc import x, i
>>> Integral(x**i, (i, 1, 3)).variables
[i]
"""
return [l[0] for l in self.limits]
@property
def free_symbols(self):
"""
This method returns the symbols that will exist when the
integral is evaluated. This is useful if one is trying to
determine whether an integral is dependent on a certain
symbol or not.
>>> from sympy import Integral
>>> from sympy.abc import x, y
>>> Integral(x, (x, y, 1)).free_symbols
set([y])
"""
return _free_symbols(self.function, self.limits)
@property
def is_zero(self):
"""Since Integral doesn't autosimplify it it useful to see if
it would simplify to zero or not in a trivial manner, i.e. when
the function is 0 or two limits of a definite integral are the same.
This is a very naive and quick test, not intended to check for special
patterns like Integral(sin(m*x)*cos(n*x), (x, 0, 2*pi)) == 0.
"""
if (self.function.is_zero or
any(len(xab) == 3 and xab[1] == xab[2] for xab in self.limits)):
return True
if not self.free_symbols and self.function.is_number:
# the integrand is a number and the limits are numerical
return False
@property
def is_number(self):
"""
Return True if the Integral will result in a number, else False.
sympy considers anything that will result in a number to have
is_number == True.
>>> from sympy import log
>>> log(2).is_number
True
Integrals are a special case since they contain symbols that can
be replaced with numbers. Whether the integral can be done or not is
another issue. But answering whether the final result is a number is
not difficult.
>>> from sympy import Integral
>>> from sympy.abc import x, y
>>> Integral(x).is_number
False
>>> Integral(x, y).is_number
False
>>> Integral(x, (y, 1, x)).is_number
False
>>> Integral(x, (y, 1, 2)).is_number
False
>>> Integral(x, (y, 1, 1)).is_number
True
>>> Integral(x, (x, 1, 2)).is_number
True
>>> Integral(x*y, (x, 1, 2), (y, 1, 3)).is_number
True
>>> Integral(1, x, (x, 1, 2)).is_number
True
"""
integrand, limits = self.function, self.limits
isyms = integrand.atoms(Symbol)
for xab in limits:
if len(xab) == 1:
isyms.add(xab[0])
continue # it may be removed later
elif len(xab) == 3 and xab[1] == xab[2]: # XXX naive equality test
return True # integral collapsed
if xab[0] in isyms:
# take it out of the symbols since it will be replace
# with whatever the limits of the integral are
isyms.remove(xab[0])
# add in the new symbols
for i in xab[1:]:
isyms.update(i.free_symbols)
# if there are no surviving symbols then the result is a number
return len(isyms) == 0
def as_dummy(self):
"""
Replace instances of the integration variables with their dummy
counterparts to make clear what are dummy variables and what
are real-world symbols in an Integral. The "integral at" limit
that has a length of 1 will be explicated with its length-2
equivalent.
>>> from sympy import Integral
>>> from sympy.abc import x, y
>>> Integral(x).as_dummy()
Integral(_x, (_x, x))
>>> Integral(x, (x, x, y), (y, x, y)).as_dummy()
Integral(_x, (_x, x, _y), (_y, x, y))
If there were no dummies in the original expression, then the
output of this function will show which symbols cannot be
changed by subs(), those with an underscore prefix.
"""
reps = {}
f = self.function
limits = list(self.limits)
for i in xrange(-1, -len(limits) - 1, -1):
xab = list(limits[i])
if len(xab) == 1:
xab = xab*2
x = xab[0]
xab[0] = x.as_dummy()
for j in range(1, len(xab)):
xab[j] = xab[j].subs(reps)
reps[x] = xab[0]
limits[i] = xab
f = f.subs(reps)
return Integral(f, *limits)
def transform(self, x, mapping, inverse=False):
"""
Replace the integration variable x in the integrand with the
expression given by `mapping`, e.g. 2*x or 1/x. The integrand and
endpoints are rescaled to preserve the value of the original
integral.
In effect, this performs a variable substitution (although the
symbol remains unchanged; follow up with subs to obtain a
new symbol.)
With inverse=True, the inverse transformation is performed.
The mapping must be uniquely invertible (e.g. a linear or linear
fractional transformation).
"""
if x not in self.variables:
return self
limits = self.limits
function = self.function
y = Dummy('y')
inverse_mapping = solve(mapping.subs(x, y) - x, y)
if len(inverse_mapping) != 1 or x not in inverse_mapping[0].free_symbols:
raise ValueError("The mapping must be uniquely invertible")
inverse_mapping = inverse_mapping[0]
if inverse:
mapping, inverse_mapping = inverse_mapping, mapping
function = function.subs(x, mapping) * mapping.diff(x)
def calc_limit(a, b):
"""replace x with a, using subs if possible, otherwise limit
where sign of b is considered"""
wok = inverse_mapping.subs(x, a)
if wok is S.NaN or wok.is_bounded is False and a.is_bounded:
return limit(sign(b)*inverse_mapping, x, a)
return wok
newlimits = []
for xab in limits:
sym = xab[0]
if sym == x and len(xab) == 3:
a, b = xab[1:]
a, b = calc_limit(a, b), calc_limit(b, a)
if a == b:
raise ValueError("The mapping must transform the "
"endpoints into separate points")
if a > b:
a, b = b, a
function = -function
newlimits.append((sym, a, b))
else:
newlimits.append(xab)
return Integral(function, *newlimits)
def doit(self, **hints):
if not hints.get('integrals', True):
return self
deep = hints.get('deep', True)
# check for the trivial case of equal upper and lower limits
if self.is_zero:
return S.Zero
# now compute and check the function
function = self.function
if deep:
function = function.doit(**hints)
if function.is_zero:
return S.Zero
# There is no trivial answer, so continue
undone_limits = []
ulj = set() # free symbols of any undone limits' upper and lower limits
for xab in self.limits:
# compute uli, the free symbols in the
# Upper and Lower limits of limit I
if len(xab) == 1:
uli = set(xab[:1])
elif len(xab) == 2:
uli = xab[1].free_symbols
elif len(xab) == 3:
uli = xab[1].free_symbols.union(xab[2].free_symbols)
# this integral can be done as long as there is no blocking
# limit that has been undone. An undone limit is blocking if
# it contains an integration variable that is in this limit's
# upper or lower free symbols or vice versa
if xab[0] in ulj or any(v[0] in uli for v in undone_limits):
undone_limits.append(xab)
ulj.update(uli)
continue
antideriv = self._eval_integral(function, xab[0])
if antideriv is None:
undone_limits.append(xab)
else:
if len(xab) == 1:
function = antideriv
else:
if len(xab) == 3:
x, a, b = xab
if len(xab) == 2:
x, b = xab
a = None
if deep:
if isinstance(a, Basic):
a = a.doit(**hints)
if isinstance(b, Basic):
b = b.doit(**hints)
if antideriv.is_Poly:
gens = list(antideriv.gens)
gens.remove(x)
antideriv = antideriv.as_expr()
function = antideriv._eval_interval(x, a, b)
function = Poly(function, *gens)
else:
function = antideriv._eval_interval(x, a, b)
if undone_limits:
return self.func(*([function] + undone_limits))
return function
def _eval_expand_basic(self, deep=True, **hints):
from sympy import flatten
if not deep:
return self
else:
return Integral(self.function.expand(deep=deep, **hints),\
flatten(*self.limits))
def _eval_derivative(self, sym):
"""Evaluate the derivative of the current Integral object by
differentiating under the integral sign [1], using the Fundamental
Theorem of Calculus [2] when possible.
Whenever an Integral is encountered that is equivalent to zero or
has an integrand that is independent of the variable of integration
those integrals are performed. All others are returned as Integral
instances which can be resolved with doit() (provided they are integrable).
References:
[1] http://en.wikipedia.org/wiki/Differentiation_under_the_integral_sign
[2] http://en.wikipedia.org/wiki/Fundamental_theorem_of_calculus
>>> from sympy import Integral
>>> from sympy.abc import x, y
>>> i = Integral(x + y, y, (y, 1, x))
>>> i.diff(x)
Integral(x + y, (y, x)) + Integral(1, (y, y), (y, 1, x))
>>> i.doit().diff(x) == i.diff(x).doit()
True
>>> i.diff(y)
0
The previous must be true since there is no y in the evaluated integral:
>>> i.free_symbols
set([x])
>>> i.doit()
2*x**3/3 - x/2 - 1/6
"""
# differentiate under the integral sign; we do not
# check for regularity conditions (TODO), see issue 1116
# get limits and the function
f, limits = self.function, list(self.limits)
# the order matters if variables of integration appear in the limits
# so work our way in from the outside to the inside.
limit = limits.pop(-1)
if len(limit) == 3:
x, a, b = limit
elif len(limit) == 2:
x, b = limit
a = None
else:
a = b = None
x = limit[0]
if limits: # f is the argument to an integral
f = Integral(f, *tuple(limits))
# assemble the pieces
rv = 0
if b is not None:
rv += f.subs(x, b)*diff(b, sym)
if a is not None:
rv -= f.subs(x, a)*diff(a, sym)
if len(limit) == 1 and sym == x:
# the dummy variable *is* also the real-world variable
arg = f
rv += arg
else:
# the dummy variable might match sym but it's
# only a dummy and the actual variable is determined
# by the limits, so mask off the variable of integration
# while differentiating
u = Dummy('u')
arg = f.subs(x, u).diff(sym).subs(u, x)
rv += Integral(arg, Tuple(x, a, b))
return rv
def _eval_integral(self, f, x):
"""Calculate the anti-derivative to the function f(x).
This is a powerful function that should in theory be able to integrate
everything that can be integrated. If you find something, that it
doesn't, it is easy to implement it.
(1) Simple heuristics (based on pattern matching and integral table):
- most frequently used functions (e.g. polynomials)
- functions non-integrable by any of the following algorithms (e.g.
exp(-x**2))
(2) Integration of rational functions:
(a) using apart() - apart() is full partial fraction decomposition
procedure based on Bronstein-Salvy algorithm. It gives formal
decomposition with no polynomial factorization at all (so it's fast
and gives the most general results). However it needs much better
implementation of RootsOf class (if fact any implementation).
(b) using Trager's algorithm - possibly faster than (a) but needs
implementation :)
(3) Whichever implementation of pmInt (Mateusz, Kirill's or a
combination of both).
- this way we can handle efficiently huge class of elementary and
special functions
(4) Recursive Risch algorithm as described in Bronstein's integration
tutorial.
- this way we can handle those integrable functions for which (3)
fails
(5) Powerful heuristics based mostly on user defined rules.
- handle complicated, rarely used cases
"""
# if it is a poly(x) then let the polynomial integrate itself (fast)
#
# It is important to make this check first, otherwise the other code
# will return a sympy expression instead of a Polynomial.
#
# see Polynomial for details.
if isinstance(f, Poly):
return f.integrate(x)
# Piecewise antiderivatives need to call special integrate.
if f.func is Piecewise:
return f._eval_integral(x)
# let's cut it short if `f` does not depend on `x`
if not f.has(x):
return f*x
# try to convert to poly(x) and then integrate if successful (fast)
poly = f.as_poly(x)
if poly is not None:
return poly.integrate().as_expr()
# since Integral(f=g1+g2+...) == Integral(g1) + Integral(g2) + ...
# we are going to handle Add terms separately,
# if `f` is not Add -- we only have one term
parts = []
args = Add.make_args(f)
for g in args:
coeff, g = g.as_independent(x)
# g(x) = const
if g is S.One:
parts.append(coeff*x)
continue
# c
# g(x) = (a*x+b)
if g.is_Pow and not g.exp.has(x):
a = Wild('a', exclude=[x])
b = Wild('b', exclude=[x])
M = g.base.match(a*x + b)
if M is not None:
if g.exp == -1:
h = C.log(g.base)
else:
h = g.base**(g.exp + 1) / (g.exp + 1)
parts.append(coeff * h / M[a])
continue
# poly(x)
# g(x) = -------
# poly(x)
if g.is_rational_function(x):
parts.append(coeff * ratint(g, x))
continue
# g(x) = Mul(trig)
h = trigintegrate(g, x)
if h is not None:
parts.append(coeff * h)
continue
# g(x) has at least a DiracDelta term
h = deltaintegrate(g, x)
if h is not None:
parts.append(coeff * h)
continue
# fall back to the more general algorithm
try:
h = heurisch(g, x, hints=[])
except PolynomialError:
# XXX: this exception means there is a bug in the
# implementation of heuristic Risch integration
# algorithm.
h = None
# if we failed maybe it was because we had
# a product that could have been expanded,
# so let's try an expansion of the whole
# thing before giving up; we don't try this
# out the outset because there are things
# that cannot be solved unless they are
# NOT expanded e.g., x**x*(1+log(x)). There
# should probably be a checker somewhere in this
# routine to look for such cases and try to do
# collection on the expressions if they are already
# in an expanded form
if not h and len(args) == 1:
f = f.expand(mul=True, deep=False)
if f.is_Add:
return self._eval_integral(f, x)
if h is not None:
parts.append(coeff * h)
else:
return None
return Add(*parts)
def _eval_lseries(self, x):
for term in self.function.lseries(x):
yield integrate(term, *self.limits)
def _eval_nseries(self, x, n, logx):
terms, order = self.function.nseries(x, n=n, logx=logx).as_coeff_add(C.Order)
return integrate(terms, *self.limits) + Add(*order)*x
def _eval_subs(self, old, new):
"""
Substitute old with new in the integrand and the limits, but don't
change anything that is (or corresponds to) a variable of integration.
The normal substitution semantics -- traversing all arguments looking
for matching patterns -- should not be applied to the Integrals since
changing the integration variables should also entail a change in the
integration limits (which should be done with the transform method). So
this method just makes changes in the integrand and the limits.
Not all instances of a given variable are conceptually the same: the
first argument of the limit tuple and any corresponding variable in
the integrand are dummy variables while every other symbol is a symbol
that will be unchanged when the integral is evaluated. For example, in
Integral(x + a, (a, a, b))
the dummy variables are shown below with angle-brackets around them and
will not be changed by this function:
Integral(x + <a>, (<a>, a, b))
If you want to change the lower limit to 1 there is no reason to
prohibit this since it is not conceptually related to the integration
variable, <a>. Nor is there reason to disallow changing the b to 1.
If a second limit were added, however, as in:
Integral(x + a, (a, a, b), (b, 1, 2))
the dummy variables become:
Integral(x + <a>, (<a>, a, <b>), (<b>, a, b))
Note that the `b` of the first limit is now a dummy variable since `b` is a
dummy variable in the second limit.
Summary: no variable of the integrand or limit can be the target of
substitution if it appears as a variable of integration in a limit
positioned to the right of it.
>>> from sympy import Integral
>>> from sympy.abc import a, b, c, x, y
>>> i = Integral(a + x, (a, a, 3), (b, x, c))
>>> list(i.free_symbols) # only these can be changed
[x, a, c]
>>> i.subs(a, c) # note that the variable of integration is unchanged
Integral(a + x, (a, c, 3), (b, x, c))
>>> i.subs(a + x, b) == i # there is no x + a, only x + <a>
True
>>> i.subs(x, y - c)
Integral(a - c + y, (a, a, 3), (b, -c + y, c))
"""
if self == old:
return new
integrand, limits = self.function, self.limits
old_atoms = old.free_symbols
limits = list(limits)
# make limits explicit if they are to be targeted by old:
# Integral(x, x) -> Integral(x, (x, x)) if old = x
if old.is_Symbol:
for i, l in enumerate(limits):
if len(l) == 1 and l[0] == old:
limits[i] = Tuple(l[0], l[0])
dummies = set()
for i in xrange(-1, -len(limits) - 1, -1):
xab = limits[i]
if not dummies.intersection(old_atoms):
limits[i] = Tuple(xab[0],
*[l.subs(old, new) for l in xab[1:]])
dummies.add(xab[0])
if not dummies.intersection(old_atoms):
integrand = integrand.subs(old, new)
return Integral(integrand, *limits)
def as_sum(self, n, method="midpoint"):
"""
Approximates the integral by a sum.
method ... one of: left, right, midpoint
This is basically just the rectangle method [1], the only difference is
where the function value is taken in each interval.
[1] http://en.wikipedia.org/wiki/Rectangle_method
**method = midpoint**:
Uses the n-order midpoint rule to evaluate the integral.
Midpoint rule uses rectangles approximation for the given area (e.g.
definite integral) of the function with heights equal to the point on
the curve exactly in the middle of each interval (thus midpoint
method). See [1] for more information.
Examples:
>>> from sympy import sqrt
>>> from sympy.abc import x
>>> from sympy.integrals import Integral
>>> e = Integral(sqrt(x**3+1), (x, 2, 10))
>>> e
Integral((x**3 + 1)**(1/2), (x, 2, 10))
>>> e.as_sum(4, method="midpoint")
4*7**(1/2) + 6*14**(1/2) + 4*86**(1/2) + 2*730**(1/2)
>>> e.as_sum(4, method="midpoint").n()
124.164447891310
>>> e.n()
124.616199194723
**method=left**:
Uses the n-order rectangle rule to evaluate the integral, at each
interval the function value is taken at the left hand side of the
interval.
Examples:
>>> from sympy import sqrt
>>> from sympy.abc import x
>>> e = Integral(sqrt(x**3+1), (x, 2, 10))
>>> e
Integral((x**3 + 1)**(1/2), (x, 2, 10))
>>> e.as_sum(4, method="left")
6 + 2*65**(1/2) + 2*217**(1/2) + 6*57**(1/2)
>>> e.as_sum(4, method="left").n()
96.8853618335341
>>> e.n()
124.616199194723
"""
limits = self.limits
if len(limits) > 1:
raise NotImplementedError("Multidimensional midpoint rule not implemented yet")
else:
limit = limits[0]
if n <= 0:
raise ValueError("n must be > 0")
if n == oo:
raise NotImplementedError("Infinite summation not yet implemented")
sym, lower_limit, upper_limit = limit
dx = (upper_limit - lower_limit)/n
result = 0.
for i in range(n):
if method == "midpoint":
xi = lower_limit + i*dx + dx/2
elif method == "left":
xi = lower_limit + i*dx
elif method == "right":
xi = lower_limit + i*dx + dx
else:
raise NotImplementedError("Unknown method %s" % method)
result += self.function.subs(sym, xi)
return result*dx
@xthreaded
def integrate(*args, **kwargs):
"""integrate(f, var, ...)
Compute definite or indefinite integral of one or more variables
using Risch-Norman algorithm and table lookup. This procedure is
able to handle elementary algebraic and transcendental functions
and also a huge class of special functions, including Airy,
Bessel, Whittaker and Lambert.
var can be:
- a symbol -- indefinite integration
- a tuple (symbol, a, b) -- definite integration
Several variables can be specified, in which case the result is multiple
integration.
Also, if no var is specified at all, then the full anti-derivative of f is
returned. This is equivalent to integrating f over all its variables.
**Examples**
>>> from sympy import integrate, log
>>> from sympy.abc import a, x, y
>>> integrate(x*y, x)
x**2*y/2
>>> integrate(log(x), x)
x*log(x) - x
>>> integrate(log(x), (x, 1, a))
a*log(a) - a + 1
>>> integrate(x)
x**2/2
>>> integrate(x*y)
Traceback (most recent call last):
...
ValueError: specify integration variables to integrate x*y
Note that ``integrate(x)`` syntax is meant only for convenience
in interactive sessions and should be avoided in library code.
See also the doctest of Integral._eval_integral(), which explains
thoroughly the strategy that SymPy uses for integration.
"""
integral = Integral(*args, **kwargs)
if isinstance(integral, Integral):
return integral.doit(deep = False)
else:
return integral
@xthreaded
def line_integrate(field, curve, vars):
"""line_integrate(field, Curve, variables)
Compute the line integral.
Examples
--------
>>> from sympy import Curve, line_integrate, E, ln
>>> from sympy.abc import x, y, t
>>> C = Curve([E**t + 1, E**t - 1], (t, 0, ln(2)))
>>> line_integrate(x + y, C, [x, y])
3*2**(1/2)
"""
F = sympify(field)
if not F:
raise ValueError("Expecting function specifying field as first argument.")
if not isinstance(curve, Curve):
raise ValueError("Expecting Curve entity as second argument.")
if not is_sequence(vars):
raise ValueError("Expecting ordered iterable for variables.")
if len(curve.functions) != len(vars):
raise ValueError("Field variable size does not match curve dimension.")
if curve.parameter in vars:
raise ValueError("Curve parameter clashes with field parameters.")
# Calculate derivatives for line parameter functions
# F(r) -> F(r(t)) and finally F(r(t)*r'(t))
Ft = F
dldt = 0
for i, var in enumerate(vars):
_f = curve.functions[i]
_dn = diff(_f, curve.parameter)
# ...arc length
dldt = dldt + (_dn * _dn)
Ft = Ft.subs(var, _f)
Ft = Ft * dldt**(S(1)/2)
integral = Integral(Ft, curve.limits).doit(deep = False)
return integral
|