/usr/share/pyshared/sympy/physics/wigner.py is in python-sympy 0.7.1.rc1-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 | r"""
Wigner, Clebsch-Gordan, Racah, and Gaunt coefficients
Collection of functions for calculating Wigner 3j, 6j, 9j,
Clebsch-Gordan, Racah as well as Gaunt coefficients exactly, all
evaluating to a rational number times the square root of a rational
number [Rasch03]_.
Please see the description of the individual functions for further
details and examples.
REFERENCES:
.. [Rasch03] J. Rasch and A. C. H. Yu, 'Efficient Storage Scheme for
Pre-calculated Wigner 3j, 6j and Gaunt Coefficients', SIAM
J. Sci. Comput. Volume 25, Issue 4, pp. 1416-1428 (2003)
This code was taken from Sage with the permission of all authors:
http://groups.google.com/group/sage-devel/browse_thread/thread/33835976efbb3b7f
AUTHORS:
- Jens Rasch (2009-03-24): initial version for Sage
- Jens Rasch (2009-05-31): updated to sage-4.0
Copyright (C) 2008 Jens Rasch <jyr2000@gmail.com>
"""
from sympy import Integer, pi, sqrt
#from sage.rings.complex_number import ComplexNumber
#from sage.rings.finite_rings.integer_mod import Mod
# This list of precomputed factorials is needed to massively
# accelerate future calculations of the various coefficients
_Factlist=[1]
def _calc_factlist(nn):
r"""
Function calculates a list of precomputed factorials in order to
massively accelerate future calculations of the various
coefficients.
INPUT:
- ``nn`` - integer, highest factorial to be computed
OUTPUT:
list of integers -- the list of precomputed factorials
EXAMPLES:
Calculate list of factorials::
sage: from sage.functions.wigner import _calc_factlist
sage: _calc_factlist(10)
[1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800]
"""
if nn >= len(_Factlist):
for ii in range(len(_Factlist), nn + 1):
_Factlist.append(_Factlist[ii - 1] * ii)
return _Factlist[:int(nn) + 1]
def wigner_3j(j_1, j_2, j_3, m_1, m_2, m_3, prec=None):
r"""
Calculate the Wigner 3j symbol `Wigner3j(j_1,j_2,j_3,m_1,m_2,m_3)`.
INPUT:
- ``j_1``, ``j_2``, ``j_3``, ``m_1``, ``m_2``, ``m_3`` - integer or half integer
- ``prec`` - precision, default: ``None``. Providing a precision can
drastically speed up the calculation.
OUTPUT:
Rational number times the square root of a rational number
(if ``prec=None``), or real number if a precision is given.
EXAMPLES::
sage: wigner_3j(2, 6, 4, 0, 0, 0)
sqrt(5/143)
sage: wigner_3j(2, 6, 4, 0, 0, 1)
0
sage: wigner_3j(0.5, 0.5, 1, 0.5, -0.5, 0)
sqrt(1/6)
sage: wigner_3j(40, 100, 60, -10, 60, -50)
95608/18702538494885*sqrt(21082735836735314343364163310/220491455010479533763)
sage: wigner_3j(2500, 2500, 5000, 2488, 2400, -4888, prec=64)
7.60424456883448589e-12
It is an error to have arguments that are not integer or half
integer values::
sage: wigner_3j(2.1, 6, 4, 0, 0, 0)
Traceback (most recent call last):
...
ValueError: j values must be integer or half integer
sage: wigner_3j(2, 6, 4, 1, 0, -1.1)
Traceback (most recent call last):
...
ValueError: m values must be integer or half integer
NOTES:
The Wigner 3j symbol obeys the following symmetry rules:
- invariant under any permutation of the columns (with the
exception of a sign change where `J:=j_1+j_2+j_3`):
.. math::
Wigner3j(j_1,j_2,j_3,m_1,m_2,m_3)
=Wigner3j(j_3,j_1,j_2,m_3,m_1,m_2)
=Wigner3j(j_2,j_3,j_1,m_2,m_3,m_1)
=(-1)^J Wigner3j(j_3,j_2,j_1,m_3,m_2,m_1)
=(-1)^J Wigner3j(j_1,j_3,j_2,m_1,m_3,m_2)
=(-1)^J Wigner3j(j_2,j_1,j_3,m_2,m_1,m_3)
- invariant under space inflection, i.e.
.. math::
Wigner3j(j_1,j_2,j_3,m_1,m_2,m_3)
=(-1)^J Wigner3j(j_1,j_2,j_3,-m_1,-m_2,-m_3)
- symmetric with respect to the 72 additional symmetries based on
the work by [Regge58]_
- zero for `j_1`, `j_2`, `j_3` not fulfilling triangle relation
- zero for `m_1 + m_2 + m_3 \neq 0`
- zero for violating any one of the conditions
`j_1 \ge |m_1|`, `j_2 \ge |m_2|`, `j_3 \ge |m_3|`
ALGORITHM:
This function uses the algorithm of [Edmonds74]_ to calculate the
value of the 3j symbol exactly. Note that the formula contains
alternating sums over large factorials and is therefore unsuitable
for finite precision arithmetic and only useful for a computer
algebra system [Rasch03]_.
REFERENCES:
.. [Regge58] 'Symmetry Properties of Clebsch-Gordan Coefficients',
T. Regge, Nuovo Cimento, Volume 10, pp. 544 (1958)
.. [Edmonds74] 'Angular Momentum in Quantum Mechanics',
A. R. Edmonds, Princeton University Press (1974)
AUTHORS:
- Jens Rasch (2009-03-24): initial version
"""
if int(j_1 * 2) != j_1 * 2 or int(j_2 * 2) != j_2 * 2 or \
int(j_3 * 2) != j_3 * 2:
raise ValueError("j values must be integer or half integer")
if int(m_1 * 2) != m_1 * 2 or int(m_2 * 2) != m_2 * 2 or \
int(m_3 * 2) != m_3 * 2:
raise ValueError("m values must be integer or half integer")
if m_1 + m_2 + m_3 != 0:
return 0
prefid = Integer((-1) ** int(j_1 - j_2 - m_3))
m_3 = -m_3
a1 = j_1 + j_2 - j_3
if a1 < 0:
return 0
a2 = j_1 - j_2 + j_3
if a2 < 0:
return 0
a3 = -j_1 + j_2 + j_3
if a3 < 0:
return 0
if (abs(m_1) > j_1) or (abs(m_2) > j_2) or (abs(m_3) > j_3):
return 0
maxfact = max(j_1 + j_2 + j_3 + 1, j_1 + abs(m_1), j_2 + abs(m_2), \
j_3 + abs(m_3))
_calc_factlist(maxfact)
argsqrt = Integer(_Factlist[int(j_1 + j_2 - j_3)] * \
_Factlist[int(j_1 - j_2 + j_3)] * \
_Factlist[int(-j_1 + j_2 + j_3)] * \
_Factlist[int(j_1 - m_1)] * \
_Factlist[int(j_1 + m_1)] * \
_Factlist[int(j_2 - m_2)] * \
_Factlist[int(j_2 + m_2)] * \
_Factlist[int(j_3 - m_3)] * \
_Factlist[int(j_3 + m_3)]) / \
_Factlist[int(j_1 + j_2 + j_3 + 1)]
ressqrt = sqrt(argsqrt)
if ressqrt.is_complex:
ressqrt = ressqrt.as_real_imag()[0]
imin = max(-j_3 + j_1 + m_2, -j_3 + j_2 - m_1, 0)
imax = min(j_2 + m_2, j_1 - m_1, j_1 + j_2 - j_3)
sumres = 0
for ii in range(imin, imax + 1):
den = _Factlist[ii] * \
_Factlist[int(ii + j_3 - j_1 - m_2)] * \
_Factlist[int(j_2 + m_2 - ii)] * \
_Factlist[int(j_1 - ii - m_1)] * \
_Factlist[int(ii + j_3 - j_2 + m_1)] * \
_Factlist[int(j_1 + j_2 - j_3 - ii)]
sumres = sumres + Integer((-1) ** ii) / den
res = ressqrt * sumres * prefid
return res
def clebsch_gordan(j_1, j_2, j_3, m_1, m_2, m_3, prec=None):
r"""
Calculates the Clebsch-Gordan coefficient
`\langle j_1 m_1 \; j_2 m_2 | j_3 m_3 \rangle`.
The reference for this function is [Edmonds74]_.
INPUT:
- ``j_1``, ``j_2``, ``j_3``, ``m_1``, ``m_2``, ``m_3`` - integer or half integer
- ``prec`` - precision, default: ``None``. Providing a precision can
drastically speed up the calculation.
OUTPUT:
Rational number times the square root of a rational number
(if ``prec=None``), or real number if a precision is given.
EXAMPLES::
>>> from sympy import S
>>> from sympy.physics.wigner import clebsch_gordan
>>> clebsch_gordan(S(3)/2, S(1)/2, 2, S(3)/2, S(1)/2, 2)
1
>>> clebsch_gordan(S(3)/2, S(1)/2, 1, S(3)/2, -S(1)/2, 1)
3**(1/2)/2
>>> clebsch_gordan(S(3)/2, S(1)/2, 1, -S(1)/2, S(1)/2, 0)
-2**(1/2)/2
NOTES:
The Clebsch-Gordan coefficient will be evaluated via its relation
to Wigner 3j symbols:
.. math::
\langle j_1 m_1 \; j_2 m_2 | j_3 m_3 \rangle
=(-1)^{j_1-j_2+m_3} \sqrt{2j_3+1} \;
Wigner3j(j_1,j_2,j_3,m_1,m_2,-m_3)
See also the documentation on Wigner 3j symbols which exhibit much
higher symmetry relations than the Clebsch-Gordan coefficient.
AUTHORS:
- Jens Rasch (2009-03-24): initial version
"""
res = (-1) ** int(j_1 - j_2 + m_3) * sqrt(2 * j_3 + 1) * \
wigner_3j(j_1, j_2, j_3, m_1, m_2, -m_3, prec)
return res
def _big_delta_coeff(aa, bb, cc, prec=None):
r"""
Calculates the Delta coefficient of the 3 angular momenta for
Racah symbols. Also checks that the differences are of integer
value.
INPUT:
- ``aa`` - first angular momentum, integer or half integer
- ``bb`` - second angular momentum, integer or half integer
- ``cc`` - third angular momentum, integer or half integer
- ``prec`` - precision of the ``sqrt()`` calculation
OUTPUT:
double - Value of the Delta coefficient
EXAMPLES::
sage: from sage.functions.wigner import _big_delta_coeff
sage: _big_delta_coeff(1,1,1)
1/2*sqrt(1/6)
"""
if int(aa + bb - cc) != (aa + bb - cc):
raise ValueError("j values must be integer or half integer and fulfill the triangle relation")
if int(aa + cc - bb) != (aa + cc - bb):
raise ValueError("j values must be integer or half integer and fulfill the triangle relation")
if int(bb + cc - aa) != (bb + cc - aa):
raise ValueError("j values must be integer or half integer and fulfill the triangle relation")
if (aa + bb - cc) < 0:
return 0
if (aa + cc - bb) < 0:
return 0
if (bb + cc - aa) < 0:
return 0
maxfact = max(aa + bb - cc, aa + cc - bb, bb + cc - aa, aa + bb + cc + 1)
_calc_factlist(maxfact)
argsqrt = Integer(_Factlist[int(aa + bb - cc)] * \
_Factlist[int(aa + cc - bb)] * \
_Factlist[int(bb + cc - aa)]) / \
Integer(_Factlist[int(aa + bb + cc + 1)])
ressqrt = sqrt(argsqrt)
if prec:
ressqrt = ressqrt.evalf(prec).as_real_imag()[0]
return ressqrt
def racah(aa, bb, cc, dd, ee, ff, prec=None):
r"""
Calculate the Racah symbol `W(a,b,c,d;e,f)`.
INPUT:
- ``a``, ..., ``f`` - integer or half integer
- ``prec`` - precision, default: ``None``. Providing a precision can
drastically speed up the calculation.
OUTPUT:
Rational number times the square root of a rational number
(if ``prec=None``), or real number if a precision is given.
EXAMPLES::
sage: racah(3,3,3,3,3,3)
-1/14
NOTES:
The Racah symbol is related to the Wigner 6j symbol:
.. math::
Wigner6j(j_1,j_2,j_3,j_4,j_5,j_6)
=(-1)^{j_1+j_2+j_4+j_5} W(j_1,j_2,j_5,j_4,j_3,j_6)
Please see the 6j symbol for its much richer symmetries and for
additional properties.
ALGORITHM:
This function uses the algorithm of [Edmonds74]_ to calculate the
value of the 6j symbol exactly. Note that the formula contains
alternating sums over large factorials and is therefore unsuitable
for finite precision arithmetic and only useful for a computer
algebra system [Rasch03]_.
AUTHORS:
- Jens Rasch (2009-03-24): initial version
"""
prefac = _big_delta_coeff(aa, bb, ee, prec) * \
_big_delta_coeff(cc, dd, ee, prec) * \
_big_delta_coeff(aa, cc, ff, prec) * \
_big_delta_coeff(bb, dd, ff, prec)
if prefac == 0:
return 0
imin = max(aa + bb + ee, cc + dd + ee, aa + cc + ff, bb + dd + ff)
imax = min(aa + bb + cc + dd, aa + dd + ee + ff, bb + cc + ee + ff)
maxfact = max(imax + 1, aa + bb + cc + dd, aa + dd + ee + ff, \
bb + cc + ee + ff)
_calc_factlist(maxfact)
sumres = 0
for kk in range(imin, imax + 1):
den = _Factlist[int(kk - aa - bb - ee)] * \
_Factlist[int(kk - cc - dd - ee)] * \
_Factlist[int(kk - aa - cc - ff)] * \
_Factlist[int(kk - bb - dd - ff)] * \
_Factlist[int(aa + bb + cc + dd - kk)] * \
_Factlist[int(aa + dd + ee + ff - kk)] * \
_Factlist[int(bb + cc + ee + ff - kk)]
sumres = sumres + Integer((-1) ** kk * _Factlist[kk + 1]) / den
res = prefac * sumres * (-1) ** int(aa + bb + cc + dd)
return res
def wigner_6j(j_1, j_2, j_3, j_4, j_5, j_6, prec=None):
r"""
Calculate the Wigner 6j symbol `Wigner6j(j_1,j_2,j_3,j_4,j_5,j_6)`.
INPUT:
- ``j_1``, ..., ``j_6`` - integer or half integer
- ``prec`` - precision, default: ``None``. Providing a precision can
drastically speed up the calculation.
OUTPUT:
Rational number times the square root of a rational number
(if ``prec=None``), or real number if a precision is given.
EXAMPLES::
sage: wigner_6j(3,3,3,3,3,3)
-1/14
sage: wigner_6j(5,5,5,5,5,5)
1/52
sage: wigner_6j(6,6,6,6,6,6)
309/10868
sage: wigner_6j(8,8,8,8,8,8)
-12219/965770
sage: wigner_6j(30,30,30,30,30,30)
36082186869033479581/87954851694828981714124
sage: wigner_6j(0.5,0.5,1,0.5,0.5,1)
1/6
sage: wigner_6j(200,200,200,200,200,200, prec=1000)*1.0
0.000155903212413242
It is an error to have arguments that are not integer or half
integer values or do not fulfill the triangle relation::
sage: wigner_6j(2.5,2.5,2.5,2.5,2.5,2.5)
Traceback (most recent call last):
...
ValueError: j values must be integer or half integer and fulfill the triangle relation
sage: wigner_6j(0.5,0.5,1.1,0.5,0.5,1.1)
Traceback (most recent call last):
...
ValueError: j values must be integer or half integer and fulfill the triangle relation
NOTES:
The Wigner 6j symbol is related to the Racah symbol but exhibits
more symmetries as detailed below.
.. math::
Wigner6j(j_1,j_2,j_3,j_4,j_5,j_6)
=(-1)^{j_1+j_2+j_4+j_5} W(j_1,j_2,j_5,j_4,j_3,j_6)
The Wigner 6j symbol obeys the following symmetry rules:
- Wigner 6j symbols are left invariant under any permutation of
the columns:
.. math::
Wigner6j(j_1,j_2,j_3,j_4,j_5,j_6)
=Wigner6j(j_3,j_1,j_2,j_6,j_4,j_5)
=Wigner6j(j_2,j_3,j_1,j_5,j_6,j_4)
=Wigner6j(j_3,j_2,j_1,j_6,j_5,j_4)
=Wigner6j(j_1,j_3,j_2,j_4,j_6,j_5)
=Wigner6j(j_2,j_1,j_3,j_5,j_4,j_6)
- They are invariant under the exchange of the upper and lower
arguments in each of any two columns, i.e.
.. math::
Wigner6j(j_1,j_2,j_3,j_4,j_5,j_6)
=Wigner6j(j_1,j_5,j_6,j_4,j_2,j_3)
=Wigner6j(j_4,j_2,j_6,j_1,j_5,j_3)
=Wigner6j(j_4,j_5,j_3,j_1,j_2,j_6)
- additional 6 symmetries [Regge59]_ giving rise to 144 symmetries
in total
- only non-zero if any triple of `j`'s fulfill a triangle relation
ALGORITHM:
This function uses the algorithm of [Edmonds74]_ to calculate the
value of the 6j symbol exactly. Note that the formula contains
alternating sums over large factorials and is therefore unsuitable
for finite precision arithmetic and only useful for a computer
algebra system [Rasch03]_.
REFERENCES:
.. [Regge59] 'Symmetry Properties of Racah Coefficients',
T. Regge, Nuovo Cimento, Volume 11, pp. 116 (1959)
"""
res = (-1) ** int(j_1 + j_2 + j_4 + j_5) * \
racah(j_1, j_2, j_5, j_4, j_3, j_6, prec)
return res
def wigner_9j(j_1, j_2, j_3, j_4, j_5, j_6, j_7, j_8, j_9, prec=None):
r"""
Calculate the Wigner 9j symbol
`Wigner9j(j_1,j_2,j_3,j_4,j_5,j_6,j_7,j_8,j_9)`.
INPUT:
- ``j_1``, ..., ``j_9`` - integer or half integer
- ``prec`` - precision, default: ``None``. Providing a precision can
drastically speed up the calculation.
OUTPUT:
Rational number times the square root of a rational number
(if ``prec=None``), or real number if a precision is given.
EXAMPLES:
A couple of examples and test cases, note that for speed reasons a
precision is given::
sage: wigner_9j(1,1,1, 1,1,1, 1,1,0 ,prec=64) # ==1/18
0.0555555555555555555
sage: wigner_9j(1,1,1, 1,1,1, 1,1,1)
0
sage: wigner_9j(1,1,1, 1,1,1, 1,1,2 ,prec=64) # ==1/18
0.0555555555555555556
sage: wigner_9j(1,2,1, 2,2,2, 1,2,1 ,prec=64) # ==-1/150
-0.00666666666666666667
sage: wigner_9j(3,3,2, 2,2,2, 3,3,2 ,prec=64) # ==157/14700
0.0106802721088435374
sage: wigner_9j(3,3,2, 3,3,2, 3,3,2 ,prec=64) # ==3221*sqrt(70)/(246960*sqrt(105)) - 365/(3528*sqrt(70)*sqrt(105))
0.00944247746651111739
sage: wigner_9j(3,3,1, 3.5,3.5,2, 3.5,3.5,1 ,prec=64) # ==3221*sqrt(70)/(246960*sqrt(105)) - 365/(3528*sqrt(70)*sqrt(105))
0.0110216678544351364
sage: wigner_9j(100,80,50, 50,100,70, 60,50,100 ,prec=1000)*1.0
1.05597798065761e-7
sage: wigner_9j(30,30,10, 30.5,30.5,20, 30.5,30.5,10 ,prec=1000)*1.0 # ==(80944680186359968990/95103769817469)*sqrt(1/682288158959699477295)
0.0000325841699408828
sage: wigner_9j(64,62.5,114.5, 61.5,61,112.5, 113.5,110.5,60, prec=1000)*1.0
-3.41407910055520e-39
sage: wigner_9j(15,15,15, 15,3,15, 15,18,10, prec=1000)*1.0
-0.0000778324615309539
sage: wigner_9j(1.5,1,1.5, 1,1,1, 1.5,1,1.5)
0
It is an error to have arguments that are not integer or half
integer values or do not fulfill the triangle relation::
sage: wigner_9j(0.5,0.5,0.5, 0.5,0.5,0.5, 0.5,0.5,0.5,prec=64)
Traceback (most recent call last):
...
ValueError: j values must be integer or half integer and fulfill the triangle relation
sage: wigner_9j(1,1,1, 0.5,1,1.5, 0.5,1,2.5,prec=64)
Traceback (most recent call last):
...
ValueError: j values must be integer or half integer and fulfill the triangle relation
ALGORITHM:
This function uses the algorithm of [Edmonds74]_ to calculate the
value of the 3j symbol exactly. Note that the formula contains
alternating sums over large factorials and is therefore unsuitable
for finite precision arithmetic and only useful for a computer
algebra system [Rasch03]_.
"""
imin = 0
imax = min(j_1 + j_9, j_2 + j_6, j_4 + j_8)
sumres = 0
for kk in range(imin, imax + 1):
sumres = sumres + (2 * kk + 1) * \
racah(j_1, j_2, j_9, j_6, j_3, kk, prec) * \
racah(j_4, j_6, j_8, j_2, j_5, kk, prec) * \
racah(j_1, j_4, j_9, j_8, j_7, kk, prec)
return sumres
def gaunt(l_1, l_2, l_3, m_1, m_2, m_3, prec=None):
r"""
Calculate the Gaunt coefficient.
The Gaunt coefficient is defined as the integral over three
spherical harmonics:
.. math::
Y(j_1,j_2,j_3,m_1,m_2,m_3)
=\int Y_{l_1,m_1}(\Omega)
Y_{l_2,m_2}(\Omega) Y_{l_3,m_3}(\Omega) d\Omega
=\sqrt{(2l_1+1)(2l_2+1)(2l_3+1)/(4\pi)}
\; Y(j_1,j_2,j_3,0,0,0) \; Y(j_1,j_2,j_3,m_1,m_2,m_3)
INPUT:
- ``l_1``, ``l_2``, ``l_3``, ``m_1``, ``m_2``, ``m_3`` - integer
- ``prec`` - precision, default: ``None``. Providing a precision can
drastically speed up the calculation.
OUTPUT:
Rational number times the square root of a rational number
(if ``prec=None``), or real number if a precision is given.
EXAMPLES::
sage: gaunt(1,0,1,1,0,-1)
-1/2/sqrt(pi)
sage: gaunt(1,0,1,1,0,0)
0
sage: gaunt(29,29,34,10,-5,-5)
1821867940156/215552371055153321*sqrt(22134)/sqrt(pi)
sage: gaunt(20,20,40,1,-1,0)
28384503878959800/74029560764440771/sqrt(pi)
sage: gaunt(12,15,5,2,3,-5)
91/124062*sqrt(36890)/sqrt(pi)
sage: gaunt(10,10,12,9,3,-12)
-98/62031*sqrt(6279)/sqrt(pi)
sage: gaunt(1000,1000,1200,9,3,-12).n(64)
0.00689500421922113448
It is an error to use non-integer values for `l` and `m`::
sage: gaunt(1.2,0,1.2,0,0,0)
Traceback (most recent call last):
...
ValueError: l values must be integer
sage: gaunt(1,0,1,1.1,0,-1.1)
Traceback (most recent call last):
...
ValueError: m values must be integer
NOTES:
The Gaunt coefficient obeys the following symmetry rules:
- invariant under any permutation of the columns
.. math::
Y(j_1,j_2,j_3,m_1,m_2,m_3)
=Y(j_3,j_1,j_2,m_3,m_1,m_2)
=Y(j_2,j_3,j_1,m_2,m_3,m_1)
=Y(j_3,j_2,j_1,m_3,m_2,m_1)
=Y(j_1,j_3,j_2,m_1,m_3,m_2)
=Y(j_2,j_1,j_3,m_2,m_1,m_3)
- invariant under space inflection, i.e.
.. math::
Y(j_1,j_2,j_3,m_1,m_2,m_3)
=Y(j_1,j_2,j_3,-m_1,-m_2,-m_3)
- symmetric with respect to the 72 Regge symmetries as inherited
for the `3j` symbols [Regge58]_
- zero for `l_1`, `l_2`, `l_3` not fulfilling triangle relation
- zero for violating any one of the conditions: `l_1 \ge |m_1|`,
`l_2 \ge |m_2|`, `l_3 \ge |m_3|`
- non-zero only for an even sum of the `l_i`, i.e.
`J=l_1+l_2+l_3=2n` for `n` in `\Bold{N}`
ALGORITHM:
This function uses the algorithm of [Liberatodebrito82]_ to
calculate the value of the Gaunt coefficient exactly. Note that
the formula contains alternating sums over large factorials and is
therefore unsuitable for finite precision arithmetic and only
useful for a computer algebra system [Rasch03]_.
REFERENCES:
.. [Liberatodebrito82] 'FORTRAN program for the integral of three
spherical harmonics', A. Liberato de Brito,
Comput. Phys. Commun., Volume 25, pp. 81-85 (1982)
AUTHORS:
- Jens Rasch (2009-03-24): initial version for Sage
"""
if int(l_1) != l_1 or int(l_2) != l_2 or int(l_3) != l_3:
raise ValueError("l values must be integer")
if int(m_1) != m_1 or int(m_2) != m_2 or int(m_3) != m_3:
raise ValueError("m values must be integer")
bigL = (l_1 + l_2 + l_3) // 2
a1 = l_1 + l_2 - l_3
if a1 < 0:
return 0
a2 = l_1 - l_2 + l_3
if a2 < 0:
return 0
a3 = -l_1 + l_2 + l_3
if a3 < 0:
return 0
if (2 * bigL) % 2 != 0:
return 0
if (m_1 + m_2 + m_3) != 0:
return 0
if (abs(m_1) > l_1) or (abs(m_2) > l_2) or (abs(m_3) > l_3):
return 0
imin = max(-l_3 + l_1 + m_2, -l_3 + l_2 - m_1, 0)
imax = min(l_2 + m_2, l_1 - m_1, l_1 + l_2 - l_3)
maxfact = max(l_1 + l_2 + l_3 + 1, imax + 1)
_calc_factlist(maxfact)
argsqrt = (2 * l_1 + 1) * (2 * l_2 + 1) * (2 * l_3 + 1) * \
_Factlist[l_1 - m_1] * _Factlist[l_1 + m_1] * _Factlist[l_2 - m_2] * \
_Factlist[l_2 + m_2] * _Factlist[l_3 - m_3] * _Factlist[l_3 + m_3] / \
(4*pi)
ressqrt = sqrt(argsqrt)
prefac = Integer(_Factlist[bigL] * _Factlist[l_2 - l_1 + l_3] * \
_Factlist[l_1 - l_2 + l_3] * _Factlist[l_1 + l_2 - l_3])/ \
_Factlist[2 * bigL+1]/ \
(_Factlist[bigL - l_1] * _Factlist[bigL - l_2] * _Factlist[bigL - l_3])
sumres = 0
for ii in range(imin, imax + 1):
den = _Factlist[ii] * _Factlist[ii + l_3 - l_1 - m_2] * \
_Factlist[l_2 + m_2 - ii] * _Factlist[l_1 - ii - m_1] * \
_Factlist[ii + l_3 - l_2 + m_1] * _Factlist[l_1 + l_2 - l_3 - ii]
sumres = sumres + Integer((-1) ** ii) / den
res = ressqrt * prefac * sumres * (-1) ** (bigL + l_3 + m_1 - m_2)
if prec != None:
res = res.n(prec)
return res
|