/usr/share/pyshared/sympy/physics/hydrogen.py is in python-sympy 0.7.1.rc1-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 | from sympy import factorial, sqrt, exp, S, laguerre_l, Float
def R_nl(n, l, r, Z=1):
"""
Returns the Hydrogen radial wavefunction R_{nl}.
n, l .... quantum numbers 'n' and 'l'
r .... radial coordinate
Z .... atomic number (1 for Hydrogen, 2 for Helium, ...)
Everything is in Hartree atomic units.
Examples::
>>> from sympy.physics.hydrogen import R_nl
>>> from sympy import var
>>> var("r Z")
(r, Z)
>>> R_nl(1, 0, r, Z)
2*(Z**3)**(1/2)*exp(-Z*r)
>>> R_nl(2, 0, r, Z)
2**(1/2)*(-Z*r + 2)*(Z**3)**(1/2)*exp(-Z*r/2)/4
>>> R_nl(2, 1, r, Z)
6**(1/2)*Z*r*(Z**3)**(1/2)*exp(-Z*r/2)/12
For Hydrogen atom, you can just use the default value of Z=1::
>>> R_nl(1, 0, r)
2*exp(-r)
>>> R_nl(2, 0, r)
2**(1/2)*(-r + 2)*exp(-r/2)/4
>>> R_nl(3, 0, r)
2*3**(1/2)*(2*r**2/9 - 2*r + 3)*exp(-r/3)/27
For Silver atom, you would use Z=47::
>>> R_nl(1, 0, r, Z=47)
94*47**(1/2)*exp(-47*r)
>>> R_nl(2, 0, r, Z=47)
47*94**(1/2)*(-47*r + 2)*exp(-47*r/2)/4
>>> R_nl(3, 0, r, Z=47)
94*141**(1/2)*(4418*r**2/9 - 94*r + 3)*exp(-47*r/3)/27
The normalization of the radial wavefunction is::
>>> from sympy import integrate, oo
>>> integrate(R_nl(1, 0, r)**2 * r**2, (r, 0, oo))
1
>>> integrate(R_nl(2, 0, r)**2 * r**2, (r, 0, oo))
1
>>> integrate(R_nl(2, 1, r)**2 * r**2, (r, 0, oo))
1
It holds for any atomic number:
>>> integrate(R_nl(1, 0, r, Z=2)**2 * r**2, (r, 0, oo))
1
>>> integrate(R_nl(2, 0, r, Z=3)**2 * r**2, (r, 0, oo))
1
>>> integrate(R_nl(2, 1, r, Z=4)**2 * r**2, (r, 0, oo))
1
"""
# sympify arguments
n, l, r, Z = S(n), S(l), S(r), S(Z)
# radial quantum number
n_r = n - l - 1
# rescaled "r"
a = 1/Z # Bohr radius
r0 = 2 * r / (n * a)
# normalization coefficient
C = sqrt((S(2)/(n*a))**3 * factorial(n_r) / (2*n*factorial(n+l)))
# This is an equivalent normalization coefficient, that can be found in
# some books. Both coefficients seem to be the same fast:
# C = S(2)/n**2 * sqrt(1/a**3 * factorial(n_r) / (factorial(n+l)))
return C * r0**l * laguerre_l(n_r, 2*l+1, r0).expand() * exp(-r0/2)
def E_nl(n, Z=1):
"""
Returns the energy of the state (n, l) in Hartree atomic units.
The energy doesn't depend on "l".
Examples::
>>> from sympy import var
>>> from sympy.physics.hydrogen import E_nl
>>> var("n Z")
(n, Z)
>>> E_nl(n, Z)
-Z**2/(2*n**2)
>>> E_nl(1)
-1/2
>>> E_nl(2)
-1/8
>>> E_nl(3)
-1/18
>>> E_nl(3, 47)
-2209/18
"""
n, Z = S(n), S(Z)
if n.is_integer and (n < 1):
raise ValueError("'n' must be positive integer")
return -Z**2/(2*n**2)
def E_nl_dirac(n, l, spin_up=True, Z=1, c=Float("137.035999037")):
"""
Returns the relativistic energy of the state (n, l, spin) in Hartree atomic
units.
The energy is calculated from the Dirac equation. The rest mass energy is
*not* included.
n, l ...... quantum numbers 'n' and 'l'
spin_up ... True if the electron spin is up (default), otherwise down
Z ...... atomic number (1 for Hydrogen, 2 for Helium, ...)
c ...... speed of light in atomic units. Default value is 137.035999037,
taken from: http://arxiv.org/abs/1012.3627
Examples::
>>> from sympy.physics.hydrogen import E_nl_dirac
>>> E_nl_dirac(1, 0)
-0.500006656595360
>>> E_nl_dirac(2, 0)
-0.125002080189006
>>> E_nl_dirac(2, 1)
-0.125000416024704
>>> E_nl_dirac(2, 1, False)
-0.125002080189006
>>> E_nl_dirac(3, 0)
-0.0555562951740285
>>> E_nl_dirac(3, 1)
-0.0555558020932949
>>> E_nl_dirac(3, 1, False)
-0.0555562951740285
>>> E_nl_dirac(3, 2)
-0.0555556377366884
>>> E_nl_dirac(3, 2, False)
-0.0555558020932949
"""
if not (l >= 0):
raise ValueError("'l' must be positive or zero")
if not (n > l):
raise ValueError("'n' must be greater than 'l'")
if (l==0 and spin_up is False):
raise ValueError("Spin must be up for l==0.")
# skappa is sign*kappa, where sign contains the correct sign
if spin_up:
skappa = -l - 1
else:
skappa = -l
c = S(c)
beta = sqrt(skappa**2 - Z**2/c**2)
return c**2/sqrt(1+Z**2/(n + skappa + beta)**2/c**2) - c**2
|