/usr/share/pyshared/sympy/polys/partfrac.py is in python-sympy 0.7.1.rc1-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 | """Algorithms for partial fraction decomposition of rational functions. """
from sympy.polys import Poly, RootSum, cancel, factor
from sympy.polys.polytools import parallel_poly_from_expr
from sympy.core import S, Add, sympify, Symbol, Function, Lambda, Dummy
from sympy.utilities import numbered_symbols, take, threaded
@threaded
def apart(f, x=None, full=False):
"""
Compute partial fraction decomposition of a rational function.
Given a rational function ``f`` compute partial fraction decomposition
of ``f``. Two algorithms are available: one is based on undetermined
coefficients method and the other is Bronstein's full partial fraction
decomposition algorithm.
**Examples**
>>> from sympy.polys.partfrac import apart
>>> from sympy.abc import x, y
>>> apart(y/(x + 2)/(x + 1), x)
-y/(x + 2) + y/(x + 1)
"""
f = sympify(f)
if f.is_Atom:
return f
else:
P, Q = f.as_numer_denom()
(P, Q), opt = parallel_poly_from_expr((P, Q), x)
if P.is_multivariate:
raise NotImplementedError("multivariate partial fraction decomposition")
common, P, Q = P.cancel(Q)
poly, P = P.div(Q, auto=True)
P, Q = P.rat_clear_denoms(Q)
if Q.degree() <= 1:
partial = P/Q
else:
if not full:
partial = apart_undetermined_coeffs(P, Q)
else:
partial = apart_full_decomposition(P, Q)
terms = S.Zero
for term in Add.make_args(partial):
terms += factor(term)
return common*(poly.as_expr() + terms)
def apart_undetermined_coeffs(P, Q):
"""Partial fractions via method of undetermined coefficients. """
X = numbered_symbols(cls=Dummy)
partial, symbols = [], []
_, factors = Q.factor_list()
for f, k in factors:
n, q = f.degree(), Q
for i in xrange(1, k+1):
coeffs, q = take(X, n), q.quo(f)
partial.append((coeffs, q, f, i))
symbols.extend(coeffs)
dom = Q.get_domain().inject(*symbols)
F = Poly(0, Q.gen, domain=dom)
for i, (coeffs, q, f, k) in enumerate(partial):
h = Poly(coeffs, Q.gen, domain=dom)
partial[i] = (h, f, k)
q = q.set_domain(dom)
F += h*q
system, result = [], S(0)
for (k,), coeff in F.terms():
system.append(coeff - P.nth(k))
from sympy.solvers import solve
solution = solve(system, symbols)
for h, f, k in partial:
h = h.as_expr().subs(solution)
result += h/f.as_expr()**k
return result
def apart_full_decomposition(P, Q):
"""
Bronstein's full partial fraction decomposition algorithm.
Given a univariate rational function ``f``, performing only GCD
operations over the algebraic closure of the initial ground domain
of definition, compute full partial fraction decomposition with
fractions having linear denominators.
Note that no factorization of the initial denominator of ``f`` is
performed. The final decomposition is formed in terms of a sum of
:class:`RootSum` instances.
**References**
1. [Bronstein93]_
"""
f, x, U = P/Q, P.gen, []
u = Function('u')(x)
a = Dummy('a')
partial = S(0)
for d, n in Q.sqf_list_include(all=True):
b = d.as_expr()
U += [ u.diff(x, n-1) ]
h = cancel(f*b**n) / u**n
H, subs = [h], []
for j in range(1, n):
H += [ H[-1].diff(x) / j ]
for j in range(1, n+1):
subs += [ (U[j-1], b.diff(x, j) / j) ]
for j in range(0, n):
P, Q = cancel(H[j]).as_numer_denom()
for i in range(0, j+1):
P = P.subs(*subs[j-i])
Q = Q.subs(*subs[0])
P = Poly(P, x)
Q = Poly(Q, x)
G = P.gcd(d)
D = d.quo(G)
B, g = Q.half_gcdex(D)
b = (P * B.quo(g)).rem(D)
numer = b.as_expr()
denom = (x-a)**(n-j)
expr = numer.subs(x, a) / denom
partial += RootSum(D, Lambda(a, expr))
return partial
|