This file is indexed.

/usr/share/pyshared/sympy/integrals/trigonometry.py is in python-sympy 0.7.1.rc1-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
# -*- coding: utf-8 -*-

import sympy
from sympy.core import Dummy, Wild, S
from sympy.core.numbers import Rational
from sympy.functions import sin, cos, binomial
from sympy.core.cache import cacheit

# TODO add support for tan^m(x) * sec^n(x)
# TODO sin(a*x)*cos(b*x) -> sin((a+b)x) + sin((a-b)x) ?

# creating each time Wild's and sin/cos/Mul is expensive. Also, our match &
# subs are very slow when not cached, and if we create Wild each time, we
# effectively block caching.
#
# so we cache the pattern
@cacheit
def _pat_sincos(x):
    a, n, m = [Wild(s, exclude=[x]) for s in 'anm']
    pat = sin(a*x)**n * cos(a*x)**m

    return pat, a,n,m

_u = Dummy('u')



def trigintegrate(f, x):
    """Integrate f = Mul(trig) over x

       >>> from sympy import Symbol, sin, cos
       >>> from sympy.integrals.trigonometry import trigintegrate
       >>> from sympy.abc import x

       >>> trigintegrate(sin(x)*cos(x), x)
       sin(x)**2/2

       >>> trigintegrate(sin(x)**2, x)
       x/2 - sin(x)*cos(x)/2

       http://en.wikibooks.org/wiki/Calculus/Further_integration_techniques
    """

    pat, a,n,m = _pat_sincos(x)
    ##m - cos
    ##n - sin

    M = f.match(pat)

    if M is None:
        return

    n, m = M[n], M[m]   # should always be there
    if n is S.Zero and m is S.Zero:
        return x

    a = M[a]

    if n.is_integer and m.is_integer:

        if n.is_odd or m.is_odd:
            u = _u
            n_, m_ = n.is_odd, m.is_odd

            # take smallest n or m -- to choose simplest substitution
            if n_ and m_:
                n_ = n_ and     (n < m)  # NB: careful here, one of the
                m_ = m_ and not (n < m)  #     conditions *must* be true

            #  n      m       u=C        (n-1)/2    m
            # S(x) * C(x) dx  --> -(1-u^2)       * u  du
            if n_:
                ff = -(1-u**2)**((n-1)/2) * u**m
                uu = cos(a*x)

            #  n      m       u=S   n         (m-1)/2
            # S(x) * C(x) dx  -->  u  * (1-u^2)       du
            elif m_:
                ff = u**n * (1-u**2)**((m-1)/2)
                uu = sin(a*x)

            fi= sympy.integrals.integrate(ff, u)    # XXX cyclic deps
            fx= fi.subs(u, uu)
            return fx / a

        # n & m are even
        else:
            #               2k      2m                         2l       2l
            # we transform S (x) * C (x) into terms with only S (x) or C (x)
            #
            # example:
            #  100     4       100        2    2    100          4         2
            # S (x) * C (x) = S (x) * (1-S (x))  = S (x) * (1 + S (x) - 2*S (x))
            #
            #                  104       102     100
            #               = S (x) - 2*S (x) + S (x)
            #       2k
            # then S   is integrated with recursive formula

            # take largest n or m -- to choose simplest substitution
            n_ =  (abs(n) > abs(m))
            m_ =  (abs(m) > abs(n))
            res = S.Zero

            if n_:
                #  2k       2 k             i            2i
                # C   = (1-S )  = sum(i, (-) * B(k,i) * S  )
                if m > 0 :
                    for i in range(0,m/2+1):
                        res += (-1)**i * binomial(m/2,i) * sin_pow_integrate(n+2*i, x)

                elif m == 0:
                    res=sin_pow_integrate(n,x)
                else:
                    # m < 0 , |n| > |m|
                    #  /                                                           /
                    # |                                                           |
                    # |    m       n            -1        m+1     n-1     n - 1   |     m+2     n-2
                    # | cos (x) sin (x) dx =  ________ cos (x) sin (x) + _______  |  cos (x) sin (x) dx
                    # |                                                           |
                    # |                         m + 1                     m + 1   |
                    #/                                                           /
                    #
                    #
                    res=Rational(-1,m+1)*cos(x)**(m+1)*sin(x)**(n-1) + Rational(n-1,m+1)*trigintegrate(cos(x)**(m+2)*sin(x)**(n-2),x)


            elif m_:
                #  2k        2 k            i            2i
                # S   = (1 -C ) = sum(i, (-) * B(k,i) * C  )
                if n > 0:
                    #      /                            /
                    #     |                            |
                    #     |    m       n               |    -m         n
                    #     | cos (x)*sin (x) dx  or     | cos (x) * sin (x) dx
                    #     |                            |
                    #    /                            /
                    #
                    #    |m| > |n| ; m,n >0 ; m,n belong to Z - {0}
                    #       n                                        2
                    #    sin (x) term is expanded here interms of cos (x), and then integrated.
                    for i in range(0,n/2+1):
                        res += (-1)**i * binomial(n/2,i) * cos_pow_integrate(m+2*i, x)

                elif n == 0 :
                    ##  /
                    ## |
                    #  |  1
                    #  | _ _ _
                    #  |    m
                    #  | cos (x)
                    # /
                    res= cos_pow_integrate(m,x)
                else:
                    # n < 0 , |m| > |n|
                    #  /                                                         /
                    # |                                                         |
                    # |    m       n           1        m-1     n+1     m - 1   |     m-2     n+2
                    # | cos (x) sin (x) dx = _______ cos (x) sin (x) + _______  |  cos (x) sin (x) dx
                    # |                                                         |
                    # |                       n + 1                     n + 1   |
                    #/                                                         /
                    #
                    #
                    res= Rational(1,(n+1))*cos(x)**(m-1)*sin(x)**(n+1) + Rational(m-1,n+1)*trigintegrate(cos(x)**(m-2)*sin(x)**(n+2),x)

            else :
                if m == n:
                    ##Substitute sin(2x)/2 for sin(x)cos(x) and then Integrate.
                    res=sympy.integrals.integrate((Rational(1,2)*sin(2*x))**m,x)
                elif (m == -n):
                    if n < 0:
                        ##Same as the scheme described above.
                        res= Rational(1,(n+1))*cos(x)**(m-1)*sin(x)**(n+1) + Rational(m-1,n+1)*sympy.integrals.integrate(cos(x)**(m-2)*sin(x)**(n+2),x) ##the function argument to integrate in the end will be 1 , this cannot be integrated by trigintegrate. Hence use sympy.integrals.integrate.
                    else:
                        res=Rational(-1,m+1)*cos(x)**(m+1)*sin(x)**(n-1) + Rational(n-1,m+1)*sympy.integrals.integrate(cos(x)**(m+2)*sin(x)**(n-2),x)
            return res.subs(x, a*x) / a

def sin_pow_integrate(n,x):
    if n > 0 :
        if n == 1:
            #Recursion break
            return -cos(x)
        #
        # n > 0
        #  /                                                 /
        # |                                                 |
        # |    n           -1               n-1     n - 1   |     n-2
        # | sin (x) dx =  ______ cos (x) sin (x) + _______  |  sin (x) dx
        # |                                                 |
        # |                 n                         n     |
        #/                                                 /
        #
        #

        return Rational(-1,n)*cos(x)*sin(x)**(n-1)+Rational(n-1,n)*sin_pow_integrate(n-2,x)

    if n < 0:
        if n == -1:
            ##Make sure this does not come back here again.
            ##Recursion breaks here or at n==0.
            return trigintegrate(1/sin(x),x)
        #
        # n < 0
        #  /                                                 /
        # |                                                 |
        # |    n            1               n+1     n + 2   |     n+2
        # | sin (x) dx = _______ cos (x) sin (x) + _______  |  sin (x) dx
        # |                                                 |
        # |               n + 1                     n + 1   |
        #/                                                 /
        #
        #
        return Rational(1,n+1)*cos(x)*sin(x)**(n+1) + Rational(n+2,n+1) * sin_pow_integrate(n+2,x)

    else:
        #n == 0
        #Recursion break.
        return x

def cos_pow_integrate(n,x):
    if n > 0 :
        if n==1:
            #Recursion break.
            return sin(x)

        # n > 0
        #  /                                                 /
        # |                                                 |
        # |    n            1               n-1     n - 1   |     n-2
        # | sin (x) dx =  ______ sin (x) cos (x) + _______  |  cos (x) dx
        # |                                                 |
        # |                 n                         n     |
        #/                                                 /
        #
        #

        return Rational(1,n)*sin(x)*cos(x)**(n-1)+Rational(n-1,n)*cos_pow_integrate(n-2,x)

    if n < 0:
        if n == -1:
            ##Recursion break
            return trigintegrate(1/cos(x),x)
        #
        # n < 0
        #  /                                                 /
        # |                                                 |
        # |    n            -1              n+1     n + 2   |     n+2
        # | cos (x) dx = _______ sin (x) cos (x) + _______  |  cos (x) dx
        # |                                                 |
        # |               n + 1                     n + 1   |
        #/                                                 /
        #
        #


        return Rational(-1,n+1)*sin(x)*cos(x)**(n+1) + Rational(n+2,n+1) * cos_pow_integrate(n+2,x)
    else :
        # n == 0
        #Recursion Break.
        return x