This file is indexed.

/usr/share/pyshared/sympy/integrals/integrals.py is in python-sympy 0.7.1.rc1-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
from sympy.core import (Basic, Expr, S, C, Symbol, Wild, Add, sympify, diff,
                        oo, Tuple, Dummy, Equality, Interval)

from sympy.core.symbol import Dummy
from sympy.core.compatibility import is_sequence
from sympy.integrals.trigonometry import trigintegrate
from sympy.integrals.deltafunctions import deltaintegrate
from sympy.integrals.rationaltools import ratint
from sympy.integrals.risch import heurisch
from sympy.utilities import xthreaded, flatten
from sympy.polys import Poly, PolynomialError
from sympy.solvers import solve
from sympy.functions import Piecewise, sign
from sympy.geometry import Curve
from sympy.functions.elementary.piecewise import piecewise_fold
from sympy.series import limit

def _free_symbols(function, limits):
    """
    Return the symbols that will exist when the function is evaluated as
    an Integral or a Sum. This is useful if one is trying to determine
    whether the result is dependent on a certain symbol or not.

    This is written as a private function so it can be used from Sum as well
    as from Integral.
    """
    if function.is_zero:
        return set()
    isyms = function.free_symbols
    for xab in limits:
        if len(xab) == 1:
            isyms.add(xab[0])
            continue
        # take out the target symbol
        if xab[0] in isyms:
            isyms.remove(xab[0])
        if len(xab) == 3 and xab[1] == xab[2]:
            # if two limits are the same the integral is 0
            # and there are no symbols
            return set()
        # add in the new symbols
        for i in xab[1:]:
            isyms.update(i.free_symbols)
    return isyms

def _process_limits(*symbols):
    """Convert the symbols-related limits into propert limits,
    storing them as Tuple(symbol, lower, upper). The sign of
    the function is also returned when the upper limit is missing
    so (x, 1, None) becomes (x, None, 1) and the sign is changed.
    """
    limits = []
    sign = 1
    for V in symbols:
        if isinstance(V, Symbol):
            limits.append(Tuple(V))
            continue
        elif is_sequence(V, Tuple):
            V = sympify(flatten(V))
            if V[0].is_Symbol:
                newsymbol = V[0]
                if len(V) == 2 and isinstance(V[1], Interval):
                    V[1:] = [V[1].start, V[1].end]

                if len(V) == 3:
                    if V[1] is None and V[2] is not None:
                        nlim = [V[2]]
                    elif V[1] is not None and V[2] is None:
                        sign *= -1
                        nlim = [V[1]]
                    elif V[1] is None and V[2] is None:
                        nlim = []
                    else:
                        nlim = V[1:]
                    limits.append(Tuple(newsymbol, *nlim ))
                    continue
                elif len(V) == 1 or (len(V) == 2 and V[1] is None):
                    limits.append(Tuple(newsymbol))
                    continue
                elif len(V) == 2:
                    limits.append(Tuple(newsymbol, V[1]))
                    continue

        raise ValueError('Invalid limits given: %s' % str(symbols))

    return limits, sign

class Integral(Expr):
    """Represents unevaluated integral."""

    __slots__ = ['is_commutative']

    def __new__(cls, function, *symbols, **assumptions):

        # Any embedded piecewise functions need to be brought out to the
        # top level so that integration can go into piecewise mode at the
        # earliest possible moment.
        function = piecewise_fold(sympify(function))

        if function is S.NaN:
            return S.NaN

        if symbols:
            limits, sign = _process_limits(*symbols)
        else:
            # no symbols provided -- let's compute full anti-derivative
            limits, sign = [Tuple(s) for s in function.free_symbols], 1

            if len(limits) != 1:
                raise ValueError("specify integration variables to integrate %s" % function)

        while isinstance(function, Integral):
            # denest the integrand
            limits = list(function.limits) + limits
            function = function.function

        obj = Expr.__new__(cls, **assumptions)
        arglist = [sign*function]
        arglist.extend(limits)
        obj._args = tuple(arglist)
        obj.is_commutative = all(s.is_commutative for s in obj.free_symbols)

        return obj

    def __getnewargs__(self):
        return (self.function,) + tuple([tuple(xab) for xab in self.limits])

    @property
    def function(self):
        return self._args[0]

    @property
    def limits(self):
        return self._args[1:]

    @property
    def variables(self):
        """Return a list of the integration variables.

        >>> from sympy import Integral
        >>> from sympy.abc import x, i
        >>> Integral(x**i, (i, 1, 3)).variables
        [i]
        """
        return [l[0] for l in self.limits]

    @property
    def free_symbols(self):
        """
        This method returns the symbols that will exist when the
        integral is evaluated. This is useful if one is trying to
        determine whether an integral is dependent on a certain
        symbol or not.

        >>> from sympy import Integral
        >>> from sympy.abc import x, y
        >>> Integral(x, (x, y, 1)).free_symbols
        set([y])
        """
        return _free_symbols(self.function, self.limits)

    @property
    def is_zero(self):
        """Since Integral doesn't autosimplify it it useful to see if
        it would simplify to zero or not in a trivial manner, i.e. when
        the function is 0 or two limits of a definite integral are the same.

        This is a very naive and quick test, not intended to check for special
        patterns like Integral(sin(m*x)*cos(n*x), (x, 0, 2*pi)) == 0.
        """
        if (self.function.is_zero or
            any(len(xab) == 3 and xab[1] == xab[2] for xab in self.limits)):
            return True
        if not self.free_symbols and self.function.is_number:
            # the integrand is a number and the limits are numerical
            return False

    @property
    def is_number(self):
        """
        Return True if the Integral will result in a number, else False.

        sympy considers anything that will result in a number to have
        is_number == True.

        >>> from sympy import log
        >>> log(2).is_number
        True

        Integrals are a special case since they contain symbols that can
        be replaced with numbers. Whether the integral can be done or not is
        another issue. But answering whether the final result is a number is
        not difficult.

        >>> from sympy import Integral
        >>> from sympy.abc import x, y
        >>> Integral(x).is_number
        False
        >>> Integral(x, y).is_number
        False
        >>> Integral(x, (y, 1, x)).is_number
        False
        >>> Integral(x, (y, 1, 2)).is_number
        False
        >>> Integral(x, (y, 1, 1)).is_number
        True
        >>> Integral(x, (x, 1, 2)).is_number
        True
        >>> Integral(x*y, (x, 1, 2), (y, 1, 3)).is_number
        True
        >>> Integral(1, x, (x, 1, 2)).is_number
        True
        """

        integrand, limits = self.function, self.limits
        isyms = integrand.atoms(Symbol)
        for xab in limits:
            if len(xab) == 1:
                isyms.add(xab[0])
                continue # it may be removed later
            elif len(xab) == 3 and xab[1] == xab[2]: # XXX naive equality test
                return True # integral collapsed
            if xab[0] in isyms:
                # take it out of the symbols since it will be replace
                # with whatever the limits of the integral are
                isyms.remove(xab[0])
            # add in the new symbols
            for i in xab[1:]:
                isyms.update(i.free_symbols)
        # if there are no surviving symbols then the result is a number
        return len(isyms) == 0

    def as_dummy(self):
        """
        Replace instances of the integration variables with their dummy
        counterparts to make clear what are dummy variables and what
        are real-world symbols in an Integral. The "integral at" limit
        that has a length of 1 will be explicated with its length-2
        equivalent.

        >>> from sympy import Integral
        >>> from sympy.abc import x, y
        >>> Integral(x).as_dummy()
        Integral(_x, (_x, x))
        >>> Integral(x, (x, x, y), (y, x, y)).as_dummy()
        Integral(_x, (_x, x, _y), (_y, x, y))

        If there were no dummies in the original expression, then the
        output of this function will show which symbols cannot be
        changed by subs(), those with an underscore prefix.

        """
        reps = {}
        f = self.function
        limits = list(self.limits)
        for i in xrange(-1, -len(limits) - 1, -1):
            xab = list(limits[i])
            if len(xab) == 1:
                xab = xab*2
            x = xab[0]
            xab[0] = x.as_dummy()
            for j in range(1, len(xab)):
                xab[j] = xab[j].subs(reps)
            reps[x] = xab[0]
            limits[i] = xab
        f = f.subs(reps)
        return Integral(f, *limits)

    def transform(self, x, mapping, inverse=False):
        """
        Replace the integration variable x in the integrand with the
        expression given by `mapping`, e.g. 2*x or 1/x. The integrand and
        endpoints are rescaled to preserve the value of the original
        integral.

        In effect, this performs a variable substitution (although the
        symbol remains unchanged; follow up with subs to obtain a
        new symbol.)

        With inverse=True, the inverse transformation is performed.

        The mapping must be uniquely invertible (e.g. a linear or linear
        fractional transformation).
        """
        if x not in self.variables:
            return self
        limits = self.limits
        function = self.function
        y = Dummy('y')
        inverse_mapping = solve(mapping.subs(x, y) - x, y)
        if len(inverse_mapping) != 1 or x not in inverse_mapping[0].free_symbols:
            raise ValueError("The mapping must be uniquely invertible")
        inverse_mapping = inverse_mapping[0]
        if inverse:
            mapping, inverse_mapping = inverse_mapping, mapping
        function = function.subs(x, mapping) * mapping.diff(x)

        def calc_limit(a, b):
            """replace x with a, using subs if possible, otherwise limit
            where sign of b is considered"""
            wok = inverse_mapping.subs(x, a)
            if wok is S.NaN or wok.is_bounded is False and a.is_bounded:
                return limit(sign(b)*inverse_mapping, x, a)
            return wok

        newlimits = []
        for xab in limits:
            sym = xab[0]
            if sym == x and len(xab) == 3:
                a, b = xab[1:]
                a, b = calc_limit(a, b), calc_limit(b, a)
                if a == b:
                    raise ValueError("The mapping must transform the "
                        "endpoints into separate points")
                if a > b:
                    a, b = b, a
                    function = -function
                newlimits.append((sym, a, b))
            else:
                newlimits.append(xab)
        return Integral(function, *newlimits)


    def doit(self, **hints):
        if not hints.get('integrals', True):
            return self

        deep = hints.get('deep', True)

        # check for the trivial case of equal upper and lower limits
        if self.is_zero:
            return S.Zero

        # now compute and check the function
        function = self.function
        if deep:
            function = function.doit(**hints)

        if function.is_zero:
            return S.Zero

        # There is no trivial answer, so continue

        undone_limits = []
        ulj = set() # free symbols of any undone limits' upper and lower limits
        for xab in self.limits:
            # compute uli, the free symbols in the
            # Upper and Lower limits of limit I
            if len(xab) == 1:
                uli = set(xab[:1])
            elif len(xab) == 2:
                uli = xab[1].free_symbols
            elif len(xab) == 3:
                uli = xab[1].free_symbols.union(xab[2].free_symbols)
            # this integral can be done as long as there is no blocking
            # limit that has been undone. An undone limit is blocking if
            # it contains an integration variable that is in this limit's
            # upper or lower free symbols or vice versa
            if xab[0] in ulj or any(v[0] in uli for v in undone_limits):
                undone_limits.append(xab)
                ulj.update(uli)
                continue

            antideriv = self._eval_integral(function, xab[0])

            if antideriv is None:
                undone_limits.append(xab)
            else:
                if len(xab) == 1:
                    function = antideriv
                else:
                    if len(xab) == 3:
                        x, a, b = xab
                    if len(xab) == 2:
                        x, b = xab
                        a = None

                    if deep:
                        if isinstance(a, Basic):
                            a = a.doit(**hints)
                        if isinstance(b, Basic):
                            b = b.doit(**hints)

                    if antideriv.is_Poly:
                        gens = list(antideriv.gens)
                        gens.remove(x)

                        antideriv = antideriv.as_expr()

                        function = antideriv._eval_interval(x, a, b)
                        function = Poly(function, *gens)
                    else:
                        function = antideriv._eval_interval(x, a, b)

        if undone_limits:
            return self.func(*([function] + undone_limits))
        return function

    def _eval_expand_basic(self, deep=True, **hints):
        from sympy import flatten
        if not deep:
            return self
        else:
            return Integral(self.function.expand(deep=deep, **hints),\
            flatten(*self.limits))

    def _eval_derivative(self, sym):
        """Evaluate the derivative of the current Integral object by
        differentiating under the integral sign [1], using the Fundamental
        Theorem of Calculus [2] when possible.

        Whenever an Integral is encountered that is equivalent to zero or
        has an integrand that is independent of the variable of integration
        those integrals are performed. All others are returned as Integral
        instances which can be resolved with doit() (provided they are integrable).

        References:
           [1] http://en.wikipedia.org/wiki/Differentiation_under_the_integral_sign
           [2] http://en.wikipedia.org/wiki/Fundamental_theorem_of_calculus

        >>> from sympy import Integral
        >>> from sympy.abc import x, y
        >>> i = Integral(x + y, y, (y, 1, x))
        >>> i.diff(x)
        Integral(x + y, (y, x)) + Integral(1, (y, y), (y, 1, x))
        >>> i.doit().diff(x) == i.diff(x).doit()
        True
        >>> i.diff(y)
        0

        The previous must be true since there is no y in the evaluated integral:
        >>> i.free_symbols
        set([x])
        >>> i.doit()
        2*x**3/3 - x/2 - 1/6

        """

        # differentiate under the integral sign; we do not
        # check for regularity conditions (TODO), see issue 1116

        # get limits and the function
        f, limits = self.function, list(self.limits)

        # the order matters if variables of integration appear in the limits
        # so work our way in from the outside to the inside.
        limit = limits.pop(-1)
        if len(limit) == 3:
            x, a, b = limit
        elif len(limit) == 2:
            x, b = limit
            a = None
        else:
            a = b = None
            x = limit[0]

        if limits: # f is the argument to an integral
            f = Integral(f, *tuple(limits))

        # assemble the pieces
        rv = 0
        if b is not None:
            rv += f.subs(x, b)*diff(b, sym)
        if a is not None:
            rv -= f.subs(x, a)*diff(a, sym)
        if len(limit) == 1 and sym == x:
            # the dummy variable *is* also the real-world variable
            arg = f
            rv += arg
        else:
            # the dummy variable might match sym but it's
            # only a dummy and the actual variable is determined
            # by the limits, so mask off the variable of integration
            # while differentiating
            u = Dummy('u')
            arg = f.subs(x, u).diff(sym).subs(u, x)
            rv += Integral(arg, Tuple(x, a, b))
        return rv

    def _eval_integral(self, f, x):
        """Calculate the anti-derivative to the function f(x).

        This is a powerful function that should in theory be able to integrate
        everything that can be integrated. If you find something, that it
        doesn't, it is easy to implement it.

        (1) Simple heuristics (based on pattern matching and integral table):

         - most frequently used functions (e.g. polynomials)
         - functions non-integrable by any of the following algorithms (e.g.
           exp(-x**2))

        (2) Integration of rational functions:

         (a) using apart() - apart() is full partial fraction decomposition
         procedure based on Bronstein-Salvy algorithm. It gives formal
         decomposition with no polynomial factorization at all (so it's fast
         and gives the most general results). However it needs much better
         implementation of RootsOf class (if fact any implementation).
         (b) using Trager's algorithm - possibly faster than (a) but needs
         implementation :)

        (3) Whichever implementation of pmInt (Mateusz, Kirill's or a
        combination of both).

          - this way we can handle efficiently huge class of elementary and
            special functions

        (4) Recursive Risch algorithm as described in Bronstein's integration
        tutorial.

          - this way we can handle those integrable functions for which (3)
            fails

        (5) Powerful heuristics based mostly on user defined rules.

         - handle complicated, rarely used cases
        """

        # if it is a poly(x) then let the polynomial integrate itself (fast)
        #
        # It is important to make this check first, otherwise the other code
        # will return a sympy expression instead of a Polynomial.
        #
        # see Polynomial for details.
        if isinstance(f, Poly):
            return f.integrate(x)

        # Piecewise antiderivatives need to call special integrate.
        if f.func is Piecewise:
            return f._eval_integral(x)

        # let's cut it short if `f` does not depend on `x`
        if not f.has(x):
            return f*x

        # try to convert to poly(x) and then integrate if successful (fast)
        poly = f.as_poly(x)

        if poly is not None:
            return poly.integrate().as_expr()

        # since Integral(f=g1+g2+...) == Integral(g1) + Integral(g2) + ...
        # we are going to handle Add terms separately,
        # if `f` is not Add -- we only have one term
        parts = []
        args = Add.make_args(f)
        for g in args:
            coeff, g = g.as_independent(x)

            # g(x) = const
            if g is S.One:
                parts.append(coeff*x)
                continue

            #               c
            # g(x) = (a*x+b)
            if g.is_Pow and not g.exp.has(x):
                a = Wild('a', exclude=[x])
                b = Wild('b', exclude=[x])

                M = g.base.match(a*x + b)

                if M is not None:
                    if g.exp == -1:
                        h = C.log(g.base)
                    else:
                        h = g.base**(g.exp + 1) / (g.exp + 1)

                    parts.append(coeff * h / M[a])
                    continue

            #        poly(x)
            # g(x) = -------
            #        poly(x)
            if g.is_rational_function(x):
                parts.append(coeff * ratint(g, x))
                continue

            # g(x) = Mul(trig)
            h = trigintegrate(g, x)
            if h is not None:
                parts.append(coeff * h)
                continue

            # g(x) has at least a DiracDelta term
            h = deltaintegrate(g, x)
            if h is not None:
                parts.append(coeff * h)
                continue

            # fall back to the more general algorithm
            try:
                h = heurisch(g, x, hints=[])
            except PolynomialError:
                # XXX: this exception means there is a bug in the
                # implementation of heuristic Risch integration
                # algorithm.
                h = None

            # if we failed maybe it was because we had
            # a product that could have been expanded,
            # so let's try an expansion of the whole
            # thing before giving up; we don't try this
            # out the outset because there are things
            # that cannot be solved unless they are
            # NOT expanded e.g., x**x*(1+log(x)). There
            # should probably be a checker somewhere in this
            # routine to look for such cases and try to do
            # collection on the expressions if they are already
            # in an expanded form
            if not h and len(args) == 1:
                f = f.expand(mul=True, deep=False)
                if f.is_Add:
                    return self._eval_integral(f, x)


            if h is not None:
                parts.append(coeff * h)
            else:
                return None

        return Add(*parts)

    def _eval_lseries(self, x):
        for term in self.function.lseries(x):
            yield integrate(term, *self.limits)

    def _eval_nseries(self, x, n, logx):
        terms, order = self.function.nseries(x, n=n, logx=logx).as_coeff_add(C.Order)
        return integrate(terms, *self.limits) + Add(*order)*x

    def _eval_subs(self, old, new):
        """
        Substitute old with new in the integrand and the limits, but don't
        change anything that is (or corresponds to) a variable of integration.

        The normal substitution semantics -- traversing all arguments looking
        for matching patterns -- should not be applied to the Integrals since
        changing the integration variables should also entail a change in the
        integration limits (which should be done with the transform method). So
        this method just makes changes in the integrand and the limits.

        Not all instances of a given variable are conceptually the same: the
        first argument of the limit tuple and any corresponding variable in
        the integrand are dummy variables while every other symbol is a symbol
        that will be unchanged when the integral is evaluated. For example, in

            Integral(x + a, (a, a, b))

        the dummy variables are shown below with angle-brackets around them and
        will not be changed by this function:

            Integral(x + <a>, (<a>, a, b))

        If you want to change the lower limit to 1 there is no reason to
        prohibit this since it is not conceptually related to the integration
        variable, <a>. Nor is there reason to disallow changing the b to 1.

        If a second limit were added, however, as in:

            Integral(x + a, (a, a, b), (b, 1, 2))

        the dummy variables become:

            Integral(x + <a>, (<a>, a, <b>), (<b>, a, b))

        Note that the `b` of the first limit is now a dummy variable since `b` is a
        dummy variable in the second limit.

        Summary: no variable of the integrand or limit can be the target of
        substitution if it appears as a variable of integration in a limit
        positioned to the right of it.

        >>> from sympy import Integral
        >>> from sympy.abc import a, b, c, x, y

        >>> i = Integral(a + x, (a, a, 3), (b, x, c))
        >>> list(i.free_symbols) # only these can be changed
        [x, a, c]
        >>> i.subs(a, c) # note that the variable of integration is unchanged
        Integral(a + x, (a, c, 3), (b, x, c))
        >>> i.subs(a + x, b) == i # there is no x + a, only x + <a>
        True
        >>> i.subs(x, y - c)
        Integral(a - c + y, (a, a, 3), (b, -c + y, c))
        """
        if self == old:
            return new
        integrand, limits = self.function, self.limits
        old_atoms = old.free_symbols
        limits = list(limits)

        # make limits explicit if they are to be targeted by old:
        # Integral(x, x) -> Integral(x, (x, x)) if old = x
        if old.is_Symbol:
            for i, l in enumerate(limits):
                if len(l) == 1 and l[0] == old:
                    limits[i] = Tuple(l[0], l[0])

        dummies = set()
        for i in xrange(-1, -len(limits) - 1, -1):
            xab = limits[i]
            if not dummies.intersection(old_atoms):
                limits[i] = Tuple(xab[0],
                                  *[l.subs(old, new) for l in xab[1:]])
            dummies.add(xab[0])
        if not dummies.intersection(old_atoms):
            integrand = integrand.subs(old, new)
        return Integral(integrand, *limits)

    def as_sum(self, n, method="midpoint"):
        """
        Approximates the integral by a sum.

        method ... one of: left, right, midpoint

        This is basically just the rectangle method [1], the only difference is
        where the function value is taken in each interval.

        [1] http://en.wikipedia.org/wiki/Rectangle_method

        **method = midpoint**:

        Uses the n-order midpoint rule to evaluate the integral.

        Midpoint rule uses rectangles approximation for the given area (e.g.
        definite integral) of the function with heights equal to the point on
        the curve exactly in the middle of each interval (thus midpoint
        method). See [1] for more information.

        Examples:

            >>> from sympy import sqrt
            >>> from sympy.abc import x
            >>> from sympy.integrals import Integral
            >>> e = Integral(sqrt(x**3+1), (x, 2, 10))
            >>> e
            Integral((x**3 + 1)**(1/2), (x, 2, 10))
            >>> e.as_sum(4, method="midpoint")
            4*7**(1/2) + 6*14**(1/2) + 4*86**(1/2) + 2*730**(1/2)
            >>> e.as_sum(4, method="midpoint").n()
            124.164447891310
            >>> e.n()
            124.616199194723

        **method=left**:

        Uses the n-order rectangle rule to evaluate the integral, at each
        interval the function value is taken at the left hand side of the
        interval.

        Examples:

            >>> from sympy import sqrt
            >>> from sympy.abc import x
            >>> e = Integral(sqrt(x**3+1), (x, 2, 10))
            >>> e
            Integral((x**3 + 1)**(1/2), (x, 2, 10))
            >>> e.as_sum(4, method="left")
            6 + 2*65**(1/2) + 2*217**(1/2) + 6*57**(1/2)
            >>> e.as_sum(4, method="left").n()
            96.8853618335341
            >>> e.n()
            124.616199194723

        """

        limits = self.limits
        if len(limits) > 1:
            raise NotImplementedError("Multidimensional midpoint rule not implemented yet")
        else:
            limit = limits[0]
        if n <= 0:
            raise ValueError("n must be > 0")
        if n == oo:
            raise NotImplementedError("Infinite summation not yet implemented")
        sym, lower_limit, upper_limit = limit
        dx = (upper_limit - lower_limit)/n
        result = 0.
        for i in range(n):
            if method == "midpoint":
                xi = lower_limit + i*dx + dx/2
            elif method == "left":
                xi = lower_limit + i*dx
            elif method == "right":
                xi = lower_limit + i*dx + dx
            else:
                raise NotImplementedError("Unknown method %s" % method)
            result += self.function.subs(sym, xi)
        return result*dx


@xthreaded
def integrate(*args, **kwargs):
    """integrate(f, var, ...)

       Compute definite or indefinite integral of one or more variables
       using Risch-Norman algorithm and table lookup. This procedure is
       able to handle elementary algebraic and transcendental functions
       and also a huge class of special functions, including Airy,
       Bessel, Whittaker and Lambert.

       var can be:

       - a symbol                   -- indefinite integration
       - a tuple (symbol, a, b)     -- definite integration

       Several variables can be specified, in which case the result is multiple
       integration.

       Also, if no var is specified at all, then the full anti-derivative of f is
       returned. This is equivalent to integrating f over all its variables.

       **Examples**

       >>> from sympy import integrate, log
       >>> from sympy.abc import a, x, y

       >>> integrate(x*y, x)
       x**2*y/2

       >>> integrate(log(x), x)
       x*log(x) - x

       >>> integrate(log(x), (x, 1, a))
       a*log(a) - a + 1

       >>> integrate(x)
       x**2/2

       >>> integrate(x*y)
       Traceback (most recent call last):
       ...
       ValueError: specify integration variables to integrate x*y

       Note that ``integrate(x)`` syntax is meant only for convenience
       in interactive sessions and should be avoided in library code.

       See also the doctest of Integral._eval_integral(), which explains
       thoroughly the strategy that SymPy uses for integration.

    """
    integral = Integral(*args, **kwargs)

    if isinstance(integral, Integral):
        return integral.doit(deep = False)
    else:
        return integral


@xthreaded
def line_integrate(field, curve, vars):
    """line_integrate(field, Curve, variables)

       Compute the line integral.

       Examples
       --------
       >>> from sympy import Curve, line_integrate, E, ln
       >>> from sympy.abc import x, y, t
       >>> C = Curve([E**t + 1, E**t - 1], (t, 0, ln(2)))
       >>> line_integrate(x + y, C, [x, y])
       3*2**(1/2)

    """
    F = sympify(field)
    if not F:
        raise ValueError("Expecting function specifying field as first argument.")
    if not isinstance(curve, Curve):
        raise ValueError("Expecting Curve entity as second argument.")
    if not is_sequence(vars):
        raise ValueError("Expecting ordered iterable for variables.")
    if len(curve.functions) != len(vars):
        raise ValueError("Field variable size does not match curve dimension.")

    if curve.parameter in vars:
        raise ValueError("Curve parameter clashes with field parameters.")

    # Calculate derivatives for line parameter functions
    # F(r) -> F(r(t)) and finally F(r(t)*r'(t))
    Ft = F
    dldt = 0
    for i, var in enumerate(vars):
        _f = curve.functions[i]
        _dn = diff(_f, curve.parameter)
        # ...arc length
        dldt = dldt + (_dn * _dn)
        Ft = Ft.subs(var, _f)
    Ft = Ft * dldt**(S(1)/2)

    integral = Integral(Ft, curve.limits).doit(deep = False)
    return integral