/usr/share/pyshared/sympy/polys/groebnertools.py is in python-sympy 0.7.1.rc1-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 | """Sparse distributed multivariate polynomials and Groebner bases. """
from sympy.core.compatibility import cmp
from sympy.polys.monomialtools import (
monomial_mul,
monomial_div,
monomial_lcm,
monomial_lex_key as O_lex,
monomial_grlex_key as O_grlex,
monomial_grevlex_key as O_grevlex,
)
from sympy.polys.polyerrors import (
ExactQuotientFailed, DomainError,
)
from operator import itemgetter
def sdp_LC(f, K):
"""Returns the leading coeffcient of `f`. """
if not f:
return K.zero
else:
return f[0][1]
def sdp_LM(f, u):
"""Returns the leading monomial of `f`. """
if not f:
return (0,)*(u+1)
else:
return f[0][0]
def sdp_LT(f, u, K):
"""Returns the leading term of `f`. """
if f:
return f[0]
else:
return (0,)*(u+1), K.zero
def sdp_del_LT(f):
"""Removes the leading from `f`. """
return f[1:]
def sdp_coeffs(f):
"""Returns a list of monomials in `f`. """
return [ coeff for _, coeff in f ]
def sdp_monoms(f):
"""Returns a list of monomials in `f`. """
return [ monom for monom, _ in f ]
def sdp_sort(f, O):
"""Sort terms in `f` using the given monomial order `O`. """
return sorted(f, key=lambda term: O(term[0]), reverse=True)
def sdp_strip(f):
"""Remove terms with zero coefficients from `f` in `K[X]`. """
return [ (monom, coeff) for monom, coeff in f if coeff ]
def sdp_normal(f, K):
"""Normalize distributed polynomial in the given domain. """
return [ (monom, K.convert(coeff)) for monom, coeff in f if coeff ]
def sdp_from_dict(f, O):
"""Make a distributed polynomial from a dictionary. """
return sdp_sort(f.items(), O)
def sdp_to_dict(f):
"""Make a dictionary from a distributed polynomial. """
return dict(f)
def sdp_indep_p(f, j, u):
"""Returns `True` if a polynomial is independent of `x_j`. """
if j < 0 or j > u:
raise IndexError("-%s <= j < %s expected, got %s" % (u, u, j))
else:
return all(not monom[j] for monom in sdp_monoms(h))
def sdp_one_p(f, u, K):
"""Returns True if `f` is a multivariate one in `K[X]`. """
return f == sdp_one(u, K)
def sdp_one(u, K):
"""Returns a multivariate one in `K[X]`. """
return (((0,)*(u+1), K.one),)
def sdp_term_p(f):
"""Returns True if `f` has a single term or is zero. """
return len(f) <= 1
def sdp_abs(f, u, O, K):
"""Make all coefficients positive in `K[X]`. """
return [ (monom, K.abs(coeff)) for monom, coeff in f ]
def sdp_neg(f, u, O, K):
"""Negate a polynomial in `K[X]`. """
return [ (monom, -coeff) for monom, coeff in f ]
def sdp_add_term(f, term, u, O, K):
"""Add a single term using bisection method. """
M, c = term
if not c:
return f
if not f:
return [(M, c)]
monoms = sdp_monoms(f)
if cmp(O(M), O(monoms[ 0])) > 0:
return [(M, c)] + f
if cmp(O(M), O(monoms[-1])) < 0:
return f + [(M, c)]
lo, hi = 0, len(monoms)-1
while lo <= hi:
i = (lo + hi) // 2
j = cmp(O(M), O(monoms[i]))
if not j:
coeff = f[i][1] + c
if not coeff:
return f[:i] + f[i+1:]
else:
return f[:i] + [(M, coeff)] + f[i+1:]
else:
if j > 0:
hi = i - 1
else:
lo = i + 1
else:
return f[:i] + [(M, c)] + f[i+1:]
def sdp_sub_term(f, term, u, O, K):
"""Sub a single term using bisection method. """
M, c = term
if not c:
return f
if not f:
return [(M, -c)]
monoms = sdp_monoms(f)
if cmp(O(M), O(monoms[ 0])) > 0:
return [(M, -c)] + f
if cmp(O(M), O(monoms[-1])) < 0:
return f + [(M, -c)]
lo, hi = 0, len(monoms)-1
while lo <= hi:
i = (lo + hi) // 2
j = cmp(O(M), O(monoms[i]))
if not j:
coeff = f[i][1] - c
if not coeff:
return f[:i] + f[i+1:]
else:
return f[:i] + [(M, coeff)] + f[i+1:]
else:
if j > 0:
hi = i - 1
else:
lo = i + 1
else:
return f[:i] + [(M, -c)] + f[i+1:]
def sdp_mul_term(f, term, u, O, K):
"""Multiply a distributed polynomial by a term. """
M, c = term
if not f or not c:
return []
else:
if K.is_one(c):
return [ (monomial_mul(f_M, M), f_c) for f_M, f_c in f ]
else:
return [ (monomial_mul(f_M, M), f_c*c) for f_M, f_c in f ]
def sdp_add(f, g, u, O, K):
"""Add distributed polynomials in `K[X]`. """
h = dict(f)
for monom, c in g:
if monom in h:
coeff = h[monom] + c
if not coeff:
del h[monom]
else:
h[monom] = coeff
else:
h[monom] = c
return sdp_from_dict(h, O)
def sdp_sub(f, g, u, O, K):
"""Subtract distributed polynomials in `K[X]`. """
h = dict(f)
for monom, c in g:
if monom in h:
coeff = h[monom] - c
if not coeff:
del h[monom]
else:
h[monom] = coeff
else:
h[monom] = -c
return sdp_from_dict(h, O)
def sdp_mul(f, g, u, O, K):
"""Multiply distributed polynomials in `K[X]`. """
if sdp_term_p(f):
if not f:
return f
else:
return sdp_mul_term(g, f[0], u, O, K)
if sdp_term_p(g):
if not g:
return g
else:
return sdp_mul_term(f, g[0], u, O, K)
h = {}
for fm, fc in f:
for gm, gc in g:
monom = monomial_mul(fm, gm)
coeff = fc*gc
if monom in h:
coeff += h[monom]
if not coeff:
del h[monom]
continue
h[monom] = coeff
return sdp_from_dict(h, O)
def sdp_sqr(f, u, O, K):
"""Square a distributed polynomial in `K[X]`. """
h = {}
for fm, fc in f:
for Fm, Fc in f:
monom = monomial_mul(fm, Fm)
coeff = fc*Fc
if monom in h:
coeff += h[monom]
if not coeff:
del h[monom]
continue
h[monom] = coeff
return sdp_from_dict(h, O)
def sdp_pow(f, n, u, O, K):
"""Raise `f` to the n-th power in `K[X]`. """
if not n:
return sdp_one(u, K)
if n < 0:
raise ValueError("can't raise a polynomial to negative power")
if n == 1 or not f or sdp_one_p(f, u, K):
return f
g = sdp_one(u, K)
while True:
n, m = n//2, n
if m & 1:
g = sdp_mul(g, f, u, O, K)
if not n:
break
f = sdp_sqr(f, u, O, K)
return g
def sdp_monic(f, K):
"""Divides all coefficients by `LC(f)` in `K[X]`. """
if not f:
return f
lc_f = sdp_LC(f, K)
if K.is_one(lc_f):
return f
else:
return [ (m, K.quo(c, lc_f)) for m, c in f ]
def sdp_content(f, K):
"""Returns GCD of coefficients in `K[X]`. """
if K.has_Field:
return K.one
else:
cont = K.zero
for _, c in f:
cont = K.gcd(cont, c)
if K.is_one(cont):
break
return cont
def sdp_primitive(f, K):
"""Returns content and a primitive polynomial in `K[X]`. """
if K.has_Field:
return K.one, f
else:
cont = sdp_content(f, K)
if K.is_one(cont):
return cont, f
else:
return cont, [ (m, K.quo(c, cont)) for m, c in f ]
def _term_rr_div(a, b, K):
"""Division of two terms in over a ring. """
a_lm, a_lc = a
b_lm, b_lc = b
monom = monomial_div(a_lm, b_lm)
if not (monom is None or a_lc % b_lc):
return monom, K.quo(a_lc, b_lc)
else:
return None
def _term_ff_div(a, b, K):
"""Division of two terms in over a field. """
a_lm, a_lc = a
b_lm, b_lc = b
monom = monomial_div(a_lm, b_lm)
if monom is not None:
return monom, K.quo(a_lc, b_lc)
else:
return None
def sdp_div(f, G, u, O, K):
"""
Generalized polynomial division with remainder in `K[X]`.
Given polynomial `f` and a set of polynomials `g = (g_1, ..., g_n)`
compute a set of quotients `q = (q_1, ..., q_n)` and remainder `r`
such that `f = q_1*f_1 + ... + q_n*f_n + r`, where `r = 0` or `r`
is a completely reduced polynomial with respect to `g`.
**References**
1. [Cox97]_
2. [Ajwa95]_
"""
Q, r = [ [] for _ in xrange(len(G)) ], []
if K.has_Field:
term_div = _term_ff_div
else:
term_div = _term_rr_div
while f:
for i, g in enumerate(G):
tq = term_div(sdp_LT(f, u, K), sdp_LT(g, u, K), K)
if tq is not None:
Q[i] = sdp_add_term(Q[i], tq, u, O, K)
f = sdp_sub(f, sdp_mul_term(g, tq, u, O, K), u, O, K)
break
else:
r = sdp_add_term(r, sdp_LT(f, u, K), u, O, K)
f = sdp_del_LT(f)
return Q, r
def sdp_rem(f, g, u, O, K):
"""Returns polynomial remainder in `K[X]`. """
return sdp_div(f, g, u, O, K)[1]
def sdp_quo(f, g, u, O, K):
"""Returns polynomial quotient in `K[x]`. """
return sdp_div(f, g, u, O, K)[0]
def sdp_exquo(f, g, u, O, K):
"""Returns exact polynomial quotient in `K[X]`. """
q, r = sdp_div(f, g, u, O, K)
if not r:
return q
else:
raise ExactQuotientFailed(f, g)
def sdp_lcm(f, g, u, O, K):
"""
Computes LCM of two polynomials in `K[X]`.
The LCM is computed as the unique generater of the intersection
of the two ideals generated by `f` and `g`. The approach is to
compute a Groebner basis with respect to lexicographic ordering
of `t*f` and `(1 - t)*g`, where `t` is an unrelated variable and
then filtering out the solution that doesn't contain `t`.
**References**
1. [Cox97]_
"""
if not f or not g:
return []
if sdp_term_p(f) and sdp_term_p(g):
monom = monomial_lcm(sdp_LM(f, u), sdp_LM(g, u))
fc, gc = sdp_LC(f, K), sdp_LC(g, K)
if K.has_Field:
coeff = K.one
else:
coeff = K.lcm(fc, gc)
return [(monom, coeff)]
if not K.has_Field:
lcm = K.one
else:
fc, f = sdp_primitive(f, K)
gc, g = sdp_primitive(g, K)
lcm = K.lcm(fc, gc)
f_terms = tuple( ((1,) + m, c) for m, c in f )
g_terms = tuple( ((0,) + m, c) for m, c in g ) \
+ tuple( ((1,) + m, -c) for m, c in g )
F = sdp_sort(f_terms, O_lex)
G = sdp_sort(g_terms, O_lex)
basis = sdp_groebner([F, G], u, O_lex, K)
H = [ h for h in basis if sdp_indep_p(h, 0, u) ]
if K.is_one(lcm):
h = [ (m[1:], c) for m, c in H[0] ]
else:
h = [ (m[1:], c*lcm) for m, c in H[0] ]
return sdp_sort(h, O)
def sdp_gcd(f, g, u, O, K):
"""Compute GCD of two polynomials in `K[X]` via LCM. """
if not K.has_Field:
fc, f = sdp_primitive(f, K)
gc, g = sdp_primitive(g, K)
gcd = K.gcd(fc, gc)
h = sdp_quo(sdp_mul(f, g, u, O, K),
sdp_lcm(f, g, u, O, K), u, O, K)
if not K.has_Field:
if K.is_one(gcd):
return h
else:
return [ (m, c*gcd) for m, c in h ]
else:
return sdp_monic(h, K)
def sdp_groebner(f, u, O, K, gens='', verbose=False):
"""
Computes Groebner basis for a set of polynomials in `K[X]`.
Given a set of multivariate polynomials `F`, finds another
set `G`, such that Ideal `F = Ideal G` and `G` is a reduced
Groebner basis.
The resulting basis is unique and has monic generators if the
ground domains is a field. Otherwise the result is non-unique
but Groebner bases over e.g. integers can be computed (if the
input polynomials are monic).
Groebner bases can be used to choose specific generators for a
polynomial ideal. Because these bases are unique you can check
for ideal equality by comparing the Groebner bases. To see if
one polynomial lies in an ideal, divide by the elements in the
base and see if the remainder vanishes.
They can also be used to solve systems of polynomial equations
as, by choosing lexicographic ordering, you can eliminate one
variable at a time, provided that the ideal is zero-dimensional
(finite number of solutions).
**References**
1. [Bose03]_
2. [Giovini91]_
3. [Ajwa95]_
4. [Cox97]_
Algorithm used: an improved version of Buchberger's algorithm
as presented in T. Becker, V. Weispfenning, Groebner Bases: A
Computational Approach to Commutative Algebra, Springer, 1993,
page 232.
Added optional ``gens`` argument to apply :func:`sdp_str` for
the purpose of debugging the algorithm.
"""
if not K.has_Field:
raise DomainError("can't compute a Groebner basis over %s" % K)
def select(P):
# normal selection strategy
# select the pair with minimum LCM(LM(f), LM(g))
pr = min(P, key=lambda pair: O(monomial_lcm(sdp_LM(f[pair[0]], u), sdp_LM(f[pair[1]], u))))
return pr
def normal(g, J):
h = sdp_rem(g, [ f[j] for j in J ], u, O, K)
if not h:
return None
else:
h = sdp_monic(h, K)
h = tuple(h)
if not h in I:
I[h] = len(f)
f.append(h)
return sdp_LM(h, u), I[h]
def update(G, B, ih):
# update G using the set of critical pairs B and h
# [BW] page 230
h = f[ih]
mh = sdp_LM(h, u)
# filter new pairs (h, g), g in G
C = G.copy()
D = set()
while C:
# select a pair (h, g) by popping an element from C
ig = C.pop()
g = f[ig]
mg = sdp_LM(g, u)
LCMhg = monomial_lcm(mh, mg)
def lcm_divides(ip):
# LCM(LM(h), LM(p)) divides LCM(LM(h), LM(g))
m = monomial_lcm(mh, sdp_LM(f[ip], u))
return monomial_div(LCMhg, m)
# HT(h) and HT(g) disjoint: mh*mg == LCMhg
if monomial_mul(mh, mg) == LCMhg or (
not any(lcm_divides(ipx) for ipx in C) and
not any(lcm_divides(pr[1]) for pr in D)):
D.add((ih, ig))
E = set()
while D:
# select h, g from D (h the same as above)
ih, ig = D.pop()
mg = sdp_LM(f[ig], u)
LCMhg = monomial_lcm(mh, mg)
if not monomial_mul(mh, mg) == LCMhg:
E.add((ih, ig))
# filter old pairs
B_new = set()
while B:
# select g1, g2 from B (-> CP)
ig1, ig2 = B.pop()
mg1 = sdp_LM(f[ig1], u)
mg2 = sdp_LM(f[ig2], u)
LCM12 = monomial_lcm(mg1, mg2)
# if HT(h) does not divide lcm(HT(g1), HT(g2))
if not monomial_div(LCM12, mh) or \
monomial_lcm(mg1, mh) == LCM12 or \
monomial_lcm(mg2, mh) == LCM12:
B_new.add((ig1, ig2))
B_new |= E
# filter polynomials
G_new = set()
while G:
ig = G.pop()
mg = sdp_LM(f[ig], u)
if not monomial_div(mg, mh):
G_new.add(ig)
G_new.add(ih)
return G_new, B_new
# end of update ################################
if not f:
return []
# replace f with a reduced list of initial polynomials; see [BW] page 203
f1 = f[:]
while True:
f = f1[:]
f1 = []
for i in range(len(f)):
p = f[i]
r = sdp_rem(p, f[:i], u, O, K)
if r:
f1.append(sdp_monic(r, K))
if f == f1:
break
f = [tuple(p) for p in f]
I = {} # ip = I[p]; p = f[ip]
F = set() # set of indices of polynomials
G = set() # set of indices of intermediate would-be Groebner basis
CP = set() # set of pairs of indices of critical pairs
for i, h in enumerate(f):
I[h] = i
F.add(i)
#####################################
# algorithm GROEBNERNEWS2 in [BW] page 232
while F:
# select p with minimum monomial according to the monomial ordering O
h = min([f[x] for x in F], key=lambda f: O(sdp_LM(f, u)))
ih = I[h]
F.remove(ih)
G, CP = update(G, CP, ih)
# count the number of critical pairs which reduce to zero
reductions_to_zero = 0
while CP:
ig1, ig2 = select(CP)
CP.remove((ig1, ig2))
h = sdp_spoly(f[ig1], f[ig2], u, O, K)
# ordering divisors is on average more efficient [Cox] page 111
G1 = sorted(G, key=lambda g: O(sdp_LM(f[g], u)))
ht = normal(h, G1)
if ht:
G, CP = update(G, CP, ht[1])
else:
reductions_to_zero += 1
######################################
# now G is a Groebner basis; reduce it
Gr = set()
for ig in G:
ht = normal(f[ig], G - set([ig]))
if ht:
Gr.add(ht[1])
Gr = [list(f[ig]) for ig in Gr]
# order according to the monomial ordering
Gr = sorted(Gr, key=lambda f: O(sdp_LM(f, u)), reverse=True)
if verbose:
print 'reductions_to_zero = %d' % reductions_to_zero
return Gr
def sdp_str(f, gens):
if isinstance(gens, basestring):
gens = gens.split(',')
ngens = len(gens)
z = (0,)*ngens
s = ''
for expv, c in f:
if c > 0:
s += ' +'
else:
s += ' -'
if c < 0:
c = -c
if c != 1: # and expv != z:
cnt1 = str(c)
else:
cnt1 = ''
sa = []
for i in range(ngens):
exp = expv[i]
if exp > 1:
sa.append('%s^%d' % (gens[i], exp))
if exp == 1:
sa.append('%s' % gens[i])
if cnt1:
sa = [cnt1] + sa
s += '*'.join(sa)
return s
def sdp_spoly(p1, p2, u, O, K):
"""
Compute LCM(LM(p1), LM(p2))/LM(p1)*p1 - LCM(LM(p1), LM(p2))/LM(p2)*p2
This is the S-poly provided p1 and p2 are monic
"""
LM1 = sdp_LM(p1, u)
LM2 = sdp_LM(p2, u)
LCM12 = monomial_lcm(LM1, LM2)
m1 = monomial_div(LCM12, LM1)
m2 = monomial_div(LCM12, LM2)
s1 = sdp_mul_term(p1, (m1, K.one), u, O, K)
s2 = sdp_mul_term(p2, (m2, K.one), u, O, K)
s = sdp_sub(s1, s2, u, O, K)
return s
|