/usr/share/pyshared/sympy/plotting/util.py is in python-sympy 0.7.1.rc1-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 | from pyglet.gl import *
from sympy.core import S
def get_model_matrix(array_type=c_float, glGetMethod=glGetFloatv):
"""
Returns the current modelview matrix.
"""
m = (array_type*16)()
glGetMethod(GL_MODELVIEW_MATRIX, m)
return m
def get_projection_matrix(array_type=c_float, glGetMethod=glGetFloatv):
"""
Returns the current modelview matrix.
"""
m = (array_type*16)()
glGetMethod(GL_PROJECTION_MATRIX, m)
return m
def get_viewport():
"""
Returns the current viewport.
"""
m = (c_int*4)()
glGetIntegerv(GL_VIEWPORT, m)
return m
def get_direction_vectors():
m = get_model_matrix()
return ((m[0], m[4], m[8]),
(m[1], m[5], m[9]),
(m[2], m[6], m[10]))
def get_view_direction_vectors():
m = get_model_matrix()
return ((m[0], m[1], m[2]),
(m[4], m[5], m[6]),
(m[8], m[9], m[10]))
def get_basis_vectors():
return ((1,0,0), (0,1,0), (0,0,1))
def screen_to_model(x,y,z):
m = get_model_matrix(c_double, glGetDoublev)
p = get_projection_matrix(c_double, glGetDoublev)
w = get_viewport()
mx,my,mz = c_double(),c_double(),c_double()
gluUnProject(x,y,z,m,p,w,mx,my,mz)
return float(mx.value),float(my.value),float(mz.value)
def model_to_screen(x,y,z):
m = get_model_matrix(c_double, glGetDoublev)
p = get_projection_matrix(c_double, glGetDoublev)
w = get_viewport()
mx,my,mz = c_double(),c_double(),c_double()
gluProject(x,y,z,m,p,w,mx,my,mz)
return float(mx.value),float(my.value),float(mz.value)
def vec_subs(a,b):
return tuple(a[i]-b[i] for i in xrange(len(a)))
def billboard_matrix():
"""
Removes rotational components of
current matrix so that primitives
are always drawn facing the viewer.
|1|0|0|x|
|0|1|0|x|
|0|0|1|x| (x means left unchanged)
|x|x|x|x|
"""
m = get_model_matrix()
m[0] =1;m[1] =0;m[2] =0
m[4] =0;m[5] =1;m[6] =0
m[8] =0;m[9] =0;m[10]=1
glLoadMatrixf(m)
def create_bounds():
return [ [S.Infinity,-S.Infinity,0],[S.Infinity,-S.Infinity,0],[S.Infinity,-S.Infinity,0] ]
def update_bounds(b, v):
if v is None: return
for axis in xrange(3):
b[axis][0] = min([b[axis][0], v[axis]])
b[axis][1] = max([b[axis][1], v[axis]])
def interpolate(a_min, a_max, a_ratio):
return a_min + a_ratio * (a_max - a_min)
def rinterpolate(a_min, a_max, a_value):
a_range = a_max-a_min
if a_range == 0:
a_range = 1.0
return (a_value - a_min) / float(a_range)
def interpolate_color(color1, color2, ratio):
return tuple(interpolate(color1[i], color2[i], ratio) for i in xrange(3))
def scale_value(v, v_min, v_len):
return (v-v_min)/v_len
def scale_value_list(flist):
v_min, v_max = min(flist), max(flist)
v_len = v_max-v_min
return list(scale_value(f,v_min,v_len) for f in flist)
def strided_range(r_min, r_max, stride, max_steps=50):
o_min, o_max = r_min, r_max
if abs(r_min-r_max) < 0.001: return []
try: xrange(int(r_min-r_max))
except: return []
assert r_min < r_max
r_min_s = (r_min % stride)
r_max_s = stride - (r_max % stride)
if abs(r_max_s-stride) < 0.001:
r_max_s = 0.0
r_min -= r_min_s
r_max += r_max_s
r_steps = int( (r_max-r_min) / stride )
if max_steps and r_steps > max_steps:
return strided_range(o_min, o_max, stride*2)
return [r_min] + list( r_min+e*stride for e in xrange(1, r_steps+1) ) + [r_max]
def parse_option_string(s):
if not isinstance(s, str):
return None
options = {}
for token in s.split(';'):
pieces = token.split('=')
if len(pieces) == 1:
option, value = pieces[0], ""
elif len(pieces) == 2:
option, value = pieces
else:
raise ValueError("Plot option string '%s' is malformed." % (s))
options[option.strip()] = value.strip()
return options
def dot_product(v1, v2):
return sum(v1[i]*v2[i] for i in xrange(3))
def vec_sub(v1, v2):
return tuple(v1[i]-v2[i] for i in xrange(3))
def vec_mag(v):
return sum(v[i]**2 for i in xrange(3))**(0.5)
|