/usr/share/pyshared/sympy/mpmath/identification.py is in python-sympy 0.7.1.rc1-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 | """
Implements the PSLQ algorithm for integer relation detection,
and derivative algorithms for constant recognition.
"""
from .libmp.backend import xrange
from .libmp import int_types, sqrt_fixed
# round to nearest integer (can be done more elegantly...)
def round_fixed(x, prec):
return ((x + (1<<(prec-1))) >> prec) << prec
class IdentificationMethods(object):
pass
def pslq(ctx, x, tol=None, maxcoeff=1000, maxsteps=100, verbose=False):
r"""
Given a vector of real numbers `x = [x_0, x_1, ..., x_n]`, ``pslq(x)``
uses the PSLQ algorithm to find a list of integers
`[c_0, c_1, ..., c_n]` such that
.. math ::
|c_1 x_1 + c_2 x_2 + ... + c_n x_n| < \mathrm{tol}
and such that `\max |c_k| < \mathrm{maxcoeff}`. If no such vector
exists, :func:`~mpmath.pslq` returns ``None``. The tolerance defaults to
3/4 of the working precision.
**Examples**
Find rational approximations for `\pi`::
>>> from mpmath import *
>>> mp.dps = 15; mp.pretty = True
>>> pslq([-1, pi], tol=0.01)
[22, 7]
>>> pslq([-1, pi], tol=0.001)
[355, 113]
>>> mpf(22)/7; mpf(355)/113; +pi
3.14285714285714
3.14159292035398
3.14159265358979
Pi is not a rational number with denominator less than 1000::
>>> pslq([-1, pi])
>>>
To within the standard precision, it can however be approximated
by at least one rational number with denominator less than `10^{12}`::
>>> p, q = pslq([-1, pi], maxcoeff=10**12)
>>> print(p); print(q)
238410049439
75888275702
>>> mpf(p)/q
3.14159265358979
The PSLQ algorithm can be applied to long vectors. For example,
we can investigate the rational (in)dependence of integer square
roots::
>>> mp.dps = 30
>>> pslq([sqrt(n) for n in range(2, 5+1)])
>>>
>>> pslq([sqrt(n) for n in range(2, 6+1)])
>>>
>>> pslq([sqrt(n) for n in range(2, 8+1)])
[2, 0, 0, 0, 0, 0, -1]
**Machin formulas**
A famous formula for `\pi` is Machin's,
.. math ::
\frac{\pi}{4} = 4 \operatorname{acot} 5 - \operatorname{acot} 239
There are actually infinitely many formulas of this type. Two
others are
.. math ::
\frac{\pi}{4} = \operatorname{acot} 1
\frac{\pi}{4} = 12 \operatorname{acot} 49 + 32 \operatorname{acot} 57
+ 5 \operatorname{acot} 239 + 12 \operatorname{acot} 110443
We can easily verify the formulas using the PSLQ algorithm::
>>> mp.dps = 30
>>> pslq([pi/4, acot(1)])
[1, -1]
>>> pslq([pi/4, acot(5), acot(239)])
[1, -4, 1]
>>> pslq([pi/4, acot(49), acot(57), acot(239), acot(110443)])
[1, -12, -32, 5, -12]
We could try to generate a custom Machin-like formula by running
the PSLQ algorithm with a few inverse cotangent values, for example
acot(2), acot(3) ... acot(10). Unfortunately, there is a linear
dependence among these values, resulting in only that dependence
being detected, with a zero coefficient for `\pi`::
>>> pslq([pi] + [acot(n) for n in range(2,11)])
[0, 1, -1, 0, 0, 0, -1, 0, 0, 0]
We get better luck by removing linearly dependent terms::
>>> pslq([pi] + [acot(n) for n in range(2,11) if n not in (3, 5)])
[1, -8, 0, 0, 4, 0, 0, 0]
In other words, we found the following formula::
>>> 8*acot(2) - 4*acot(7)
3.14159265358979323846264338328
>>> +pi
3.14159265358979323846264338328
**Algorithm**
This is a fairly direct translation to Python of the pseudocode given by
David Bailey, "The PSLQ Integer Relation Algorithm":
http://www.cecm.sfu.ca/organics/papers/bailey/paper/html/node3.html
The present implementation uses fixed-point instead of floating-point
arithmetic, since this is significantly (about 7x) faster.
"""
n = len(x)
assert n >= 2
# At too low precision, the algorithm becomes meaningless
prec = ctx.prec
assert prec >= 53
if verbose and prec // max(2,n) < 5:
print("Warning: precision for PSLQ may be too low")
target = int(prec * 0.75)
if tol is None:
tol = ctx.mpf(2)**(-target)
else:
tol = ctx.convert(tol)
extra = 60
prec += extra
if verbose:
print("PSLQ using prec %i and tol %s" % (prec, ctx.nstr(tol)))
tol = ctx.to_fixed(tol, prec)
assert tol
# Convert to fixed-point numbers. The dummy None is added so we can
# use 1-based indexing. (This just allows us to be consistent with
# Bailey's indexing. The algorithm is 100 lines long, so debugging
# a single wrong index can be painful.)
x = [None] + [ctx.to_fixed(ctx.mpf(xk), prec) for xk in x]
# Sanity check on magnitudes
minx = min(abs(xx) for xx in x[1:])
if not minx:
raise ValueError("PSLQ requires a vector of nonzero numbers")
if minx < tol//100:
if verbose:
print("STOPPING: (one number is too small)")
return None
g = sqrt_fixed((4<<prec)//3, prec)
A = {}
B = {}
H = {}
# Initialization
# step 1
for i in xrange(1, n+1):
for j in xrange(1, n+1):
A[i,j] = B[i,j] = (i==j) << prec
H[i,j] = 0
# step 2
s = [None] + [0] * n
for k in xrange(1, n+1):
t = 0
for j in xrange(k, n+1):
t += (x[j]**2 >> prec)
s[k] = sqrt_fixed(t, prec)
t = s[1]
y = x[:]
for k in xrange(1, n+1):
y[k] = (x[k] << prec) // t
s[k] = (s[k] << prec) // t
# step 3
for i in xrange(1, n+1):
for j in xrange(i+1, n):
H[i,j] = 0
if i <= n-1:
if s[i]:
H[i,i] = (s[i+1] << prec) // s[i]
else:
H[i,i] = 0
for j in range(1, i):
sjj1 = s[j]*s[j+1]
if sjj1:
H[i,j] = ((-y[i]*y[j])<<prec)//sjj1
else:
H[i,j] = 0
# step 4
for i in xrange(2, n+1):
for j in xrange(i-1, 0, -1):
#t = floor(H[i,j]/H[j,j] + 0.5)
if H[j,j]:
t = round_fixed((H[i,j] << prec)//H[j,j], prec)
else:
#t = 0
continue
y[j] = y[j] + (t*y[i] >> prec)
for k in xrange(1, j+1):
H[i,k] = H[i,k] - (t*H[j,k] >> prec)
for k in xrange(1, n+1):
A[i,k] = A[i,k] - (t*A[j,k] >> prec)
B[k,j] = B[k,j] + (t*B[k,i] >> prec)
# Main algorithm
for REP in range(maxsteps):
# Step 1
m = -1
szmax = -1
for i in range(1, n):
h = H[i,i]
sz = (g**i * abs(h)) >> (prec*(i-1))
if sz > szmax:
m = i
szmax = sz
# Step 2
y[m], y[m+1] = y[m+1], y[m]
tmp = {}
for i in xrange(1,n+1): H[m,i], H[m+1,i] = H[m+1,i], H[m,i]
for i in xrange(1,n+1): A[m,i], A[m+1,i] = A[m+1,i], A[m,i]
for i in xrange(1,n+1): B[i,m], B[i,m+1] = B[i,m+1], B[i,m]
# Step 3
if m <= n - 2:
t0 = sqrt_fixed((H[m,m]**2 + H[m,m+1]**2)>>prec, prec)
# A zero element probably indicates that the precision has
# been exhausted. XXX: this could be spurious, due to
# using fixed-point arithmetic
if not t0:
break
t1 = (H[m,m] << prec) // t0
t2 = (H[m,m+1] << prec) // t0
for i in xrange(m, n+1):
t3 = H[i,m]
t4 = H[i,m+1]
H[i,m] = (t1*t3+t2*t4) >> prec
H[i,m+1] = (-t2*t3+t1*t4) >> prec
# Step 4
for i in xrange(m+1, n+1):
for j in xrange(min(i-1, m+1), 0, -1):
try:
t = round_fixed((H[i,j] << prec)//H[j,j], prec)
# Precision probably exhausted
except ZeroDivisionError:
break
y[j] = y[j] + ((t*y[i]) >> prec)
for k in xrange(1, j+1):
H[i,k] = H[i,k] - (t*H[j,k] >> prec)
for k in xrange(1, n+1):
A[i,k] = A[i,k] - (t*A[j,k] >> prec)
B[k,j] = B[k,j] + (t*B[k,i] >> prec)
# Until a relation is found, the error typically decreases
# slowly (e.g. a factor 1-10) with each step TODO: we could
# compare err from two successive iterations. If there is a
# large drop (several orders of magnitude), that indicates a
# "high quality" relation was detected. Reporting this to
# the user somehow might be useful.
best_err = maxcoeff<<prec
for i in xrange(1, n+1):
err = abs(y[i])
# Maybe we are done?
if err < tol:
# We are done if the coefficients are acceptable
vec = [int(round_fixed(B[j,i], prec) >> prec) for j in \
range(1,n+1)]
if max(abs(v) for v in vec) < maxcoeff:
if verbose:
print("FOUND relation at iter %i/%i, error: %s" % \
(REP, maxsteps, ctx.nstr(err / ctx.mpf(2)**prec, 1)))
return vec
best_err = min(err, best_err)
# Calculate a lower bound for the norm. We could do this
# more exactly (using the Euclidean norm) but there is probably
# no practical benefit.
recnorm = max(abs(h) for h in H.values())
if recnorm:
norm = ((1 << (2*prec)) // recnorm) >> prec
norm //= 100
else:
norm = ctx.inf
if verbose:
print("%i/%i: Error: %8s Norm: %s" % \
(REP, maxsteps, ctx.nstr(best_err / ctx.mpf(2)**prec, 1), norm))
if norm >= maxcoeff:
break
if verbose:
print("CANCELLING after step %i/%i." % (REP, maxsteps))
print("Could not find an integer relation. Norm bound: %s" % norm)
return None
def findpoly(ctx, x, n=1, **kwargs):
r"""
``findpoly(x, n)`` returns the coefficients of an integer
polynomial `P` of degree at most `n` such that `P(x) \approx 0`.
If no polynomial having `x` as a root can be found,
:func:`~mpmath.findpoly` returns ``None``.
:func:`~mpmath.findpoly` works by successively calling :func:`~mpmath.pslq` with
the vectors `[1, x]`, `[1, x, x^2]`, `[1, x, x^2, x^3]`, ...,
`[1, x, x^2, .., x^n]` as input. Keyword arguments given to
:func:`~mpmath.findpoly` are forwarded verbatim to :func:`~mpmath.pslq`. In
particular, you can specify a tolerance for `P(x)` with ``tol``
and a maximum permitted coefficient size with ``maxcoeff``.
For large values of `n`, it is recommended to run :func:`~mpmath.findpoly`
at high precision; preferably 50 digits or more.
**Examples**
By default (degree `n = 1`), :func:`~mpmath.findpoly` simply finds a linear
polynomial with a rational root::
>>> from mpmath import *
>>> mp.dps = 15; mp.pretty = True
>>> findpoly(0.7)
[-10, 7]
The generated coefficient list is valid input to ``polyval`` and
``polyroots``::
>>> nprint(polyval(findpoly(phi, 2), phi), 1)
-2.0e-16
>>> for r in polyroots(findpoly(phi, 2)):
... print(r)
...
-0.618033988749895
1.61803398874989
Numbers of the form `m + n \sqrt p` for integers `(m, n, p)` are
solutions to quadratic equations. As we find here, `1+\sqrt 2`
is a root of the polynomial `x^2 - 2x - 1`::
>>> findpoly(1+sqrt(2), 2)
[1, -2, -1]
>>> findroot(lambda x: x**2 - 2*x - 1, 1)
2.4142135623731
Despite only containing square roots, the following number results
in a polynomial of degree 4::
>>> findpoly(sqrt(2)+sqrt(3), 4)
[1, 0, -10, 0, 1]
In fact, `x^4 - 10x^2 + 1` is the *minimal polynomial* of
`r = \sqrt 2 + \sqrt 3`, meaning that a rational polynomial of
lower degree having `r` as a root does not exist. Given sufficient
precision, :func:`~mpmath.findpoly` will usually find the correct
minimal polynomial of a given algebraic number.
**Non-algebraic numbers**
If :func:`~mpmath.findpoly` fails to find a polynomial with given
coefficient size and tolerance constraints, that means no such
polynomial exists.
We can verify that `\pi` is not an algebraic number of degree 3 with
coefficients less than 1000::
>>> mp.dps = 15
>>> findpoly(pi, 3)
>>>
It is always possible to find an algebraic approximation of a number
using one (or several) of the following methods:
1. Increasing the permitted degree
2. Allowing larger coefficients
3. Reducing the tolerance
One example of each method is shown below::
>>> mp.dps = 15
>>> findpoly(pi, 4)
[95, -545, 863, -183, -298]
>>> findpoly(pi, 3, maxcoeff=10000)
[836, -1734, -2658, -457]
>>> findpoly(pi, 3, tol=1e-7)
[-4, 22, -29, -2]
It is unknown whether Euler's constant is transcendental (or even
irrational). We can use :func:`~mpmath.findpoly` to check that if is
an algebraic number, its minimal polynomial must have degree
at least 7 and a coefficient of magnitude at least 1000000::
>>> mp.dps = 200
>>> findpoly(euler, 6, maxcoeff=10**6, tol=1e-100, maxsteps=1000)
>>>
Note that the high precision and strict tolerance is necessary
for such high-degree runs, since otherwise unwanted low-accuracy
approximations will be detected. It may also be necessary to set
maxsteps high to prevent a premature exit (before the coefficient
bound has been reached). Running with ``verbose=True`` to get an
idea what is happening can be useful.
"""
x = ctx.mpf(x)
assert n >= 1
if x == 0:
return [1, 0]
xs = [ctx.mpf(1)]
for i in range(1,n+1):
xs.append(x**i)
a = ctx.pslq(xs, **kwargs)
if a is not None:
return a[::-1]
def fracgcd(p, q):
x, y = p, q
while y:
x, y = y, x % y
if x != 1:
p //= x
q //= x
if q == 1:
return p
return p, q
def pslqstring(r, constants):
q = r[0]
r = r[1:]
s = []
for i in range(len(r)):
p = r[i]
if p:
z = fracgcd(-p,q)
cs = constants[i][1]
if cs == '1':
cs = ''
else:
cs = '*' + cs
if isinstance(z, int_types):
if z > 0: term = str(z) + cs
else: term = ("(%s)" % z) + cs
else:
term = ("(%s/%s)" % z) + cs
s.append(term)
s = ' + '.join(s)
if '+' in s or '*' in s:
s = '(' + s + ')'
return s or '0'
def prodstring(r, constants):
q = r[0]
r = r[1:]
num = []
den = []
for i in range(len(r)):
p = r[i]
if p:
z = fracgcd(-p,q)
cs = constants[i][1]
if isinstance(z, int_types):
if abs(z) == 1: t = cs
else: t = '%s**%s' % (cs, abs(z))
([num,den][z<0]).append(t)
else:
t = '%s**(%s/%s)' % (cs, abs(z[0]), z[1])
([num,den][z[0]<0]).append(t)
num = '*'.join(num)
den = '*'.join(den)
if num and den: return "(%s)/(%s)" % (num, den)
if num: return num
if den: return "1/(%s)" % den
def quadraticstring(ctx,t,a,b,c):
if c < 0:
a,b,c = -a,-b,-c
u1 = (-b+ctx.sqrt(b**2-4*a*c))/(2*c)
u2 = (-b-ctx.sqrt(b**2-4*a*c))/(2*c)
if abs(u1-t) < abs(u2-t):
if b: s = '((%s+sqrt(%s))/%s)' % (-b,b**2-4*a*c,2*c)
else: s = '(sqrt(%s)/%s)' % (-4*a*c,2*c)
else:
if b: s = '((%s-sqrt(%s))/%s)' % (-b,b**2-4*a*c,2*c)
else: s = '(-sqrt(%s)/%s)' % (-4*a*c,2*c)
return s
# Transformation y = f(x,c), with inverse function x = f(y,c)
# The third entry indicates whether the transformation is
# redundant when c = 1
transforms = [
(lambda ctx,x,c: x*c, '$y/$c', 0),
(lambda ctx,x,c: x/c, '$c*$y', 1),
(lambda ctx,x,c: c/x, '$c/$y', 0),
(lambda ctx,x,c: (x*c)**2, 'sqrt($y)/$c', 0),
(lambda ctx,x,c: (x/c)**2, '$c*sqrt($y)', 1),
(lambda ctx,x,c: (c/x)**2, '$c/sqrt($y)', 0),
(lambda ctx,x,c: c*x**2, 'sqrt($y)/sqrt($c)', 1),
(lambda ctx,x,c: x**2/c, 'sqrt($c)*sqrt($y)', 1),
(lambda ctx,x,c: c/x**2, 'sqrt($c)/sqrt($y)', 1),
(lambda ctx,x,c: ctx.sqrt(x*c), '$y**2/$c', 0),
(lambda ctx,x,c: ctx.sqrt(x/c), '$c*$y**2', 1),
(lambda ctx,x,c: ctx.sqrt(c/x), '$c/$y**2', 0),
(lambda ctx,x,c: c*ctx.sqrt(x), '$y**2/$c**2', 1),
(lambda ctx,x,c: ctx.sqrt(x)/c, '$c**2*$y**2', 1),
(lambda ctx,x,c: c/ctx.sqrt(x), '$c**2/$y**2', 1),
(lambda ctx,x,c: ctx.exp(x*c), 'log($y)/$c', 0),
(lambda ctx,x,c: ctx.exp(x/c), '$c*log($y)', 1),
(lambda ctx,x,c: ctx.exp(c/x), '$c/log($y)', 0),
(lambda ctx,x,c: c*ctx.exp(x), 'log($y/$c)', 1),
(lambda ctx,x,c: ctx.exp(x)/c, 'log($c*$y)', 1),
(lambda ctx,x,c: c/ctx.exp(x), 'log($c/$y)', 0),
(lambda ctx,x,c: ctx.ln(x*c), 'exp($y)/$c', 0),
(lambda ctx,x,c: ctx.ln(x/c), '$c*exp($y)', 1),
(lambda ctx,x,c: ctx.ln(c/x), '$c/exp($y)', 0),
(lambda ctx,x,c: c*ctx.ln(x), 'exp($y/$c)', 1),
(lambda ctx,x,c: ctx.ln(x)/c, 'exp($c*$y)', 1),
(lambda ctx,x,c: c/ctx.ln(x), 'exp($c/$y)', 0),
]
def identify(ctx, x, constants=[], tol=None, maxcoeff=1000, full=False,
verbose=False):
"""
Given a real number `x`, ``identify(x)`` attempts to find an exact
formula for `x`. This formula is returned as a string. If no match
is found, ``None`` is returned. With ``full=True``, a list of
matching formulas is returned.
As a simple example, :func:`~mpmath.identify` will find an algebraic
formula for the golden ratio::
>>> from mpmath import *
>>> mp.dps = 15; mp.pretty = True
>>> identify(phi)
'((1+sqrt(5))/2)'
:func:`~mpmath.identify` can identify simple algebraic numbers and simple
combinations of given base constants, as well as certain basic
transformations thereof. More specifically, :func:`~mpmath.identify`
looks for the following:
1. Fractions
2. Quadratic algebraic numbers
3. Rational linear combinations of the base constants
4. Any of the above after first transforming `x` into `f(x)` where
`f(x)` is `1/x`, `\sqrt x`, `x^2`, `\log x` or `\exp x`, either
directly or with `x` or `f(x)` multiplied or divided by one of
the base constants
5. Products of fractional powers of the base constants and
small integers
Base constants can be given as a list of strings representing mpmath
expressions (:func:`~mpmath.identify` will ``eval`` the strings to numerical
values and use the original strings for the output), or as a dict of
formula:value pairs.
In order not to produce spurious results, :func:`~mpmath.identify` should
be used with high precision; preferably 50 digits or more.
**Examples**
Simple identifications can be performed safely at standard
precision. Here the default recognition of rational, algebraic,
and exp/log of algebraic numbers is demonstrated::
>>> mp.dps = 15
>>> identify(0.22222222222222222)
'(2/9)'
>>> identify(1.9662210973805663)
'sqrt(((24+sqrt(48))/8))'
>>> identify(4.1132503787829275)
'exp((sqrt(8)/2))'
>>> identify(0.881373587019543)
'log(((2+sqrt(8))/2))'
By default, :func:`~mpmath.identify` does not recognize `\pi`. At standard
precision it finds a not too useful approximation. At slightly
increased precision, this approximation is no longer accurate
enough and :func:`~mpmath.identify` more correctly returns ``None``::
>>> identify(pi)
'(2**(176/117)*3**(20/117)*5**(35/39))/(7**(92/117))'
>>> mp.dps = 30
>>> identify(pi)
>>>
Numbers such as `\pi`, and simple combinations of user-defined
constants, can be identified if they are provided explicitly::
>>> identify(3*pi-2*e, ['pi', 'e'])
'(3*pi + (-2)*e)'
Here is an example using a dict of constants. Note that the
constants need not be "atomic"; :func:`~mpmath.identify` can just
as well express the given number in terms of expressions
given by formulas::
>>> identify(pi+e, {'a':pi+2, 'b':2*e})
'((-2) + 1*a + (1/2)*b)'
Next, we attempt some identifications with a set of base constants.
It is necessary to increase the precision a bit.
>>> mp.dps = 50
>>> base = ['sqrt(2)','pi','log(2)']
>>> identify(0.25, base)
'(1/4)'
>>> identify(3*pi + 2*sqrt(2) + 5*log(2)/7, base)
'(2*sqrt(2) + 3*pi + (5/7)*log(2))'
>>> identify(exp(pi+2), base)
'exp((2 + 1*pi))'
>>> identify(1/(3+sqrt(2)), base)
'((3/7) + (-1/7)*sqrt(2))'
>>> identify(sqrt(2)/(3*pi+4), base)
'sqrt(2)/(4 + 3*pi)'
>>> identify(5**(mpf(1)/3)*pi*log(2)**2, base)
'5**(1/3)*pi*log(2)**2'
An example of an erroneous solution being found when too low
precision is used::
>>> mp.dps = 15
>>> identify(1/(3*pi-4*e+sqrt(8)), ['pi', 'e', 'sqrt(2)'])
'((11/25) + (-158/75)*pi + (76/75)*e + (44/15)*sqrt(2))'
>>> mp.dps = 50
>>> identify(1/(3*pi-4*e+sqrt(8)), ['pi', 'e', 'sqrt(2)'])
'1/(3*pi + (-4)*e + 2*sqrt(2))'
**Finding approximate solutions**
The tolerance ``tol`` defaults to 3/4 of the working precision.
Lowering the tolerance is useful for finding approximate matches.
We can for example try to generate approximations for pi::
>>> mp.dps = 15
>>> identify(pi, tol=1e-2)
'(22/7)'
>>> identify(pi, tol=1e-3)
'(355/113)'
>>> identify(pi, tol=1e-10)
'(5**(339/269))/(2**(64/269)*3**(13/269)*7**(92/269))'
With ``full=True``, and by supplying a few base constants,
``identify`` can generate almost endless lists of approximations
for any number (the output below has been truncated to show only
the first few)::
>>> for p in identify(pi, ['e', 'catalan'], tol=1e-5, full=True):
... print(p)
... # doctest: +ELLIPSIS
e/log((6 + (-4/3)*e))
(3**3*5*e*catalan**2)/(2*7**2)
sqrt(((-13) + 1*e + 22*catalan))
log(((-6) + 24*e + 4*catalan)/e)
exp(catalan*((-1/5) + (8/15)*e))
catalan*(6 + (-6)*e + 15*catalan)
sqrt((5 + 26*e + (-3)*catalan))/e
e*sqrt(((-27) + 2*e + 25*catalan))
log(((-1) + (-11)*e + 59*catalan))
((3/20) + (21/20)*e + (3/20)*catalan)
...
The numerical values are roughly as close to `\pi` as permitted by the
specified tolerance:
>>> e/log(6-4*e/3)
3.14157719846001
>>> 135*e*catalan**2/98
3.14166950419369
>>> sqrt(e-13+22*catalan)
3.14158000062992
>>> log(24*e-6+4*catalan)-1
3.14158791577159
**Symbolic processing**
The output formula can be evaluated as a Python expression.
Note however that if fractions (like '2/3') are present in
the formula, Python's :func:`~mpmath.eval()` may erroneously perform
integer division. Note also that the output is not necessarily
in the algebraically simplest form::
>>> identify(sqrt(2))
'(sqrt(8)/2)'
As a solution to both problems, consider using SymPy's
:func:`~mpmath.sympify` to convert the formula into a symbolic expression.
SymPy can be used to pretty-print or further simplify the formula
symbolically::
>>> from sympy import sympify
>>> sympify(identify(sqrt(2)))
2**(1/2)
Sometimes :func:`~mpmath.identify` can simplify an expression further than
a symbolic algorithm::
>>> from sympy import simplify
>>> x = sympify('-1/(-3/2+(1/2)*5**(1/2))*(3/2-1/2*5**(1/2))**(1/2)')
>>> x
(3/2 - 5**(1/2)/2)**(-1/2)
>>> x = simplify(x)
>>> x
2/(6 - 2*5**(1/2))**(1/2)
>>> mp.dps = 30
>>> x = sympify(identify(x.evalf(30)))
>>> x
1/2 + 5**(1/2)/2
(In fact, this functionality is available directly in SymPy as the
function :func:`~mpmath.nsimplify`, which is essentially a wrapper for
:func:`~mpmath.identify`.)
**Miscellaneous issues and limitations**
The input `x` must be a real number. All base constants must be
positive real numbers and must not be rationals or rational linear
combinations of each other.
The worst-case computation time grows quickly with the number of
base constants. Already with 3 or 4 base constants,
:func:`~mpmath.identify` may require several seconds to finish. To search
for relations among a large number of constants, you should
consider using :func:`~mpmath.pslq` directly.
The extended transformations are applied to x, not the constants
separately. As a result, ``identify`` will for example be able to
recognize ``exp(2*pi+3)`` with ``pi`` given as a base constant, but
not ``2*exp(pi)+3``. It will be able to recognize the latter if
``exp(pi)`` is given explicitly as a base constant.
"""
solutions = []
def addsolution(s):
if verbose: print("Found: ", s)
solutions.append(s)
x = ctx.mpf(x)
# Further along, x will be assumed positive
if x == 0:
if full: return ['0']
else: return '0'
if x < 0:
sol = ctx.identify(-x, constants, tol, maxcoeff, full, verbose)
if sol is None:
return sol
if full:
return ["-(%s)"%s for s in sol]
else:
return "-(%s)" % sol
if tol:
tol = ctx.mpf(tol)
else:
tol = ctx.eps**0.7
M = maxcoeff
if constants:
if isinstance(constants, dict):
constants = [(ctx.mpf(v), name) for (name, v) in constants.items()]
else:
namespace = dict((name, getattr(ctx,name)) for name in dir(ctx))
constants = [(eval(p, namespace), p) for p in constants]
else:
constants = []
# We always want to find at least rational terms
if 1 not in [value for (name, value) in constants]:
constants = [(ctx.mpf(1), '1')] + constants
# PSLQ with simple algebraic and functional transformations
for ft, ftn, red in transforms:
for c, cn in constants:
if red and cn == '1':
continue
t = ft(ctx,x,c)
# Prevent exponential transforms from wreaking havoc
if abs(t) > M**2 or abs(t) < tol:
continue
# Linear combination of base constants
r = ctx.pslq([t] + [a[0] for a in constants], tol, M)
s = None
if r is not None and max(abs(uw) for uw in r) <= M and r[0]:
s = pslqstring(r, constants)
# Quadratic algebraic numbers
else:
q = ctx.pslq([ctx.one, t, t**2], tol, M)
if q is not None and len(q) == 3 and q[2]:
aa, bb, cc = q
if max(abs(aa),abs(bb),abs(cc)) <= M:
s = quadraticstring(ctx,t,aa,bb,cc)
if s:
if cn == '1' and ('/$c' in ftn):
s = ftn.replace('$y', s).replace('/$c', '')
else:
s = ftn.replace('$y', s).replace('$c', cn)
addsolution(s)
if not full: return solutions[0]
if verbose:
print(".")
# Check for a direct multiplicative formula
if x != 1:
# Allow fractional powers of fractions
ilogs = [2,3,5,7]
# Watch out for existing fractional powers of fractions
logs = []
for a, s in constants:
if not sum(bool(ctx.findpoly(ctx.ln(a)/ctx.ln(i),1)) for i in ilogs):
logs.append((ctx.ln(a), s))
logs = [(ctx.ln(i),str(i)) for i in ilogs] + logs
r = ctx.pslq([ctx.ln(x)] + [a[0] for a in logs], tol, M)
if r is not None and max(abs(uw) for uw in r) <= M and r[0]:
addsolution(prodstring(r, logs))
if not full: return solutions[0]
if full:
return sorted(solutions, key=len)
else:
return None
IdentificationMethods.pslq = pslq
IdentificationMethods.findpoly = findpoly
IdentificationMethods.identify = identify
if __name__ == '__main__':
import doctest
doctest.testmod()
|