/usr/share/pyshared/sympy/polys/numberfields.py is in python-sympy 0.7.1.rc1-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 | """Computational algebraic number field theory. """
from sympy import (
S, Expr, I, Integer, Rational, Float,
Symbol, Add, Mul, sympify, Q, ask, Dummy, Tuple
)
from sympy.polys.polytools import (
Poly, PurePoly, sqf_norm, invert, factor_list, groebner,
)
from sympy.polys.polyutils import (
basic_from_dict,
)
from sympy.polys.polyclasses import (
ANP, DMP,
)
from sympy.polys.polyerrors import (
IsomorphismFailed,
CoercionFailed,
NotAlgebraic,
)
from sympy.utilities import (
numbered_symbols, variations, lambdify,
)
from sympy.ntheory import sieve
from sympy.mpmath import pslq, mp
def minimal_polynomial(ex, x=None, **args):
"""
Computes the minimal polynomial of an algebraic number.
**Example**
>>> from sympy import minimal_polynomial, sqrt
>>> from sympy.abc import x
>>> minimal_polynomial(sqrt(2), x)
x**2 - 2
>>> minimal_polynomial(sqrt(2) + sqrt(3), x)
x**4 - 10*x**2 + 1
"""
generator = numbered_symbols('a', cls=Dummy)
mapping, symbols, replace = {}, {}, []
ex = sympify(ex)
if x is not None:
x, cls = sympify(x), Poly
else:
x, cls = Dummy('x'), PurePoly
def update_mapping(ex, exp, base=None):
a = generator.next()
symbols[ex] = a
if base is not None:
mapping[ex] = a**exp + base
else:
mapping[ex] = exp.as_expr(a)
return a
def bottom_up_scan(ex):
if ex.is_Atom:
if ex is S.ImaginaryUnit:
if ex not in mapping:
return update_mapping(ex, 2, 1)
else:
return symbols[ex]
elif ex.is_Rational and ex.q != 0:
return ex
elif ex.is_Add:
return Add(*[ bottom_up_scan(g) for g in ex.args ])
elif ex.is_Mul:
return Mul(*[ bottom_up_scan(g) for g in ex.args ])
elif ex.is_Pow:
if ex.exp.is_Rational:
if ex.exp < 0 and ex.base.is_Add:
coeff, terms = ex.base.as_coeff_add()
elt, _ = primitive_element(terms, polys=True)
alg = ex.base - coeff
# XXX: turn this into eval()
inverse = invert(elt.gen + coeff, elt).as_expr()
base = inverse.subs(elt.gen, alg).expand()
if ex.exp == -1:
return bottom_up_scan(base)
else:
ex = base**(-ex.exp)
if not ex.exp.is_Integer:
base, exp = (ex.base**ex.exp.p).expand(), Rational(1, ex.exp.q)
else:
base, exp = ex.base, ex.exp
base = bottom_up_scan(base)
expr = base**exp
if expr not in mapping:
return update_mapping(expr, 1/exp, -base)
else:
return symbols[expr]
elif ex.is_AlgebraicNumber:
if ex.root not in mapping:
return update_mapping(ex.root, ex.minpoly)
else:
return symbols[ex.root]
raise NotAlgebraic("%s doesn't seem to be an algebraic number" % ex)
polys = args.get('polys', False)
if ex.is_AlgebraicNumber:
if not polys:
return ex.minpoly.as_expr(x)
else:
return ex.minpoly.replace(x)
elif ex.is_Rational and ex.q != 0:
result = ex.q*x - ex.p
else:
F = [x - bottom_up_scan(ex)] + mapping.values()
G = groebner(F, symbols.values() + [x], order='lex')
_, factors = factor_list(G[-1])
if len(factors) == 1:
((result, _),) = factors
else:
for result, _ in factors:
if result.subs(x, ex).evalf(chop=True) == 0:
break
else: # pragma: no cover
raise NotImplementedError("multiple candidates for the minimal polynomial of %s" % ex)
if polys:
return cls(result, x, field=True)
else:
return result
minpoly = minimal_polynomial
def _coeffs_generator(n):
"""Generate coefficients for `primitive_element()`. """
for coeffs in variations([1,-1], n, repetition=True):
yield coeffs
def primitive_element(extension, x=None, **args):
"""Construct a common number field for all extensions. """
if not extension:
raise ValueError("can't compute primitive element for empty extension")
if x is not None:
x, cls = sympify(x), Poly
else:
x, cls = Dummy('x'), PurePoly
if not args.get('ex', False):
extension = [ AlgebraicNumber(ext, gen=x) for ext in extension ]
g, coeffs = extension[0].minpoly.replace(x), [1]
for ext in extension[1:]:
s, _, g = sqf_norm(g, x, extension=ext)
coeffs = [ s*c for c in coeffs ] + [1]
if not args.get('polys', False):
return g.as_expr(), coeffs
else:
return cls(g), coeffs
generator = numbered_symbols('y', cls=Dummy)
F, Y = [], []
for ext in extension:
y = generator.next()
if ext.is_Poly:
if ext.is_univariate:
f = ext.as_expr(y)
else:
raise ValueError("expected minimal polynomial, got %s" % ext)
else:
f = minpoly(ext, y)
F.append(f)
Y.append(y)
coeffs_generator = args.get('coeffs', _coeffs_generator)
for coeffs in coeffs_generator(len(Y)):
f = x - sum([ c*y for c, y in zip(coeffs, Y)])
G = groebner(F + [f], Y + [x], order='lex', field=True)
H, g = G[:-1], cls(G[-1], x, domain='QQ')
for i, (h, y) in enumerate(zip(H, Y)):
try:
H[i] = Poly(y - h, x, domain='QQ').all_coeffs() # XXX: composite=False
except CoercionFailed: # pragma: no cover
break # G is not a triangular set
else:
break
else: # pragma: no cover
raise RuntimeError("run out of coefficient configurations")
_, g = g.clear_denoms()
if not args.get('polys', False):
return g.as_expr(), coeffs, H
else:
return g, coeffs, H
primelt = primitive_element
def is_isomorphism_possible(a, b):
"""Returns `True` if there is a chance for isomorphism. """
n = a.minpoly.degree()
m = b.minpoly.degree()
if m % n != 0:
return False
if n == m:
return True
da = a.minpoly.discriminant()
db = b.minpoly.discriminant()
i, k, half = 1, m//n, db//2
while True:
p = sieve[i]
P = p**k
if P > half:
break
if ((da % p) % 2) and not (db % P):
return False
i += 1
return True
def field_isomorphism_pslq(a, b):
"""Construct field isomorphism using PSLQ algorithm. """
if not a.root.is_real or not b.root.is_real:
raise NotImplementedError("PSLQ doesn't support complex coefficients")
f = a.minpoly
g = b.minpoly.replace(f.gen)
n, m, prev = 100, b.minpoly.degree(), None
for i in xrange(1, 5):
A = a.root.evalf(n)
B = b.root.evalf(n)
basis = [1, B] + [ B**i for i in xrange(2, m) ] + [A]
dps, mp.dps = mp.dps, n
coeffs = pslq(basis, maxcoeff=int(1e10), maxsteps=1000)
mp.dps = dps
if coeffs is None:
break
if coeffs != prev:
prev = coeffs
else:
break
coeffs = [S(c)/coeffs[-1] for c in coeffs[:-1]]
while not coeffs[-1]:
coeffs.pop()
coeffs = list(reversed(coeffs))
h = Poly(coeffs, f.gen, domain='QQ')
if f.compose(h).rem(g).is_zero:
d, approx = len(coeffs)-1, 0
for i, coeff in enumerate(coeffs):
approx += coeff*B**(d-i)
if A*approx < 0:
return [ -c for c in coeffs ]
else:
return coeffs
elif f.compose(-h).rem(g).is_zero:
return [ -c for c in coeffs ]
else:
n *= 2
return None
def field_isomorphism_factor(a, b):
"""Construct field isomorphism via factorization. """
_, factors = factor_list(a.minpoly, extension=b)
for f, _ in factors:
if f.degree() == 1:
coeffs = f.rep.TC().to_sympy_list()
d, terms = len(coeffs)-1, []
for i, coeff in enumerate(coeffs):
terms.append(coeff*b.root**(d-i))
root = Add(*terms)
if (a.root - root).evalf(chop=True) == 0:
return coeffs
if (a.root + root).evalf(chop=True) == 0:
return [ -c for c in coeffs ]
else:
return None
def field_isomorphism(a, b, **args):
"""Construct an isomorphism between two number fields. """
a, b = sympify(a), sympify(b)
if not a.is_AlgebraicNumber:
a = AlgebraicNumber(a)
if not b.is_AlgebraicNumber:
b = AlgebraicNumber(b)
if a == b:
return a.coeffs()
n = a.minpoly.degree()
m = b.minpoly.degree()
if n == 1:
return [a.root]
if m % n != 0:
return None
if args.get('fast', True):
try:
result = field_isomorphism_pslq(a, b)
if result is not None:
return result
except NotImplementedError:
pass
return field_isomorphism_factor(a, b)
def to_number_field(extension, theta=None, **args):
"""Express `extension` in the field generated by `theta`. """
gen = args.get('gen')
if hasattr(extension, '__iter__'):
extension = list(extension)
else:
extension = [extension]
if len(extension) == 1 and type(extension[0]) is tuple:
return AlgebraicNumber(extension[0])
minpoly, coeffs = primitive_element(extension, gen, polys=True)
root = sum([ coeff*ext for coeff, ext in zip(coeffs, extension) ])
if theta is None:
return AlgebraicNumber((minpoly, root))
else:
theta = sympify(theta)
if not theta.is_AlgebraicNumber:
theta = AlgebraicNumber(theta, gen=gen)
coeffs = field_isomorphism(root, theta)
if coeffs is not None:
return AlgebraicNumber(theta, coeffs)
else:
raise IsomorphismFailed("%s is not in a subfield of %s" % (root, theta.root))
class AlgebraicNumber(Expr):
"""Class for representing algebraic numbers in SymPy. """
__slots__ = ['rep', 'root', 'alias', 'minpoly']
is_AlgebraicNumber = True
def __new__(cls, expr, coeffs=None, **args):
"""Construct a new algebraic number. """
expr = sympify(expr)
if isinstance(expr, (tuple, Tuple)):
minpoly, root = expr
if not minpoly.is_Poly:
minpoly = Poly(minpoly)
elif expr.is_AlgebraicNumber:
minpoly, root = expr.minpoly, expr.root
else:
minpoly, root = minimal_polynomial(expr, args.get('gen'), polys=True), expr
dom = minpoly.get_domain()
if coeffs is not None:
if not isinstance(coeffs, ANP):
rep = DMP.from_sympy_list(sympify(coeffs), 0, dom)
else:
rep = DMP.from_list(coeffs.to_list(), 0, dom)
if rep.degree() >= minpoly.degree():
rep = rep.rem(minpoly.rep)
else:
rep = DMP.from_list([1, 0], 0, dom)
if ask(Q.negative(root)):
rep = -rep
alias = args.get('alias')
if alias is not None:
if not isinstance(alias, Symbol):
alias = Symbol(alias)
obj = Expr.__new__(cls)
obj.rep = rep
obj.root = root
obj.alias = alias
obj.minpoly = minpoly
return obj
def __eq__(a, b):
if not b.is_AlgebraicNumber:
try:
b = to_number_field(b, a)
except (NotAlgebraic, IsomorphismFailed):
return False
return a.rep == b.rep and \
a.minpoly.all_coeffs() == b.minpoly.all_coeffs()
def __ne__(a, b):
return not a.__eq__(b)
def __hash__(self):
return super(AlgebraicNumber, self).__hash__()
def _eval_evalf(self, prec):
return self.as_expr()._evalf(prec)
@property
def is_aliased(self):
"""Returns `True` if `alias` was set. """
return self.alias is not None
def as_poly(self, x=None):
"""Create a Poly instance from `self`. """
if x is not None:
return Poly.new(self.rep, x)
else:
if self.alias is not None:
return Poly.new(self.rep, self.alias)
else:
return PurePoly.new(self.rep, Dummy('x'))
def as_expr(self, x=None):
"""Create a Basic expression from `self`. """
return self.as_poly(x or self.root).as_expr().expand()
def coeffs(self):
"""Returns all SymPy coefficients of an algebraic number. """
return [ self.rep.dom.to_sympy(c) for c in self.rep.all_coeffs() ]
def native_coeffs(self):
"""Returns all native coefficients of an algebraic number. """
return self.rep.all_coeffs()
def to_algebraic_integer(self):
"""Convert `self` to an algebraic integer. """
f = self.minpoly
if f.LC() == 1:
return self
coeff = f.LC()**(f.degree()-1)
poly = f.compose(Poly(f.gen/f.LC()))
minpoly = poly*coeff
root = f.LC()*self.root
return AlgebraicNumber((minpoly, root), self.coeffs())
def isolate(alg, eps=None, fast=False):
"""Give a rational isolating interval for an algebraic number. """
alg = sympify(alg)
if alg.is_Rational:
return (alg, alg)
elif not ask(Q.real(alg)):
raise NotImplementedError("complex algebraic numbers are not supported")
from sympy.printing.lambdarepr import LambdaPrinter
class IntervalPrinter(LambdaPrinter):
"""Use ``lambda`` printer but print numbers as ``mpi`` intervals. """
def _print_Integer(self, expr):
return "mpi('%s')" % super(IntervalPrinter, self)._print_Integer(expr)
def _print_Rational(self, expr):
return "mpi('%s')" % super(IntervalPrinter, self)._print_Rational(expr)
func = lambdify((), alg, modules="mpmath", printer=IntervalPrinter())
poly = minpoly(alg, polys=True)
intervals = poly.intervals(sqf=True)
dps, done = mp.dps, False
try:
while not done:
alg = func()
for a, b in intervals:
if a <= alg.a and alg.b <= b:
done = True
break
else:
mp.dps *= 2
finally:
mp.dps = dps
if eps is not None:
a, b = poly.refine_root(a, b, eps=eps, fast=fast)
return (a, b)
|