/usr/share/pyshared/sympy/integrals/rationaltools.py is in python-sympy 0.7.1.rc1-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 | """This module implements tools for integrating rational functions. """
from sympy import S, Symbol, symbols, I, log, atan, \
resultant, roots, collect, solve, RootSum, Lambda, cancel, Dummy
from sympy.polys import Poly, subresultants, resultant, ZZ
def ratint(f, x, **flags):
"""Performs indefinite integration of rational functions.
Given a field K and a rational function f = p/q, where p and q
are polynomials in K[x], returns a function g such that f = g'.
>>> from sympy.integrals.rationaltools import ratint
>>> from sympy.abc import x
>>> ratint(36/(x**5 - 2*x**4 - 2*x**3 + 4*x**2 + x - 2), x)
(12*x + 6)/(x**2 - 1) + 4*log(x - 2) - 4*log(x + 1)
References
==========
.. [Bro05] M. Bronstein, Symbolic Integration I: Transcendental
Functions, Second Edition, Springer-Verlag, 2005, pp. 35-70
"""
if type(f) is not tuple:
p, q = f.as_numer_denom()
else:
p, q = f
p, q = Poly(p, x, composite=False), Poly(q, x, composite=False)
coeff, p, q = p.cancel(q)
poly, p = p.div(q)
result = poly.integrate(x).as_expr()
if p.is_zero:
return coeff*result
g, h = ratint_ratpart(p, q, x)
P, Q = h.as_numer_denom()
P = Poly(P, x)
Q = Poly(Q, x)
q, r = P.div(Q)
result += g + q.integrate(x).as_expr()
if not r.is_zero:
symbol = flags.get('symbol', 't')
if not isinstance(symbol, Symbol):
t = Dummy(symbol)
else:
t = symbol
L = ratint_logpart(r, Q, x, t)
real = flags.get('real')
if real is None:
if type(f) is not tuple:
atoms = f.atoms()
else:
p, q = f
atoms = p.atoms() \
| q.atoms()
for elt in atoms - set([x]):
if not elt.is_real:
real = False
break
else:
real = True
eps = S(0)
if not real:
for h, q in L:
eps += RootSum(q, Lambda(t, t*log(h.as_expr())), quadratic=True)
else:
for h, q in L:
R = log_to_real(h, q, x, t)
if R is not None:
eps += R
else:
eps += RootSum(q, Lambda(t, t*log(h.as_expr())), quadratic=True)
result += eps
return coeff*result
def ratint_ratpart(f, g, x):
"""Horowitz-Ostrogradsky algorithm.
Given a field K and polynomials f and g in K[x], such that f and g
are coprime and deg(f) < deg(g), returns fractions A and B in K(x),
such that f/g = A' + B and B has square-free denominator.
"""
f = Poly(f, x)
g = Poly(g, x)
u, v, _ = g.cofactors(g.diff())
n = u.degree()
m = v.degree()
d = g.degree()
A_coeffs = [ Dummy('a' + str(n-i)) for i in xrange(0, n) ]
B_coeffs = [ Dummy('b' + str(m-i)) for i in xrange(0, m) ]
C_coeffs = A_coeffs + B_coeffs
A = Poly(A_coeffs, x, domain=ZZ[C_coeffs])
B = Poly(B_coeffs, x, domain=ZZ[C_coeffs])
H = f - A.diff()*v + A*(u.diff()*v).quo(u) - B*u
result = solve(H.coeffs(), C_coeffs)
A = A.as_expr().subs(result)
B = B.as_expr().subs(result)
rat_part = cancel(A/u.as_expr(), x)
log_part = cancel(B/v.as_expr(), x)
return rat_part, log_part
def ratint_logpart(f, g, x, t=None):
"""Lazard-Rioboo-Trager algorithm.
Given a field K and polynomials f and g in K[x], such that f and g
are coprime, deg(f) < deg(g) and g is square-free, returns a list
of tuples (s_i, q_i) of polynomials, for i = 1..n, such that s_i
in K[t, x] and q_i in K[t], and:
___ ___
d f d \ ` \ `
-- - = -- ) ) a log(s_i(a, x))
dx g dx /__, /__,
i=1..n a | q_i(a) = 0
"""
f, g = Poly(f, x), Poly(g, x)
t = t or Dummy('t')
a, b = g, f - g.diff()*Poly(t, x)
R = subresultants(a, b)
res = Poly(resultant(a, b), t, composite=False)
R_map, H = {}, []
for r in R:
R_map[r.degree()] = r
def _include_sign(c, sqf):
if c < 0:
h, k = sqf[0]
sqf[0] = h*c, k
C, res_sqf = res.sqf_list()
_include_sign(C, res_sqf)
for q, i in res_sqf:
_, q = q.primitive()
if g.degree() == i:
H.append((g, q))
else:
h = R_map[i]
h_lc = Poly(h.LC(), t, field=True)
c, h_lc_sqf = h_lc.sqf_list(all=True)
_include_sign(c, h_lc_sqf)
for a, j in h_lc_sqf:
h = h.quo(Poly(a.gcd(q)**j, x))
inv, coeffs = h_lc.invert(q), [S(1)]
for coeff in h.coeffs()[1:]:
T = (inv*coeff).rem(q)
coeffs.append(T.as_expr())
h = Poly(dict(zip(h.monoms(), coeffs)), x)
H.append((h, q))
return H
def log_to_atan(f, g):
"""Convert complex logarithms to real arctangents.
Given a real field K and polynomials f and g in K[x], with g != 0,
returns a sum h of arctangents of polynomials in K[x], such that:
df d f + I g
-- = -- I log( ------- )
dx dx f - I g
"""
if f.degree() < g.degree():
f, g = -g, f
f = f.to_field()
g = g.to_field()
p, q = f.div(g)
if q.is_zero:
return 2*atan(p.as_expr())
else:
s, t, h = g.gcdex(-f)
u = (f*s+g*t).quo(h)
A = 2*atan(u.as_expr())
return A + log_to_atan(s, t)
def log_to_real(h, q, x, t):
"""Convert complex logarithms to real functions.
Given real field K and polynomials h in K[t,x] and q in K[t],
returns real function f such that:
___
df d \ `
-- = -- ) a log(h(a, x))
dx dx /__,
a | q(a) = 0
"""
u, v = symbols('u,v')
H = h.as_expr().subs({t:u+I*v}).expand()
Q = q.as_expr().subs({t:u+I*v}).expand()
H_map = collect(H, I, evaluate=False)
Q_map = collect(Q, I, evaluate=False)
a, b = H_map.get(S(1), S(0)), H_map.get(I, S(0))
c, d = Q_map.get(S(1), S(0)), Q_map.get(I, S(0))
R = Poly(resultant(c, d, v), u)
R_u = roots(R, filter='R')
if len(R_u) != R.count_roots():
return None
result = S(0)
for r_u in R_u.iterkeys():
C = Poly(c.subs({u:r_u}), v)
R_v = roots(C, filter='R')
if len(R_v) != C.count_roots():
return None
for r_v in R_v:
if not r_v.is_positive:
continue
D = d.subs({u:r_u, v:r_v})
if D.evalf(chop=True) != 0:
continue
A = Poly(a.subs({u:r_u, v:r_v}), x)
B = Poly(b.subs({u:r_u, v:r_v}), x)
AB = (A**2 + B**2).as_expr()
result += r_u*log(AB) + r_v*log_to_atan(A, B)
R_q = roots(q, filter='R')
if len(R_q) != q.count_roots():
return None
for r in R_q.iterkeys():
result += r*log(h.as_expr().subs(t, r))
return result
|