/usr/share/pyshared/sympy/integrals/trigonometry.py is in python-sympy 0.7.1.rc1-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 | # -*- coding: utf-8 -*-
import sympy
from sympy.core import Dummy, Wild, S
from sympy.core.numbers import Rational
from sympy.functions import sin, cos, binomial
from sympy.core.cache import cacheit
# TODO add support for tan^m(x) * sec^n(x)
# TODO sin(a*x)*cos(b*x) -> sin((a+b)x) + sin((a-b)x) ?
# creating each time Wild's and sin/cos/Mul is expensive. Also, our match &
# subs are very slow when not cached, and if we create Wild each time, we
# effectively block caching.
#
# so we cache the pattern
@cacheit
def _pat_sincos(x):
a, n, m = [Wild(s, exclude=[x]) for s in 'anm']
pat = sin(a*x)**n * cos(a*x)**m
return pat, a,n,m
_u = Dummy('u')
def trigintegrate(f, x):
"""Integrate f = Mul(trig) over x
>>> from sympy import Symbol, sin, cos
>>> from sympy.integrals.trigonometry import trigintegrate
>>> from sympy.abc import x
>>> trigintegrate(sin(x)*cos(x), x)
sin(x)**2/2
>>> trigintegrate(sin(x)**2, x)
x/2 - sin(x)*cos(x)/2
http://en.wikibooks.org/wiki/Calculus/Further_integration_techniques
"""
pat, a,n,m = _pat_sincos(x)
##m - cos
##n - sin
M = f.match(pat)
if M is None:
return
n, m = M[n], M[m] # should always be there
if n is S.Zero and m is S.Zero:
return x
a = M[a]
if n.is_integer and m.is_integer:
if n.is_odd or m.is_odd:
u = _u
n_, m_ = n.is_odd, m.is_odd
# take smallest n or m -- to choose simplest substitution
if n_ and m_:
n_ = n_ and (n < m) # NB: careful here, one of the
m_ = m_ and not (n < m) # conditions *must* be true
# n m u=C (n-1)/2 m
# S(x) * C(x) dx --> -(1-u^2) * u du
if n_:
ff = -(1-u**2)**((n-1)/2) * u**m
uu = cos(a*x)
# n m u=S n (m-1)/2
# S(x) * C(x) dx --> u * (1-u^2) du
elif m_:
ff = u**n * (1-u**2)**((m-1)/2)
uu = sin(a*x)
fi= sympy.integrals.integrate(ff, u) # XXX cyclic deps
fx= fi.subs(u, uu)
return fx / a
# n & m are even
else:
# 2k 2m 2l 2l
# we transform S (x) * C (x) into terms with only S (x) or C (x)
#
# example:
# 100 4 100 2 2 100 4 2
# S (x) * C (x) = S (x) * (1-S (x)) = S (x) * (1 + S (x) - 2*S (x))
#
# 104 102 100
# = S (x) - 2*S (x) + S (x)
# 2k
# then S is integrated with recursive formula
# take largest n or m -- to choose simplest substitution
n_ = (abs(n) > abs(m))
m_ = (abs(m) > abs(n))
res = S.Zero
if n_:
# 2k 2 k i 2i
# C = (1-S ) = sum(i, (-) * B(k,i) * S )
if m > 0 :
for i in range(0,m/2+1):
res += (-1)**i * binomial(m/2,i) * sin_pow_integrate(n+2*i, x)
elif m == 0:
res=sin_pow_integrate(n,x)
else:
# m < 0 , |n| > |m|
# / /
# | |
# | m n -1 m+1 n-1 n - 1 | m+2 n-2
# | cos (x) sin (x) dx = ________ cos (x) sin (x) + _______ | cos (x) sin (x) dx
# | |
# | m + 1 m + 1 |
#/ /
#
#
res=Rational(-1,m+1)*cos(x)**(m+1)*sin(x)**(n-1) + Rational(n-1,m+1)*trigintegrate(cos(x)**(m+2)*sin(x)**(n-2),x)
elif m_:
# 2k 2 k i 2i
# S = (1 -C ) = sum(i, (-) * B(k,i) * C )
if n > 0:
# / /
# | |
# | m n | -m n
# | cos (x)*sin (x) dx or | cos (x) * sin (x) dx
# | |
# / /
#
# |m| > |n| ; m,n >0 ; m,n belong to Z - {0}
# n 2
# sin (x) term is expanded here interms of cos (x), and then integrated.
for i in range(0,n/2+1):
res += (-1)**i * binomial(n/2,i) * cos_pow_integrate(m+2*i, x)
elif n == 0 :
## /
## |
# | 1
# | _ _ _
# | m
# | cos (x)
# /
res= cos_pow_integrate(m,x)
else:
# n < 0 , |m| > |n|
# / /
# | |
# | m n 1 m-1 n+1 m - 1 | m-2 n+2
# | cos (x) sin (x) dx = _______ cos (x) sin (x) + _______ | cos (x) sin (x) dx
# | |
# | n + 1 n + 1 |
#/ /
#
#
res= Rational(1,(n+1))*cos(x)**(m-1)*sin(x)**(n+1) + Rational(m-1,n+1)*trigintegrate(cos(x)**(m-2)*sin(x)**(n+2),x)
else :
if m == n:
##Substitute sin(2x)/2 for sin(x)cos(x) and then Integrate.
res=sympy.integrals.integrate((Rational(1,2)*sin(2*x))**m,x)
elif (m == -n):
if n < 0:
##Same as the scheme described above.
res= Rational(1,(n+1))*cos(x)**(m-1)*sin(x)**(n+1) + Rational(m-1,n+1)*sympy.integrals.integrate(cos(x)**(m-2)*sin(x)**(n+2),x) ##the function argument to integrate in the end will be 1 , this cannot be integrated by trigintegrate. Hence use sympy.integrals.integrate.
else:
res=Rational(-1,m+1)*cos(x)**(m+1)*sin(x)**(n-1) + Rational(n-1,m+1)*sympy.integrals.integrate(cos(x)**(m+2)*sin(x)**(n-2),x)
return res.subs(x, a*x) / a
def sin_pow_integrate(n,x):
if n > 0 :
if n == 1:
#Recursion break
return -cos(x)
#
# n > 0
# / /
# | |
# | n -1 n-1 n - 1 | n-2
# | sin (x) dx = ______ cos (x) sin (x) + _______ | sin (x) dx
# | |
# | n n |
#/ /
#
#
return Rational(-1,n)*cos(x)*sin(x)**(n-1)+Rational(n-1,n)*sin_pow_integrate(n-2,x)
if n < 0:
if n == -1:
##Make sure this does not come back here again.
##Recursion breaks here or at n==0.
return trigintegrate(1/sin(x),x)
#
# n < 0
# / /
# | |
# | n 1 n+1 n + 2 | n+2
# | sin (x) dx = _______ cos (x) sin (x) + _______ | sin (x) dx
# | |
# | n + 1 n + 1 |
#/ /
#
#
return Rational(1,n+1)*cos(x)*sin(x)**(n+1) + Rational(n+2,n+1) * sin_pow_integrate(n+2,x)
else:
#n == 0
#Recursion break.
return x
def cos_pow_integrate(n,x):
if n > 0 :
if n==1:
#Recursion break.
return sin(x)
# n > 0
# / /
# | |
# | n 1 n-1 n - 1 | n-2
# | sin (x) dx = ______ sin (x) cos (x) + _______ | cos (x) dx
# | |
# | n n |
#/ /
#
#
return Rational(1,n)*sin(x)*cos(x)**(n-1)+Rational(n-1,n)*cos_pow_integrate(n-2,x)
if n < 0:
if n == -1:
##Recursion break
return trigintegrate(1/cos(x),x)
#
# n < 0
# / /
# | |
# | n -1 n+1 n + 2 | n+2
# | cos (x) dx = _______ sin (x) cos (x) + _______ | cos (x) dx
# | |
# | n + 1 n + 1 |
#/ /
#
#
return Rational(-1,n+1)*sin(x)*cos(x)**(n+1) + Rational(n+2,n+1) * cos_pow_integrate(n+2,x)
else :
# n == 0
#Recursion Break.
return x
|