This file is indexed.

/usr/share/pyshared/sympy/polys/polyfuncs.py is in python-sympy 0.7.1.rc1-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
"""High-level polynomials manipulation functions. """

from sympy.polys.polytools import (
    poly_from_expr, parallel_poly_from_expr, Poly)
from sympy.polys.polyoptions import allowed_flags

from sympy.polys.specialpolys import (
    symmetric_poly, interpolating_poly)

from sympy.polys.polyerrors import (
    PolificationFailed, ComputationFailed,
    MultivariatePolynomialError)

from sympy.utilities import numbered_symbols, take

from sympy.core import S, Basic, Add, Mul

def symmetrize(F, *gens, **args):
    """
    Rewrite a polynomial in terms of elementary symmetric polynomials.

    **Examples**

    >>> from sympy.polys.polyfuncs import symmetrize
    >>> from sympy.abc import x, y

    >>> symmetrize(x**2 + y**2)
    (-2*x*y + (x + y)**2, 0)

    >>> symmetrize(x**2 + y**2, formal=True)
    (s1**2 - 2*s2, 0, [(s1, x + y), (s2, x*y)])

    >>> symmetrize(x**2 - y**2)
    (-2*x*y + (x + y)**2, -2*y**2)

    >>> symmetrize(x**2 - y**2, formal=True)
    (s1**2 - 2*s2, -2*y**2, [(s1, x + y), (s2, x*y)])

    """
    allowed_flags(args, ['formal', 'symbols'])

    iterable = True

    if not hasattr(F, '__iter__'):
        iterable = False
        F = [F]

    try:
        F, opt = parallel_poly_from_expr(F, *gens, **args)
    except PolificationFailed, exc:
        result = []

        for expr in exc.exprs:
            if expr.is_Number:
                result.append((expr, S.Zero))
            else:
                raise ComputationFailed('symmetrize', len(F), exc)
        else:
            if not iterable:
                result, = result

            if not exc.opt.formal:
                return result
            else:
                if iterable:
                    return result, []
                else:
                    return result + ([],)

    polys, symbols = [], opt.symbols
    gens, dom = opt.gens, opt.domain

    for i in xrange(0, len(gens)):
        poly = symmetric_poly(i+1, gens, polys=True)
        polys.append((symbols.next(), poly.set_domain(dom)))

    indices = range(0, len(gens) - 1)
    weights = range(len(gens), 0, -1)

    result = []

    for f in F:
        symmetric = []

        if not f.is_homogeneous:
            symmetric.append(f.TC())
            f -= f.TC()

        while f:
            _height, _monom, _coeff = -1, None, None

            for i, (monom, coeff) in enumerate(f.terms()):
                if all(monom[i] >= monom[i+1] for i in indices):
                    height = max([ n*m for n, m in zip(weights, monom) ])

                    if height > _height:
                        _height, _monom, _coeff = height, monom, coeff

            if _height != -1:
                monom, coeff = _monom, _coeff
            else:
                break

            exponents = []

            for m1, m2 in zip(monom, monom[1:] + (0,)):
                exponents.append(m1 - m2)

            term = [ s**n for (s, _), n in zip(polys, exponents) ]
            poly = [ p**n for (_, p), n in zip(polys, exponents) ]

            symmetric.append(Mul(coeff, *term))
            product = poly[0].mul(coeff)

            for p in poly[1:]:
                product = product.mul(p)

            f -= product

        result.append((Add(*symmetric), f.as_expr()))

    polys = [ (s, p.as_expr()) for s, p in polys ]

    if not opt.formal:
        for i, (sym, non_sym) in enumerate(result):
            result[i] = (sym.subs(polys), non_sym)

    if not iterable:
        result, = result

    if not opt.formal:
        return result
    else:
        if iterable:
            return result, polys
        else:
            return result + (polys,)

def horner(f, *gens, **args):
    """
    Rewrite a polynomial in Horner form.

    **Examples**

    >>> from sympy.polys.polyfuncs import horner
    >>> from sympy.abc import x, y, a, b, c, d, e

    >>> horner(9*x**4 + 8*x**3 + 7*x**2 + 6*x + 5)
    x*(x*(x*(9*x + 8) + 7) + 6) + 5

    >>> horner(a*x**4 + b*x**3 + c*x**2 + d*x + e)
    e + x*(d + x*(c + x*(a*x + b)))

    >>> f = 4*x**2*y**2 + 2*x**2*y + 2*x*y**2 + x*y

    >>> horner(f, wrt=x)
    x*(x*y*(4*y + 2) + y*(2*y + 1))

    >>> horner(f, wrt=y)
    y*(x*y*(4*x + 2) + x*(2*x + 1))

    """
    allowed_flags(args, [])

    try:
        F, opt = poly_from_expr(f, *gens, **args)
    except PolificationFailed, exc:
        return exc.expr

    form, gen = S.Zero, F.gen

    if F.is_univariate:
        for coeff in F.all_coeffs():
            form = form*gen + coeff
    else:
        F, gens = Poly(F, gen), gens[1:]

        for coeff in F.all_coeffs():
            form = form*gen + horner(coeff, *gens, **args)

    return form

def interpolate(data, x):
    """
    Construct an interpolating polynomial for the data points.

    **Examples**

    >>> from sympy.polys.polyfuncs import interpolate
    >>> from sympy.abc import x

    >>> interpolate([1, 4, 9, 16], x)
    x**2
    >>> interpolate([(1, 1), (2, 4), (3, 9)], x)
    x**2
    >>> interpolate([(1, 2), (2, 5), (3, 10)], x)
    x**2 + 1
    >>> interpolate({1: 2, 2: 5, 3: 10}, x)
    x**2 + 1

    """
    n = len(data)

    if isinstance(data, dict):
        X, Y = zip(*data.items())
    else:
        if isinstance(data[0], tuple):
            X, Y = zip(*data)
        else:
            X = range(1, n+1)
            Y = list(data)

    poly = interpolating_poly(n, x, X, Y)

    return poly.expand()

def viete(f, roots=None, *gens, **args):
    """
    Generate Viete's formulas for ``f``.

    **Examples**

    >>> from sympy.polys.polyfuncs import viete
    >>> from sympy import symbols

    >>> x, a, b, c, r1, r2 = symbols('x,a:c,r1:3')

    >>> viete(a*x**2 + b*x + c, [r1, r2], x)
    [(r1 + r2, -b/a), (r1*r2, c/a)]

    """
    allowed_flags(args, [])

    if isinstance(roots, Basic):
        gens, roots = (roots,) + gens, None

    try:
        f, opt = poly_from_expr(f, *gens, **args)
    except PolificationFailed, exc:
        raise ComputationFailed('viete', 1, exc)

    if f.is_multivariate:
        raise MultivariatePolynomialError("multivariate polynomials are not allowed")

    n = f.degree()

    if n < 1:
        raise ValueError("can't derive Viete's formulas for a constant polynomial")

    if roots is None:
        roots = numbered_symbols('r', start=1)

    roots = take(roots, n)

    if n != len(roots):
        raise ValueError("required %s roots, got %s" % (n, len(roots)))

    lc, coeffs = f.LC(), f.all_coeffs()
    result, sign = [], -1

    for i, coeff in enumerate(coeffs[1:]):
        poly = symmetric_poly(i+1, roots)
        coeff = sign*(coeff/lc)
        result.append((poly, coeff))
        sign = -sign

    return result