/usr/share/pyshared/sympy/polys/densepolys.py is in python-sympy 0.7.1.rc1-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 | """Object-oriented interface to dense polynomial representation. """
from sympy.polys.polyclasses import GenericPoly
class DensePoly(GenericPoly):
"""Dense polynomial over an arbitrary domain. """
__slots__ = ['rep', 'lev', 'dom', '_hash']
def __init__(self, rep, dom, lev=None):
if lev is None:
rep, lev = dmp_validate(rep)
self.rep = rep
self.lev = lev
self.dom = dom
self._hash = None
def __repr__(self):
return "%s(%s, %s, %s)" % (self.__class__.__name__, self.rep, self.dom)
def __hash__(self):
_hash = self._hash
if _hash is None:
self._hash = _hash = hash((self.__class__.__name__, repr(self.rep), self.dom))
return _hash
def __getstate__(self):
return (self.rep, self.lev, self.dom, self._hash)
def __getnewargs__(self):
return (self.rep, self.lev, self.dom, self._hash)
def unify(f, g):
"""Unify representations of two multivariate polynomials. """
if not hasattr(g, '__iter__'):
if f.lev == g.lev and f.dom == g.dom:
return f.lev, f.dom, f.per, f.rep, g.rep
else:
raise UnificationFailed("can't unify %s with %s" % (f, g))
else:
lev, dom, reps = f.lev, f.dom, []
for gg in g:
if gg.lev == lev and gg.dom == dom:
reps.append(gg.rep)
else:
raise UnificationFailed("can't unify %s with %s" % (f, g))
return lev, dom, f.per, f.rep, reps
def per(f, rep, dom=None, lower=False):
"""Create a dense polynomial out of the given representation. """
lev = f.lev
if lower:
if not lev:
return rep
else:
lev -= 1
if dom is None:
dom = f.dom
return DensePoly(rep, dom, lev)
@classmethod
def zero(cls, lev, ord, dom):
"""Construct a zero-polynomial with appropriate properties. """
return cls(dmp_zero(lev), dom, lev)
@classmethod
def one(cls, lev, ord, dom):
"""Construct a one-polynomial with appropriate properties. """
return cls(dmp_one(lev, dom), dom, lev)
@classmethod
def from_ground(cls, rep, lev, ord, dom):
"""Create dense representation from an element of the ground domain. """
return cls(dmp_from_ground(rep, lev, dom), dom, lev)
@classmethod
def from_dict(cls, rep, lev, ord, dom):
"""Create dense representation from a ``dict`` with native coefficients. """
return cls(dmp_from_dict(rep, lev, dom), dom, lev)
@classmethod
def from_sympy_dict(cls, rep, lev, ord, dom):
"""Create dense representation from a ``dict`` with SymPy's coefficients. """
return cls(dmp_from_sympy_dict(rep, lev, dom), dom, lev)
@classmethod
def from_list(cls, rep, lev, ord, dom):
"""Create dense representation from a ``list`` with native coefficients. """
return cls(dmp_from_dict(rep, lev, dom), dom, lev)
@classmethod
def from_sympy_list(cls, rep, lev, ord, dom):
"""Create dense representation from a ``list`` with SymPy's coefficients. """
return cls(dmp_from_sympy_dict(rep, lev, dom), dom, lev)
def to_ground(f):
"""Convert dense representation to an element of the ground domain. """
return dmp_to_ground(f.rep, f.lev, f.dom)
def to_dict(f):
"""Convert dense representation to a ``dict`` with native coefficients. """
return dmp_to_dict(f.rep, f.lev, f.dom)
def to_sympy_dict(f):
"""Convert dense representation to a ``dict`` with SymPy's coefficients. """
return dmp_to_sympy_dict(f.rep, f.lev, f.dom)
def to_list(f):
"""Convert dense representation to a ``list`` with native coefficients. """
return dmp_to_dict(f.rep, f.lev, f.dom)
def to_sympy_list(f):
"""Convert dense representation to a ``list`` with SymPy's coefficients. """
return dmp_to_sympy_dict(f.rep, f.lev, f.dom)
def set_domain(f, dom):
"""Set the ground domain in `f` to ``dom``. """
if f.dom == dom:
return f
else:
return f.per(dmp_set_domain(f.rep, f.lev, f.dom, dom), dom=dom)
def ground_to_ring(f):
"""Make the ground domain a ring. """
return f.set_domain(f.dom.get_ring())
def ground_to_field(f):
"""Make the ground domain a field. """
return f.set_domain(f.dom.get_field())
def ground_to_exact(f):
"""Make the ground domain exact. """
return f.set_domain(f.dom.get_exact())
def LC(f):
"""Return the leading coefficient of `f`. """
return dmp_ground_LC(f.rep, f.lev, f.dom)
def LM(f):
"""Return the leading monomial of `f`. """
return dmp_ground_LM(f.rep, f.lev, f.dom)
def LT(f):
"""Return the leading term of `f`. """
return dmp_ground_LT(f.rep, f.lev, f.dom)
def TC(f):
"""Return the trailing coefficient of `f`. """
return dmp_ground_TC(f.rep, f.lev, f.dom)
def TM(f):
"""Return the trailing monomial of `f`. """
return dmp_ground_TM(f.rep, f.lev, f.dom)
def TT(f):
"""Return the trailing coefficient of `f`. """
return dmp_ground_TT(f.rep, f.lev, f.dom)
def EC(f):
"""Return the last non-zero coefficient of `f`. """
return dmp_ground_EC(f.rep, f.lev, f.dom)
def EM(f):
"""Return the last non-zero monomial of `f`. """
return dmp_ground_EM(f.rep, f.lev, f.dom)
def ET(f):
"""Return the last non-zero coefficient of `f`. """
return dmp_ground_ET(f.rep, f.lev, f.dom)
def nth(f, *N):
"""Return `n`-th coefficient of `f`. """
return dmp_ground_nth(f.rep, N, f.lev, f.dom)
def coeffs(f):
"""Return all non-zero coefficients of `f`. """
return dmp_coeffs(f.rep, f.lev, f.dom)
def monoms(f):
"""Return all non-zero monomials of `f`. """
return dmp_monoms(f.rep, f.lev, f.dom)
def terms(f):
"""Return all non-zero terms from `f`. """
return dmp_terms(f.rep, f.lev, f.dom)
def all_coeffs(f):
"""Return all coefficients of `f`. """
return dmp_all_coeffs(f.rep, f.lev, f.dom)
def all_monoms(f):
"""Return all monomials of `f`. """
return dmp_all_monoms(f.rep, f.lev, f.dom)
def all_terms(f):
"""Return all terms of `f`. """
return dmp_all_terms(f.rep, f.lev, f.dom)
def degree(f, j=0):
"""Return the degree of `f` in `x_j`. """
return dmp_degree_in(f.rep, j, f.lev)
def degree_list(f):
"""Return the list of degrees of `f`. """
return dmp_degree_list(f.rep, f.lev)
def total_degree(f):
"""Return the total degree of `f`. """
return dmp_total_degree(f.rep, f.lev)
def deflate(f):
"""Reduce degree of `f` by mapping `x_i^m` to `y_i`. """
J, F = dmp_deflate(f.rep, f.lev, f.dom)
return J, f.per(F)
def inflate(f, M):
"""Revert :func:`deflate` by mapping `y_i` to `x_i^m`. """
return f.per(dmp_inflate(f.rep, M, f.lev, f.dom))
def terms_gcd(f):
"""Remove GCD of terms from the polynomial `f`. """
J, F = dmp_terms_gcd(f.rep, f.lev, f.dom)
return J, f.per(F)
def add_ground(f, c):
"""Add an element of the ground domain to `f`. """
return f.per(dmp_add_ground(f.rep, f.dom.convert(c), f.lev, f.dom))
def sub_ground(f, c):
"""Subtract an element of the ground domain from `f`. """
return f.per(dmp_sub_ground(f.rep, f.dom.convert(c), f.lev, f.dom))
def mul_ground(f, c):
"""Multiply `f` by an element of the ground domain. """
return f.per(dmp_mul_ground(f.rep, f.dom.convert(c), f.lev, f.dom))
def quo_ground(f, c):
"""Quotient of `f` by an element of the ground domain. """
return f.per(dmp_quo_ground(f.rep, f.dom.convert(c), f.lev, f.dom))
def exquo_ground(f, c):
"""Exact quotient of `f` by an element of the ground domain. """
return f.per(dmp_exquo_ground(f.rep, f.dom.convert(c), f.lev, f.dom))
def abs(f):
"""Make all coefficients in `f` positive. """
return f.per(dmp_abs(f.rep, f.lev, f.dom))
def neg(f):
"""Negate all coefficients in `f`. """
return f.per(dmp_neg(f.rep, f.lev, f.dom))
def add(f, g):
"""Add two multivariate polynomials `f` and `g`. """
lev, dom, per, F, G = f.unify(g)
return per(dmp_add(F, G, lev, dom))
def sub(f, g):
"""Subtract two multivariate polynomials `f` and `g`. """
lev, dom, per, F, G = f.unify(g)
return per(dmp_sub(F, G, lev, dom))
def mul(f, g):
"""Multiply two multivariate polynomials `f` and `g`. """
lev, dom, per, F, G = f.unify(g)
return per(dmp_mul(F, G, lev, dom))
def sqr(f):
"""Square a multivariate polynomial `f`. """
return f.per(dmp_sqr(f.rep, f.lev, f.dom))
def pow(f, n):
"""Raise `f` to a non-negative power `n`. """
return f.per(dmp_pow(f.rep, n, f.lev, f.dom))
def pdiv(f, g):
"""Polynomial pseudo-division of `f` and `g`. """
lev, dom, per, F, G = f.unify(g)
q, r = dmp_pdiv(F, G, lev, dom)
return per(q), per(r)
def prem(f, g):
"""Polynomial pseudo-remainder of `f` and `g`. """
lev, dom, per, F, G = f.unify(g)
return per(dmp_prem(F, G, lev, dom))
def pquo(f, g):
"""Polynomial pseudo-quotient of `f` and `g`. """
lev, dom, per, F, G = f.unify(g)
return per(dmp_pquo(F, G, lev, dom))
def pexquo(f, g):
"""Polynomial exact pseudo-quotient of `f` and `g`. """
lev, dom, per, F, G = f.unify(g)
return per(dmp_pexquo(F, G, lev, dom))
def div(f, g):
"""Polynomial division with remainder of `f` and `g`. """
lev, dom, per, F, G = f.unify(g)
q, r = dmp_div(F, G, lev, dom)
return per(q), per(r)
def rem(f, g):
"""Compute polynomial remainder of `f` and `g`. """
lev, dom, per, F, G = f.unify(g)
return per(dmp_rem(F, G, lev, dom))
def quo(f, g):
"""Compute polynomial quotient of `f` and `g`. """
lev, dom, per, F, G = f.unify(g)
return per(dmp_quo(F, G, lev, dom))
def exquo(f, g):
"""Compute polynomial exact quotient of `f` and `g`. """
lev, dom, per, F, G = f.unify(g)
return per(dmp_exquo(F, G, lev, dom))
def reduced(f, G):
"""Reduce `f` modulo a set of polynomials `G`. """
lev, dom, per, f, G = f.unify(G)
return per(dmp_reduced(f, G, lev, dom))
def max_norm(f):
"""Returns maximum norm of `f`. """
return dmp_max_norm(f.rep, f.lev, f.dom)
def l1_norm(f):
"""Returns l1 norm of `f`. """
return dmp_l1_norm(f.rep, f.lev, f.dom)
def clear_denoms(f, convert=False):
"""Clear denominators in `f`, but keep the ground domain. """
coeff, F = dmp_clear_denoms(f.rep, f.lev, f.dom, convert=convert)
return coeff, f.per(F)
def lift(f):
"""Convert algebraic coefficients to rationals. """
return f.per(dmp_lift(f.rep, f.lev, f.dom), dom=f.dom.dom)
def half_gcdex(f, g):
"""Half extended Euclidean algorithm. """
lev, dom, per, F, G = f.unify(g)
s, h = dmp_half_gcdex(F, G, dom)
return per(s), per(h)
def gcdex(f, g):
"""Extended Euclidean algorithm. """
lev, dom, per, F, G = f.unify(g)
s, t, h = dmp_gcdex(F, G, lev, dom)
return per(s), per(t), per(h)
def invert(f, g):
"""Invert `f` modulo `g`, if possible. """
lev, dom, per, F, G = f.unify(g)
return per(dmp_invert(F, G, lev, dom))
def subresultants(f, g):
"""Compute subresultant PRS sequence of `f` and `g`. """
lev, dom, per, F, G = f.unify(g)
R = dmp_subresultants(F, G, lev, dom)
return map(per, R)
def resultant(f, g):
"""Compute resultant of `f` and `g`. """
lev, dom, per, F, G = f.unify(g)
return per(dmp_resultant(F, G, lev, dom), lower=True)
def discriminant(f):
"""Compute discriminant of `f`. """
return f.per(dmp_discriminant(f.rep, f.lev, f.dom), lower=True)
def cofactors(f, g):
"""Compute GCD of `f` and `g` and their cofactors. """
lev, dom, per, F, G = f.unify(g)
h, cff, cfg = dmp_cofactors(F, G, lev, dom)
return per(h), per(cff), per(cfg)
def gcd(f, g):
"""Compute polynomial GCD of `f` and `g`. """
lev, dom, per, F, G = f.unify(g)
return per(dmp_gcd(F, G, lev, dom))
def lcm(f, g):
"""Compute polynomial LCM of `f` and `g`. """
lev, dom, per, F, G = f.unify(g)
return per(dmp_lcm(F, G, lev, dom))
def trunc(f, p):
"""Reduce `f` modulo an element of the ground domain. """
return f.per(dmp_ground_trunc(f.rep, f.dom.convert(p), f.lev, f.dom))
def monic(f):
"""Divide all coefficients by the leading coefficient of `f`. """
return f.per(dmp_ground_monic(f.rep, f.lev, f.dom))
def content(f):
"""Compute GCD of all coefficients of `f`. """
return dmp_ground_content(f.rep, f.lev, f.dom)
def primitive(f):
"""Compute content and the primitive form of `f`. """
cont, F = dmp_ground_primitive(f.rep, f.lev, f.dom)
return cont, f.per(F)
def integrate(f, m=1, j=0):
"""Compute `m`-th order indefinite integral of `f` in `x_j`. """
return f.per(dmp_integrate_in(f.rep, m, j, f.lev, f.dom))
def diff(f, m=1, j=0):
"""Compute `m`-th order derivative of `f` in `x_j`. """
return f.per(dmp_diff_in(f.rep, m, j, f.lev, f.dom))
def eval(f, a, j=0):
"""Evaluate `f` at the given point `a` in `x_j`. """
return f.per(dmp_eval_in(f.rep, f.dom.convert(a), j, f.lev, f.dom), lower=True)
def mirror(f, j=0):
"""Evaluate efficiently composition `f(-x_j)`. """
return f.per(dmp_mirror_in(f.rep, j, f.lev, f.dom))
def scale(f, a, j=0):
"""Evaluate efficiently composition `f(a x_j)`. """
return f.per(dmp_scale_in(f.rep, f.dom.convert(a), j, f.lev, f.dom))
def taylor(f, a, j=0):
"""Evaluate efficiently Taylor shift `f(x_j + a)`. """
return f.per(dmp_taylor_in(f.rep, f.dom.convert(a), j, f.lev, f.dom))
def transform(f, p, q, j=0):
"""Evaluate functional transformation `q^n \cdot f(p/q)`. """
lev, dom, per, F, (P, Q) = f.unify((p, q))
return per(dmp_transform_in(F, P, Q, j, lev, dom))
def compose(f, g):
"""Compute functional composition of `f` and `g`. """
lev, dom, per, F, G = f.unify(g)
return per(dmp_compose(F, G, lev, dom))
def decompose(f):
"""Computes functional decomposition of `f`. """
return map(f.per, dmp_decompose(f.rep, f.lev, f.dom))
def sturm(f):
"""Computes the Sturm sequence of `f`. """
return map(f.per, dmp_sturm(f.rep, f.lev, f.dom))
def sqf_norm(f):
"""Computes square-free norm of `f`. """
s, g, r = dmp_sqf_norm(f.rep, f.lev, f.dom)
return s, f.per(g), f.per(r, dom=f.dom.dom)
def sqf_part(f):
"""Computes square-free part of `f`. """
return f.per(dmp_sqf_part(f.rep, f.lev, f.dom))
def sqf_list(f, all=False):
"""Returns a list of square-free factors of `f`. """
coeff, factors = dmp_sqf_list(f.rep, f.lev, f.dom, all=all)
return coeff, [ (f.per(g), k) for g, k in factors ]
def sqf_list_include(f, all=False):
"""Returns a list of square-free factors of `f`. """
factors = dmp_sqf_list_include(f.rep, f.lev, f.dom, all=all)
return [ (f.per(g), k) for g, k in factors ]
def factor_list(f):
"""Returns a list of irreducible factors of `f`. """
coeff, factors = dmp_factor_list(f.rep, f.lev, f.dom)
return coeff, [ (f.per(g), k) for g, k in factors ]
def factor_list_include(f):
"""Returns a list of irreducible factors of `f`. """
factors = dmp_factor_list_include(f.rep, f.lev, f.dom)
return [ (f.per(g), k) for g, k in factors ]
def real_intervals(f, eps=None, inf=None, sup=None, fast=False, sqf=False):
"""Compute isolating intervals for real roots of `f`. """
return dmp_real_intervals(f.rep, f.lev, f.dom, eps=eps, inf=inf, sup=sup, fast=fast)
def complex_intervals(f, eps=None, inf=None, sup=None, fast=False, sqf=False):
"""Compute isolating rectangles for complex roots of `f`. """
return dmp_complex_intervals(f.rep, f.lev, f.dom, eps=eps, inf=inf, sup=sup, fast=fast)
def refine_real_root(f, s, t, eps=None, steps=None, fast=False):
"""Refine a real root isolating interval to the given precision. """
return dmp_refine_real_root(f.rep, s, t, f.lev, f.dom, eps=eps, steps=steps, fast=fast)
def refine_complex_root(f, s, t, eps=None, steps=None, fast=False):
"""Refine a complex root isolating rectangle to the given precision. """
return dmp_refine_complex_root(f.rep, s, t, f.lev, f.dom, eps=eps, steps=steps, fast=fast)
def count_real_roots(f, inf=None, sup=None):
"""Return the number of real roots of `f` in the ``[inf, sup]`` interval. """
return dmp_count_real_roots(f.rep, f.lev, f.dom, inf=inf, sup=sup)
def count_complex_roots(f, inf=None, sup=None):
"""Return the number of complex roots of `f` in the ``[inf, sup]`` rectangle. """
return dmp_count_complex_roots(f.rep, f.lev, f.dom, inf=inf, sup=sup)
@property
def is_zero(f):
"""Returns ``True`` if `f` is equivalent to zero. """
return dmp_zero_p(f.rep, f.lev)
@property
def is_one(f):
"""Return ``True`` if `f` is equivalent to one. """
return dmp_one_p(f.rep, f.lev, f.dom)
@property
def is_ground(f):
"""Return ``True`` if `f` is an element of the ground domain. """
return dmp_ground_p(f.rep, f.lev)
@property
def is_sqf(f):
"""Return ``True`` if `f` is a square-free polynomial. """
return dmp_sqf_p(f.rep, f.lev, f.dom)
@property
def is_monic(f):
"""Return ``True`` if the leading coefficient of `f` is one. """
return dmp_monic_p(f.rep, f.lev, f.dom)
@property
def is_primitive(f):
"""Return ``True`` if GCD of coefficients of `f` is one. """
return dmp_primitive_p(f.rep, f.lev, f.dom)
@property
def is_linear(f):
"""Return ``True`` if `f` is linear in all its variables. """
return dmp_linear_p(f.rep, f.lev, f.dom)
@property
def is_homogeneous(f):
"""Return ``True`` if `f` has zero trailing coefficient. """
return dmp_homogeneous_p(f.rep, f.lev, f.dom)
def __abs__(f):
return f.abs()
def __neg__(f):
return f.neg()
def __add__(f, g):
if not isinstance(g, DensePoly):
return f.add_ground(g)
else:
return f.add(g)
def __radd__(f, g):
return f.__add__(g)
def __sub__(f, g):
if not isinstance(g, DensePoly):
return f.sub_ground(g)
else:
return f.sub(g)
def __rsub__(f, g):
return (-f).__add__(g)
def __mul__(f, g):
if not isinstance(g, DensePoly):
return f.mul_ground(g)
else:
return f.mul(g)
def __rmul__(f, g):
return f.__mul__(g)
def __pow__(f, n):
return f.pow(n)
def __divmod__(f, g):
return f.div(g)
def __mod__(f, g):
return f.rem(g)
def __floordiv__(f, g):
if not isinstance(g, DensePoly):
return f.exquo_ground(g)
else:
return f.exquo(g)
def __eq__(f, g):
return isinstance(g, DensePoly) and f.rep == g.rep
def __ne__(f, g):
return not f.__eq__(g)
def __nonzero__(f):
return not f.is_zero
|