/usr/share/pyshared/sympy/polys/polyroots.py is in python-sympy 0.7.1.rc1-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 | """Algorithms for computing symbolic roots of polynomials. """
from sympy.core.symbol import Dummy
from sympy.core.add import Add
from sympy.core.mul import Mul
from sympy.core import S, I, Basic
from sympy.core.sympify import sympify
from sympy.core.numbers import Rational, igcd
from sympy.ntheory import divisors, isprime, nextprime
from sympy.functions import exp, sqrt, re, im
from sympy.polys.polytools import Poly, cancel, factor, gcd_list
from sympy.polys.specialpolys import cyclotomic_poly
from sympy.polys.polyerrors import PolynomialError, GeneratorsNeeded, DomainError
from sympy.simplify import simplify
from sympy.utilities import default_sort_key
from sympy.core.compatibility import reduce
import math
def roots_linear(f):
"""Returns a list of roots of a linear polynomial."""
r = -f.nth(0)/f.nth(1)
dom = f.get_domain()
if not dom.is_Numerical:
if dom.is_Composite:
r = factor(r)
else:
r = simplify(r)
return [r]
def roots_quadratic(f):
"""Returns a list of roots of a quadratic polynomial."""
a, b, c = f.all_coeffs()
dom = f.get_domain()
def _simplify(expr):
if dom.is_Composite:
return factor(expr)
else:
return simplify(expr)
if c is S.Zero:
r0, r1 = S.Zero, -b/a
if not dom.is_Numerical:
r1 = _simplify(r1)
elif b is S.Zero:
r = -c/a
if not dom.is_Numerical:
R = sqrt(_simplify(r))
else:
R = sqrt(r)
r0 = R
r1 = -R
else:
d = b**2 - 4*a*c
if dom.is_Numerical:
D = sqrt(d)
r0 = (-b + D) / (2*a)
r1 = (-b - D) / (2*a)
else:
D = sqrt(_simplify(d))
A = 2*a
E = _simplify(-b/A)
F = D/A
r0 = E + F
r1 = E - F
return sorted([r0, r1], key=default_sort_key)
def roots_cubic(f):
"""Returns a list of roots of a cubic polynomial."""
_, a, b, c = f.monic().all_coeffs()
if c is S.Zero:
x1, x2 = roots([1,a,b], multiple = True)
return [x1, S.Zero, x2]
p = b - a**2/3
q = c - a*b/3 + 2*a**3/27
pon3 = p/3
aon3 = a/3
if p is S.Zero:
if q is S.Zero:
return [-aon3]*3
else:
u1 = q**Rational(1, 3)
elif q is S.Zero:
y1, y2 = roots([1, 0, p], multiple=True)
return [tmp - aon3 for tmp in [y1, S.Zero, y2]]
else:
u1 = (q/2 + sqrt(q**2/4 + pon3**3))**Rational(1, 3)
coeff = S.ImaginaryUnit*sqrt(3)/2
u2 = u1*(-S.Half + coeff)
u3 = u1*(-S.Half - coeff)
soln = [
-u1 + pon3/u1 - aon3,
-u2 + pon3/u2 - aon3,
-u3 + pon3/u3 - aon3
]
return soln
def roots_quartic(f):
r"""
Returns a list of roots of a quartic polynomial.
There are many references for solving quartic expressions available [1-5].
This reviewer has found that many of them require one to select from among
2 or more possible sets of solutions and that some solutions work when one
is searching for real roots but don't work when searching for complex roots
(though this is not always stated clearly). The following routine has been
tested and found to be correct for 0, 2 or 4 complex roots.
The quasisymmetric case solution [6] looks for quartics that have the form
`x**4 + A*x**3 + B*x**2 + C*x + D = 0` where `(C/A)**2 = D`.
Although there is a general solution, simpler results can be obtained for
certain values of the coefficients. In all cases, 4 roots are returned:
1) `f = c + a*(a**2/8 - b/2) == 0`
2) `g = d - a*(a*(3*a**2/256 - b/16) + c/4) = 0`
3) if `f != 0` and `g != 0` and `p = -d + a*c/4 - b**2/12` then
a) `p == 0`
b) `p != 0`
**Examples**
>>> from sympy import Poly, symbols, I
>>> from sympy.polys.polyroots import roots_quartic
>>> r = roots_quartic(Poly('x**4-6*x**3+17*x**2-26*x+20'))
>>> # 4 complex roots: 1+-I*sqrt(3), 2+-I
>>> sorted(str(tmp.evalf(n=2)) for tmp in r)
['1.0 + 1.7*I', '1.0 - 1.7*I', '2.0 + 1.0*I', '2.0 - 1.0*I']
**References**
1. http://mathforum.org/dr.math/faq/faq.cubic.equations.html
2. http://en.wikipedia.org/wiki/Quartic_function#Summary_of_Ferrari.27s_method
3. http://planetmath.org/encyclopedia/GaloisTheoreticDerivationOfTheQuarticFormula.html
4. http://staff.bath.ac.uk/masjhd/JHD-CA.pdf
5. http://www.albmath.org/files/Math_5713.pdf
6. http://www.statemaster.com/encyclopedia/Quartic-equation
"""
_, a, b, c, d = f.monic().all_coeffs()
if not d:
return [S.Zero] + roots([1, a, b, c], multiple=True)
elif (c/a)**2 == d:
x, m = f.gen, c/a
g = Poly(x**2 + a*x + b - 2*m, x)
z1, z2 = roots_quadratic(g)
h1 = Poly(x**2 - z1*x + m, x)
h2 = Poly(x**2 - z2*x + m, x)
r1 = roots_quadratic(h1)
r2 = roots_quadratic(h2)
return r1 + r2
else:
a2 = a**2
e = b - 3*a2/8
f = c + a*(a2/8 - b/2)
g = d - a*(a*(3*a2/256 - b/16) + c/4)
aon4 = a/4
ans = []
if f is S.Zero:
y1, y2 = [tmp**S.Half for tmp in
roots([1, e, g], multiple = True)]
return [tmp - aon4 for tmp in [-y1, -y2, y1, y2]]
if g is S.Zero:
y = [S.Zero] + roots([1, 0, e, f], multiple = True)
return [tmp - aon4 for tmp in y]
else:
p = -e**2/12 - g
q = -e**3/108 + e*g/3 - f**2/8
TH = Rational(1, 3)
if p is S.Zero:
y = -5*e/6 - q**TH
else:
# with p !=0 then u below is not 0
root = sqrt(q**2/4 + p**3/27)
r = -q/2 + root # or -q/2 - root
u = r**TH # primary root of solve(x**3-r, x)
y = -5*e/6 + u - p/u/3
w = sqrt(e + 2*y)
arg1 = 3*e + 2*y
arg2 = 2*f/w
for s in [-1, 1]:
root = sqrt(-(arg1 + s*arg2))
for t in [-1, 1]:
ans.append((s*w - t*root)/2 - aon4)
return ans
def roots_binomial(f):
"""Returns a list of roots of a binomial polynomial."""
n = f.degree()
a, b = f.nth(n), f.nth(0)
alpha = (-cancel(b/a))**Rational(1, n)
if alpha.is_number:
alpha = alpha.expand(complex=True)
roots, I = [], S.ImaginaryUnit
for k in xrange(n):
zeta = exp(2*k*S.Pi*I/n).expand(complex=True)
roots.append((alpha*zeta).expand(power_base=False))
return sorted(roots, key=default_sort_key)
def _inv_totient_estimate(m):
"""
Find ``(L, U)`` such that ``L <= phi^-1(m) <= U``.
**Examples**
>>> from sympy.polys.polyroots import _inv_totient_estimate
>>> _inv_totient_estimate(192)
(192, 840)
>>> _inv_totient_estimate(400)
(400, 1750)
"""
primes = [ d + 1 for d in divisors(m) if isprime(d + 1) ]
a, b = 1, 1
for p in primes:
a *= p
b *= p - 1
L = m
U = int(math.ceil(m*(float(a)/b)))
P = p = 2
primes = []
while P <= U:
p = nextprime(p)
primes.append(p)
P *= p
P //= p
b = 1
for p in primes[:-1]:
b *= p - 1
U = int(math.ceil(m*(float(P)/b)))
return L, U
def roots_cyclotomic(f, factor=False):
"""Compute roots of cyclotomic polynomials. """
L, U = _inv_totient_estimate(f.degree())
for n in xrange(L, U+1):
g = cyclotomic_poly(n, f.gen, polys=True)
if f == g:
break
else: # pragma: no cover
raise RuntimeError("failed to find index of a cyclotomic polynomial")
roots = []
if not factor:
for k in xrange(1, n+1):
if igcd(k, n) == 1:
roots.append(exp(2*k*S.Pi*I/n).expand(complex=True))
else:
g = Poly(f, extension=(-1)**Rational(1, n))
for h, _ in g.factor_list()[1]:
roots.append(-h.TC())
return sorted(roots, key=default_sort_key)
def roots_rational(f):
"""Returns a list of rational roots of a polynomial."""
domain = f.get_domain()
if domain.is_QQ:
_, f = f.clear_denoms()
elif domain.is_ZZ:
f = f.set_domain('QQ')
else:
return []
LC_divs = divisors(int(f.LC()))
EC_divs = divisors(int(f.EC()))
if not f.eval(S.Zero):
zeros = [S.Zero]
else:
zeros = []
for p in LC_divs:
for q in EC_divs:
zero = Rational(p, q)
if not f.eval(zero):
zeros.append(zero)
if not f.eval(-zero):
zeros.append(-zero)
return sorted(zeros, key=default_sort_key)
def _integer_basis(poly):
"""Compute coefficient basis for a polynomial over integers. """
monoms, coeffs = zip(*poly.terms())
monoms, = zip(*monoms)
coeffs = map(abs, coeffs)
if coeffs[0] < coeffs[-1]:
coeffs = list(reversed(coeffs))
else:
return None
monoms = monoms[:-1]
coeffs = coeffs[:-1]
divs = reversed(divisors(gcd_list(coeffs))[1:])
try:
div = divs.next()
except StopIteration:
return None
while True:
for monom, coeff in zip(monoms, coeffs):
if coeff % div**monom != 0:
try:
div = divs.next()
except StopIteration:
return None
else:
break
else:
return div
def preprocess_roots(poly):
"""Try to get rid of symbolic coefficients from ``poly``. """
coeff = S.One
try:
_, poly = poly.clear_denoms(convert=True)
except DomainError:
return coeff, poly
poly = poly.primitive()[1]
poly = poly.retract()
if poly.get_domain().is_Poly and all(c.is_monomial for c in poly.rep.coeffs()):
poly = poly.inject()
strips = zip(*poly.monoms())
gens = list(poly.gens[1:])
base, strips = strips[0], strips[1:]
for gen, strip in zip(list(gens), strips):
reverse = False
if strip[0] < strip[-1]:
strip = reversed(strip)
reverse = True
ratio = None
for a, b in zip(base, strip):
if not a and not b:
continue
elif not a or not b:
break
elif b % a != 0:
break
else:
_ratio = b // a
if ratio is None:
ratio = _ratio
elif ratio != _ratio:
break
else:
if reverse:
ratio = -ratio
poly = poly.eval(gen, 1)
coeff *= gen**(-ratio)
gens.remove(gen)
if gens:
poly = poly.eject(*gens)
if poly.is_univariate and poly.get_domain().is_ZZ:
basis = _integer_basis(poly)
if basis is not None:
n = poly.degree()
def func(k, coeff):
return coeff//basis**(n-k[0])
poly = poly.termwise(func)
coeff *= basis
return coeff, poly
def roots(f, *gens, **flags):
"""
Computes symbolic roots of a univariate polynomial.
Given a univariate polynomial f with symbolic coefficients (or
a list of the polynomial's coefficients), returns a dictionary
with its roots and their multiplicities.
Only roots expressible via radicals will be returned. To get
a complete set of roots use RootOf class or numerical methods
instead. By default cubic and quartic formulas are used in
the algorithm. To disable them because of unreadable output
set ``cubics=False`` or ``quartics=False`` respectively.
To get roots from a specific domain set the ``filter`` flag with
one of the following specifiers: Z, Q, R, I, C. By default all
roots are returned (this is equivalent to setting ``filter='C'``).
By default a dictionary is returned giving a compact result in
case of multiple roots. However to get a tuple containing all
those roots set the ``multiple`` flag to True.
**Examples**
>>> from sympy import Poly, roots
>>> from sympy.abc import x, y
>>> roots(x**2 - 1, x)
{-1: 1, 1: 1}
>>> p = Poly(x**2-1, x)
>>> roots(p)
{-1: 1, 1: 1}
>>> p = Poly(x**2-y, x, y)
>>> roots(Poly(p, x))
{-y**(1/2): 1, y**(1/2): 1}
>>> roots(x**2 - y, x)
{-y**(1/2): 1, y**(1/2): 1}
>>> roots([1, 0, -1])
{-1: 1, 1: 1}
"""
flags = dict(flags)
auto = flags.pop('auto', True)
cubics = flags.pop('cubics', True)
quartics = flags.pop('quartics', True)
multiple = flags.pop('multiple', False)
filter = flags.pop('filter', None)
predicate = flags.pop('predicate', None)
if isinstance(f, list):
if gens:
raise ValueError('redundant generators given')
x = Dummy('x')
poly, i = {}, len(f)-1
for coeff in f:
poly[i], i = sympify(coeff), i-1
f = Poly(poly, x, field=True)
else:
try:
f = Poly(f, *gens, **flags)
except GeneratorsNeeded:
if multiple:
return []
else:
return {}
if f.is_multivariate:
raise PolynomialError('multivariate polynomials are not supported')
def _update_dict(result, root, k):
if root in result:
result[root] += k
else:
result[root] = k
def _try_decompose(f):
"""Find roots using functional decomposition. """
factors, roots = f.decompose(), []
for root in _try_heuristics(factors[0]):
roots.append(root)
for factor in factors[1:]:
previous, roots = list(roots), []
for root in previous:
g = factor - Poly(root, f.gen)
for root in _try_heuristics(g):
roots.append(root)
return roots
def _try_heuristics(f):
"""Find roots using formulas and some tricks. """
if f.is_ground:
return []
if f.is_monomial:
return [S(0)]*f.degree()
if f.length() == 2:
if f.degree() == 1:
return map(cancel, roots_linear(f))
else:
return roots_binomial(f)
result = []
for i in [-1, 1]:
if not f.eval(i):
f = f.quo(Poly(f.gen - i, f.gen))
result.append(i)
break
n = f.degree()
if n == 1:
result += map(cancel, roots_linear(f))
elif n == 2:
result += map(cancel, roots_quadratic(f))
elif f.is_cyclotomic:
result += roots_cyclotomic(f)
elif n == 3 and cubics:
result += roots_cubic(f)
elif n == 4 and quartics:
result += roots_quartic(f)
return result
(k,), f = f.terms_gcd()
if not k:
zeros = {}
else:
zeros = {S(0) : k}
coeff, f = preprocess_roots(f)
if auto and f.get_domain().has_Ring:
f = f.to_field()
result = {}
if not f.is_ground:
if not f.get_domain().is_Exact:
for r in f.nroots():
_update_dict(result, r, 1)
elif f.degree() == 1:
result[roots_linear(f)[0]] = 1
elif f.degree() == 2:
for r in roots_quadratic(f):
_update_dict(result, r, 1)
elif f.length() == 2:
for r in roots_binomial(f):
_update_dict(result, r, 1)
else:
_, factors = Poly(f.as_expr()).factor_list()
if len(factors) == 1 and factors[0][1] == 1:
for root in _try_decompose(f):
_update_dict(result, root, 1)
else:
for factor, k in factors:
for r in _try_heuristics(Poly(factor, f.gen, field=True)):
_update_dict(result, r, k)
if coeff is not S.One:
_result, result, = result, {}
for root, k in _result.iteritems():
result[coeff*root] = k
result.update(zeros)
if filter not in [None, 'C']:
handlers = {
'Z' : lambda r: r.is_Integer,
'Q' : lambda r: r.is_Rational,
'R' : lambda r: r.is_real,
'I' : lambda r: r.is_imaginary,
}
try:
query = handlers[filter]
except KeyError:
raise ValueError("Invalid filter: %s" % filter)
for zero in dict(result).iterkeys():
if not query(zero):
del result[zero]
if predicate is not None:
for zero in dict(result).iterkeys():
if not predicate(zero):
del result[zero]
if not multiple:
return result
else:
zeros = []
for zero, k in result.iteritems():
zeros.extend([zero]*k)
return sorted(zeros, key=default_sort_key)
def root_factors(f, *gens, **args):
"""
Returns all factors of a univariate polynomial.
**Examples**
>>> from sympy.abc import x, y
>>> from sympy.polys.polyroots import root_factors
>>> root_factors(x**2-y, x)
[x - y**(1/2), x + y**(1/2)]
"""
args = dict(args)
filter = args.pop('filter', None)
F = Poly(f, *gens, **args)
if not F.is_Poly:
return [f]
if F.is_multivariate:
raise ValueError('multivariate polynomials not supported')
x = F.gens[0]
zeros = roots(F, filter=filter)
if not zeros:
factors = [F]
else:
factors, N = [], 0
for r, n in zeros.iteritems():
factors, N = factors + [Poly(x-r, x)]*n, N + n
if N < F.degree():
G = reduce(lambda p,q: p*q, factors)
factors.append(F.quo(G))
if not isinstance(f, Poly):
return [ f.as_expr() for f in factors ]
else:
return factors
|