This file is indexed.

/usr/share/pyshared/sympy/polys/densepolys.py is in python-sympy 0.7.1.rc1-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
"""Object-oriented interface to dense polynomial representation. """

from sympy.polys.polyclasses import GenericPoly

class DensePoly(GenericPoly):
    """Dense polynomial over an arbitrary domain. """

    __slots__ = ['rep', 'lev', 'dom', '_hash']

    def __init__(self, rep, dom, lev=None):
        if lev is None:
            rep, lev = dmp_validate(rep)

        self.rep = rep
        self.lev = lev
        self.dom = dom

        self._hash = None

    def __repr__(self):
        return "%s(%s, %s, %s)" % (self.__class__.__name__, self.rep, self.dom)

    def __hash__(self):
        _hash = self._hash

        if _hash is None:
            self._hash = _hash = hash((self.__class__.__name__, repr(self.rep), self.dom))

        return _hash

    def __getstate__(self):
        return (self.rep, self.lev, self.dom, self._hash)

    def __getnewargs__(self):
        return (self.rep, self.lev, self.dom, self._hash)

    def unify(f, g):
        """Unify representations of two multivariate polynomials. """
        if not hasattr(g, '__iter__'):
            if f.lev == g.lev and f.dom == g.dom:
                return f.lev, f.dom, f.per, f.rep, g.rep
            else:
                raise UnificationFailed("can't unify %s with %s" % (f, g))
        else:
            lev, dom, reps = f.lev, f.dom, []

            for gg in g:
                if gg.lev == lev and gg.dom == dom:
                    reps.append(gg.rep)
                else:
                    raise UnificationFailed("can't unify %s with %s" % (f, g))

            return lev, dom, f.per, f.rep, reps

    def per(f, rep, dom=None, lower=False):
        """Create a dense polynomial out of the given representation. """
        lev = f.lev

        if lower:
            if not lev:
                return rep
            else:
                lev -= 1

        if dom is None:
            dom = f.dom

        return DensePoly(rep, dom, lev)

    @classmethod
    def zero(cls, lev, ord, dom):
        """Construct a zero-polynomial with appropriate properties. """
        return cls(dmp_zero(lev), dom, lev)

    @classmethod
    def one(cls, lev, ord, dom):
        """Construct a one-polynomial with appropriate properties. """
        return cls(dmp_one(lev, dom), dom, lev)

    @classmethod
    def from_ground(cls, rep, lev, ord, dom):
        """Create dense representation from an element of the ground domain. """
        return cls(dmp_from_ground(rep, lev, dom), dom, lev)

    @classmethod
    def from_dict(cls, rep, lev, ord, dom):
        """Create dense representation from a ``dict`` with native coefficients. """
        return cls(dmp_from_dict(rep, lev, dom), dom, lev)

    @classmethod
    def from_sympy_dict(cls, rep, lev, ord, dom):
        """Create dense representation from a ``dict`` with SymPy's coefficients. """
        return cls(dmp_from_sympy_dict(rep, lev, dom), dom, lev)

    @classmethod
    def from_list(cls, rep, lev, ord, dom):
        """Create dense representation from a ``list`` with native coefficients. """
        return cls(dmp_from_dict(rep, lev, dom), dom, lev)

    @classmethod
    def from_sympy_list(cls, rep, lev, ord, dom):
        """Create dense representation from a ``list`` with SymPy's coefficients. """
        return cls(dmp_from_sympy_dict(rep, lev, dom), dom, lev)

    def to_ground(f):
        """Convert dense representation to an element of the ground domain. """
        return dmp_to_ground(f.rep, f.lev, f.dom)

    def to_dict(f):
        """Convert dense representation to a ``dict`` with native coefficients. """
        return dmp_to_dict(f.rep, f.lev, f.dom)

    def to_sympy_dict(f):
        """Convert dense representation to a ``dict`` with SymPy's coefficients. """
        return dmp_to_sympy_dict(f.rep, f.lev, f.dom)

    def to_list(f):
        """Convert dense representation to a ``list`` with native coefficients. """
        return dmp_to_dict(f.rep, f.lev, f.dom)

    def to_sympy_list(f):
        """Convert dense representation to a ``list`` with SymPy's coefficients. """
        return dmp_to_sympy_dict(f.rep, f.lev, f.dom)

    def set_domain(f, dom):
        """Set the ground domain in `f` to ``dom``. """
        if f.dom == dom:
            return f
        else:
            return f.per(dmp_set_domain(f.rep, f.lev, f.dom, dom), dom=dom)

    def ground_to_ring(f):
        """Make the ground domain a ring. """
        return f.set_domain(f.dom.get_ring())

    def ground_to_field(f):
        """Make the ground domain a field. """
        return f.set_domain(f.dom.get_field())

    def ground_to_exact(f):
        """Make the ground domain exact. """
        return f.set_domain(f.dom.get_exact())

    def LC(f):
        """Return the leading coefficient of `f`. """
        return dmp_ground_LC(f.rep, f.lev, f.dom)

    def LM(f):
        """Return the leading monomial of `f`. """
        return dmp_ground_LM(f.rep, f.lev, f.dom)

    def LT(f):
        """Return the leading term of `f`. """
        return dmp_ground_LT(f.rep, f.lev, f.dom)

    def TC(f):
        """Return the trailing coefficient of `f`. """
        return dmp_ground_TC(f.rep, f.lev, f.dom)

    def TM(f):
        """Return the trailing monomial of `f`. """
        return dmp_ground_TM(f.rep, f.lev, f.dom)

    def TT(f):
        """Return the trailing coefficient of `f`. """
        return dmp_ground_TT(f.rep, f.lev, f.dom)

    def EC(f):
        """Return the last non-zero coefficient of `f`. """
        return dmp_ground_EC(f.rep, f.lev, f.dom)

    def EM(f):
        """Return the last non-zero monomial of `f`. """
        return dmp_ground_EM(f.rep, f.lev, f.dom)

    def ET(f):
        """Return the last non-zero coefficient of `f`. """
        return dmp_ground_ET(f.rep, f.lev, f.dom)

    def nth(f, *N):
        """Return `n`-th coefficient of `f`. """
        return dmp_ground_nth(f.rep, N, f.lev, f.dom)

    def coeffs(f):
        """Return all non-zero coefficients of `f`. """
        return dmp_coeffs(f.rep, f.lev, f.dom)

    def monoms(f):
        """Return all non-zero monomials of `f`. """
        return dmp_monoms(f.rep, f.lev, f.dom)

    def terms(f):
        """Return all non-zero terms from `f`. """
        return dmp_terms(f.rep, f.lev, f.dom)

    def all_coeffs(f):
        """Return all coefficients of `f`. """
        return dmp_all_coeffs(f.rep, f.lev, f.dom)

    def all_monoms(f):
        """Return all monomials of `f`. """
        return dmp_all_monoms(f.rep, f.lev, f.dom)

    def all_terms(f):
        """Return all terms of `f`. """
        return dmp_all_terms(f.rep, f.lev, f.dom)

    def degree(f, j=0):
        """Return the degree of `f` in `x_j`. """
        return dmp_degree_in(f.rep, j, f.lev)

    def degree_list(f):
        """Return the list of degrees of `f`. """
        return dmp_degree_list(f.rep, f.lev)

    def total_degree(f):
        """Return the total degree of `f`. """
        return dmp_total_degree(f.rep, f.lev)

    def deflate(f):
        """Reduce degree of `f` by mapping `x_i^m` to `y_i`. """
        J, F = dmp_deflate(f.rep, f.lev, f.dom)
        return J, f.per(F)

    def inflate(f, M):
        """Revert :func:`deflate` by mapping `y_i` to `x_i^m`. """
        return f.per(dmp_inflate(f.rep, M, f.lev, f.dom))

    def terms_gcd(f):
        """Remove GCD of terms from the polynomial `f`. """
        J, F = dmp_terms_gcd(f.rep, f.lev, f.dom)
        return J, f.per(F)

    def add_ground(f, c):
        """Add an element of the ground domain to `f`. """
        return f.per(dmp_add_ground(f.rep, f.dom.convert(c), f.lev, f.dom))

    def sub_ground(f, c):
        """Subtract an element of the ground domain from `f`. """
        return f.per(dmp_sub_ground(f.rep, f.dom.convert(c), f.lev, f.dom))

    def mul_ground(f, c):
        """Multiply `f` by an element of the ground domain. """
        return f.per(dmp_mul_ground(f.rep, f.dom.convert(c), f.lev, f.dom))

    def quo_ground(f, c):
        """Quotient of `f` by an element of the ground domain. """
        return f.per(dmp_quo_ground(f.rep, f.dom.convert(c), f.lev, f.dom))

    def exquo_ground(f, c):
        """Exact quotient of `f` by an element of the ground domain. """
        return f.per(dmp_exquo_ground(f.rep, f.dom.convert(c), f.lev, f.dom))

    def abs(f):
        """Make all coefficients in `f` positive. """
        return f.per(dmp_abs(f.rep, f.lev, f.dom))

    def neg(f):
        """Negate all coefficients in `f`. """
        return f.per(dmp_neg(f.rep, f.lev, f.dom))

    def add(f, g):
        """Add two multivariate polynomials `f` and `g`. """
        lev, dom, per, F, G = f.unify(g)
        return per(dmp_add(F, G, lev, dom))

    def sub(f, g):
        """Subtract two multivariate polynomials `f` and `g`. """
        lev, dom, per, F, G = f.unify(g)
        return per(dmp_sub(F, G, lev, dom))

    def mul(f, g):
        """Multiply two multivariate polynomials `f` and `g`. """
        lev, dom, per, F, G = f.unify(g)
        return per(dmp_mul(F, G, lev, dom))

    def sqr(f):
        """Square a multivariate polynomial `f`. """
        return f.per(dmp_sqr(f.rep, f.lev, f.dom))

    def pow(f, n):
        """Raise `f` to a non-negative power `n`. """
        return f.per(dmp_pow(f.rep, n, f.lev, f.dom))

    def pdiv(f, g):
        """Polynomial pseudo-division of `f` and `g`. """
        lev, dom, per, F, G = f.unify(g)
        q, r = dmp_pdiv(F, G, lev, dom)
        return per(q), per(r)

    def prem(f, g):
        """Polynomial pseudo-remainder of `f` and `g`. """
        lev, dom, per, F, G = f.unify(g)
        return per(dmp_prem(F, G, lev, dom))

    def pquo(f, g):
        """Polynomial pseudo-quotient of `f` and `g`. """
        lev, dom, per, F, G = f.unify(g)
        return per(dmp_pquo(F, G, lev, dom))

    def pexquo(f, g):
        """Polynomial exact pseudo-quotient of `f` and `g`. """
        lev, dom, per, F, G = f.unify(g)
        return per(dmp_pexquo(F, G, lev, dom))

    def div(f, g):
        """Polynomial division with remainder of `f` and `g`. """
        lev, dom, per, F, G = f.unify(g)
        q, r = dmp_div(F, G, lev, dom)
        return per(q), per(r)

    def rem(f, g):
        """Compute polynomial remainder of `f` and `g`. """
        lev, dom, per, F, G = f.unify(g)
        return per(dmp_rem(F, G, lev, dom))

    def quo(f, g):
        """Compute polynomial quotient of `f` and `g`. """
        lev, dom, per, F, G = f.unify(g)
        return per(dmp_quo(F, G, lev, dom))

    def exquo(f, g):
        """Compute polynomial exact quotient of `f` and `g`. """
        lev, dom, per, F, G = f.unify(g)
        return per(dmp_exquo(F, G, lev, dom))

    def reduced(f, G):
        """Reduce `f` modulo a set of polynomials `G`. """
        lev, dom, per, f, G = f.unify(G)
        return per(dmp_reduced(f, G, lev, dom))

    def max_norm(f):
        """Returns maximum norm of `f`. """
        return dmp_max_norm(f.rep, f.lev, f.dom)

    def l1_norm(f):
        """Returns l1 norm of `f`. """
        return dmp_l1_norm(f.rep, f.lev, f.dom)

    def clear_denoms(f, convert=False):
        """Clear denominators in `f`, but keep the ground domain. """
        coeff, F = dmp_clear_denoms(f.rep, f.lev, f.dom, convert=convert)
        return coeff, f.per(F)

    def lift(f):
        """Convert algebraic coefficients to rationals. """
        return f.per(dmp_lift(f.rep, f.lev, f.dom), dom=f.dom.dom)

    def half_gcdex(f, g):
        """Half extended Euclidean algorithm. """
        lev, dom, per, F, G = f.unify(g)
        s, h = dmp_half_gcdex(F, G, dom)
        return per(s), per(h)

    def gcdex(f, g):
        """Extended Euclidean algorithm. """
        lev, dom, per, F, G = f.unify(g)
        s, t, h = dmp_gcdex(F, G, lev, dom)
        return per(s), per(t), per(h)

    def invert(f, g):
        """Invert `f` modulo `g`, if possible. """
        lev, dom, per, F, G = f.unify(g)
        return per(dmp_invert(F, G, lev, dom))

    def subresultants(f, g):
        """Compute subresultant PRS sequence of `f` and `g`. """
        lev, dom, per, F, G = f.unify(g)
        R = dmp_subresultants(F, G, lev, dom)
        return map(per, R)

    def resultant(f, g):
        """Compute resultant of `f` and `g`. """
        lev, dom, per, F, G = f.unify(g)
        return per(dmp_resultant(F, G, lev, dom), lower=True)

    def discriminant(f):
        """Compute discriminant of `f`. """
        return f.per(dmp_discriminant(f.rep, f.lev, f.dom), lower=True)

    def cofactors(f, g):
        """Compute GCD of `f` and `g` and their cofactors. """
        lev, dom, per, F, G = f.unify(g)
        h, cff, cfg = dmp_cofactors(F, G, lev, dom)
        return per(h), per(cff), per(cfg)

    def gcd(f, g):
        """Compute polynomial GCD of `f` and `g`. """
        lev, dom, per, F, G = f.unify(g)
        return per(dmp_gcd(F, G, lev, dom))

    def lcm(f, g):
        """Compute polynomial LCM of `f` and `g`. """
        lev, dom, per, F, G = f.unify(g)
        return per(dmp_lcm(F, G, lev, dom))

    def trunc(f, p):
        """Reduce `f` modulo an element of the ground domain. """
        return f.per(dmp_ground_trunc(f.rep, f.dom.convert(p), f.lev, f.dom))

    def monic(f):
        """Divide all coefficients by the leading coefficient of `f`. """
        return f.per(dmp_ground_monic(f.rep, f.lev, f.dom))

    def content(f):
        """Compute GCD of all coefficients of `f`. """
        return dmp_ground_content(f.rep, f.lev, f.dom)

    def primitive(f):
        """Compute content and the primitive form of `f`. """
        cont, F = dmp_ground_primitive(f.rep, f.lev, f.dom)
        return cont, f.per(F)

    def integrate(f, m=1, j=0):
        """Compute `m`-th order indefinite integral of `f` in `x_j`. """
        return f.per(dmp_integrate_in(f.rep, m, j, f.lev, f.dom))

    def diff(f, m=1, j=0):
        """Compute `m`-th order derivative of `f` in `x_j`. """
        return f.per(dmp_diff_in(f.rep, m, j, f.lev, f.dom))

    def eval(f, a, j=0):
        """Evaluate `f` at the given point `a` in `x_j`. """
        return f.per(dmp_eval_in(f.rep, f.dom.convert(a), j, f.lev, f.dom), lower=True)

    def mirror(f, j=0):
        """Evaluate efficiently composition `f(-x_j)`. """
        return f.per(dmp_mirror_in(f.rep, j, f.lev, f.dom))

    def scale(f, a, j=0):
        """Evaluate efficiently composition `f(a x_j)`. """
        return f.per(dmp_scale_in(f.rep, f.dom.convert(a), j, f.lev, f.dom))

    def taylor(f, a, j=0):
        """Evaluate efficiently Taylor shift `f(x_j + a)`. """
        return f.per(dmp_taylor_in(f.rep, f.dom.convert(a), j, f.lev, f.dom))

    def transform(f, p, q, j=0):
        """Evaluate functional transformation `q^n \cdot f(p/q)`. """
        lev, dom, per, F, (P, Q) = f.unify((p, q))
        return per(dmp_transform_in(F, P, Q, j, lev, dom))

    def compose(f, g):
        """Compute functional composition of `f` and `g`. """
        lev, dom, per, F, G = f.unify(g)
        return per(dmp_compose(F, G, lev, dom))

    def decompose(f):
        """Computes functional decomposition of `f`. """
        return map(f.per, dmp_decompose(f.rep, f.lev, f.dom))

    def sturm(f):
        """Computes the Sturm sequence of `f`. """
        return map(f.per, dmp_sturm(f.rep, f.lev, f.dom))

    def sqf_norm(f):
        """Computes square-free norm of `f`. """
        s, g, r = dmp_sqf_norm(f.rep, f.lev, f.dom)
        return s, f.per(g), f.per(r, dom=f.dom.dom)

    def sqf_part(f):
        """Computes square-free part of `f`. """
        return f.per(dmp_sqf_part(f.rep, f.lev, f.dom))

    def sqf_list(f, all=False):
        """Returns a list of square-free factors of `f`. """
        coeff, factors = dmp_sqf_list(f.rep, f.lev, f.dom, all=all)
        return coeff, [ (f.per(g), k) for g, k in factors ]

    def sqf_list_include(f, all=False):
        """Returns a list of square-free factors of `f`. """
        factors = dmp_sqf_list_include(f.rep, f.lev, f.dom, all=all)
        return [ (f.per(g), k) for g, k in factors ]

    def factor_list(f):
        """Returns a list of irreducible factors of `f`. """
        coeff, factors = dmp_factor_list(f.rep, f.lev, f.dom)
        return coeff, [ (f.per(g), k) for g, k in factors ]

    def factor_list_include(f):
        """Returns a list of irreducible factors of `f`. """
        factors = dmp_factor_list_include(f.rep, f.lev, f.dom)
        return [ (f.per(g), k) for g, k in factors ]

    def real_intervals(f, eps=None, inf=None, sup=None, fast=False, sqf=False):
        """Compute isolating intervals for real roots of `f`. """
        return dmp_real_intervals(f.rep, f.lev, f.dom, eps=eps, inf=inf, sup=sup, fast=fast)

    def complex_intervals(f, eps=None, inf=None, sup=None, fast=False, sqf=False):
        """Compute isolating rectangles for complex roots of `f`. """
        return dmp_complex_intervals(f.rep, f.lev, f.dom, eps=eps, inf=inf, sup=sup, fast=fast)

    def refine_real_root(f, s, t, eps=None, steps=None, fast=False):
        """Refine a real root isolating interval to the given precision. """
        return dmp_refine_real_root(f.rep, s, t, f.lev, f.dom, eps=eps, steps=steps, fast=fast)

    def refine_complex_root(f, s, t, eps=None, steps=None, fast=False):
        """Refine a complex root isolating rectangle to the given precision. """
        return dmp_refine_complex_root(f.rep, s, t, f.lev, f.dom, eps=eps, steps=steps, fast=fast)

    def count_real_roots(f, inf=None, sup=None):
        """Return the number of real roots of `f` in the ``[inf, sup]`` interval. """
        return dmp_count_real_roots(f.rep, f.lev, f.dom, inf=inf, sup=sup)

    def count_complex_roots(f, inf=None, sup=None):
        """Return the number of complex roots of `f` in the ``[inf, sup]`` rectangle. """
        return dmp_count_complex_roots(f.rep, f.lev, f.dom, inf=inf, sup=sup)

    @property
    def is_zero(f):
        """Returns ``True`` if `f` is equivalent to zero. """
        return dmp_zero_p(f.rep, f.lev)

    @property
    def is_one(f):
        """Return ``True`` if `f` is equivalent to one. """
        return dmp_one_p(f.rep, f.lev, f.dom)

    @property
    def is_ground(f):
        """Return ``True`` if `f` is an element of the ground domain. """
        return dmp_ground_p(f.rep, f.lev)

    @property
    def is_sqf(f):
        """Return ``True`` if `f` is a square-free polynomial. """
        return dmp_sqf_p(f.rep, f.lev, f.dom)

    @property
    def is_monic(f):
        """Return ``True`` if the leading coefficient of `f` is one. """
        return dmp_monic_p(f.rep, f.lev, f.dom)

    @property
    def is_primitive(f):
        """Return ``True`` if GCD of coefficients of `f` is one. """
        return dmp_primitive_p(f.rep, f.lev, f.dom)

    @property
    def is_linear(f):
        """Return ``True`` if `f` is linear in all its variables. """
        return dmp_linear_p(f.rep, f.lev, f.dom)

    @property
    def is_homogeneous(f):
        """Return ``True`` if `f` has zero trailing coefficient. """
        return dmp_homogeneous_p(f.rep, f.lev, f.dom)

    def __abs__(f):
        return f.abs()

    def __neg__(f):
        return f.neg()

    def __add__(f, g):
        if not isinstance(g, DensePoly):
            return f.add_ground(g)
        else:
            return f.add(g)

    def __radd__(f, g):
        return f.__add__(g)

    def __sub__(f, g):
        if not isinstance(g, DensePoly):
            return f.sub_ground(g)
        else:
            return f.sub(g)

    def __rsub__(f, g):
        return (-f).__add__(g)

    def __mul__(f, g):
        if not isinstance(g, DensePoly):
            return f.mul_ground(g)
        else:
            return f.mul(g)

    def __rmul__(f, g):
        return f.__mul__(g)

    def __pow__(f, n):
        return f.pow(n)

    def __divmod__(f, g):
        return f.div(g)

    def __mod__(f, g):
        return f.rem(g)

    def __floordiv__(f, g):
        if not isinstance(g, DensePoly):
            return f.exquo_ground(g)
        else:
            return f.exquo(g)

    def __eq__(f, g):
        return isinstance(g, DensePoly) and f.rep == g.rep

    def __ne__(f, g):
        return not f.__eq__(g)

    def __nonzero__(f):
        return not f.is_zero