This file is indexed.

/usr/share/pyshared/sympy/polys/polyutils.py is in python-sympy 0.7.1.rc1-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
"""Useful utilities for higher level polynomial classes. """

from sympy.polys.polyerrors import PolynomialError, GeneratorsNeeded
from sympy.polys.polyoptions import build_options

from sympy.core.exprtools import decompose_power

from sympy.core import S, Add, Mul, Pow
from sympy.assumptions import ask, Q

import re

_gens_order = {
    'a': 301, 'b': 302, 'c': 303, 'd': 304,
    'e': 305, 'f': 306, 'g': 307, 'h': 308,
    'i': 309, 'j': 310, 'k': 311, 'l': 312,
    'm': 313, 'n': 314, 'o': 315, 'p': 216,
    'q': 217, 'r': 218, 's': 219, 't': 220,
    'u': 221, 'v': 222, 'w': 223, 'x': 124,
    'y': 125, 'z': 126,
}

_max_order = 1000
_re_gen = re.compile(r"^(.+?)(\d*)$")

def _sort_gens(gens, **args):
    """Sort generators in a reasonably intelligent way. """
    opt = build_options(args)

    gens_order, wrt = {}, None

    if opt is not None:
        gens_order, wrt = {}, opt.wrt

        for i, gen in enumerate(opt.sort):
            gens_order[gen] = i+1

    def order_key(gen):
        gen = str(gen)

        if wrt is not None:
            try:
                return (-len(wrt) + wrt.index(gen), gen, 0)
            except ValueError:
                pass

        name, index = _re_gen.match(gen).groups()

        if index:
            index = int(index)
        else:
            index = 0

        try:
            return ( gens_order[name], name, index)
        except KeyError:
            pass

        try:
            return (_gens_order[name], name, index)
        except KeyError:
            pass

        return (_max_order, name, index)

    try:
        gens = sorted(gens, key=order_key)
    except TypeError: # pragma: no cover
        pass

    return tuple(gens)

def _unify_gens(f_gens, g_gens):
    """Unify generators in a reasonably intelligent way. """
    f_gens = list(f_gens)
    g_gens = list(g_gens)

    if f_gens == g_gens:
        return tuple(f_gens)

    gens, common, k = [], [], 0

    for gen in f_gens:
        if gen in g_gens:
            common.append(gen)

    for i, gen in enumerate(g_gens):
        if gen in common:
            g_gens[i], k = common[k], k+1

    for gen in common:
        i = f_gens.index(gen)

        gens.extend(f_gens[:i])
        f_gens = f_gens[i+1:]

        i = g_gens.index(gen)

        gens.extend(g_gens[:i])
        g_gens = g_gens[i+1:]

        gens.append(gen)

    gens.extend(f_gens)
    gens.extend(g_gens)

    return tuple(gens)

def _analyze_gens(gens):
    """Support for passing generators as `*gens` and `[gens]`. """
    if len(gens) == 1 and hasattr(gens[0], '__iter__'):
        return tuple(gens[0])
    else:
        return tuple(gens)

def _sort_factors(factors, **args):
    """Sort low-level factors in increasing 'complexity' order. """
    def order_if_multiple_key(factor):
        (f, n) = factor
        return (len(f), n, f)

    def order_no_multiple_key(f):
        return (len(f), f)

    if args.get('multiple', True):
        return sorted(factors, key=order_if_multiple_key)
    else:
        return sorted(factors, key=order_no_multiple_key)

def _parallel_dict_from_expr_if_gens(exprs, opt):
    """Transform expressions into a multinomial form given generators. """
    k, indices = len(opt.gens), {}

    for i, g in enumerate(opt.gens):
        indices[g] = i

    polys = []

    for expr in exprs:
        poly = {}

        for term in Add.make_args(expr):
            coeff, monom = [], [0]*k

            for factor in Mul.make_args(term):
                if factor.is_Number:
                    coeff.append(factor)
                else:
                    try:
                        base, exp = decompose_power(factor)

                        if exp < 0:
                            exp, base = -exp, Pow(base, -S.One)

                        monom[indices[base]] = exp
                    except KeyError:
                        if not factor.has(*opt.gens):
                            coeff.append(factor)
                        else:
                            raise PolynomialError("%s contains an element of the generators set" % factor)

            monom = tuple(monom)

            if monom in poly:
                poly[monom] += Mul(*coeff)
            else:
                poly[monom] = Mul(*coeff)

        polys.append(poly)

    return polys, opt.gens

def _parallel_dict_from_expr_no_gens(exprs, opt):
    """Transform expressions into a multinomial form and figure out generators. """
    if opt.domain is not None:
        def _is_coeff(factor):
            return factor in opt.domain
    elif opt.extension is True:
        def _is_coeff(factor):
            return ask(Q.algebraic(factor))
    elif opt.greedy is not False:
        def _is_coeff(factor):
            return False
    else:
        def _is_coeff(factor):
            return factor.is_number

    gens, reprs = set([]), []

    for expr in exprs:
        terms = []

        for term in Add.make_args(expr):
            coeff, elements = [], {}

            for factor in Mul.make_args(term):
                if factor.is_Number or _is_coeff(factor):
                    coeff.append(factor)
                else:
                    base, exp = decompose_power(factor)

                    if exp < 0:
                        exp, base = -exp, Pow(base, -S.One)

                    elements[base] = exp
                    gens.add(base)

            terms.append((coeff, elements))

        reprs.append(terms)

    if not gens:
        if len(exprs) == 1:
            arg = exprs[0]
        else:
            arg = (exprs,)

        raise GeneratorsNeeded("specify generators to give %s a meaning" % arg)

    gens = _sort_gens(gens, opt=opt)
    k, indices = len(gens), {}

    for i, g in enumerate(gens):
        indices[g] = i

    polys = []

    for terms in reprs:
        poly = {}

        for coeff, term in terms:
            monom = [0]*k

            for base, exp in term.iteritems():
                monom[indices[base]] = exp

            monom = tuple(monom)

            if monom in poly:
                poly[monom] += Mul(*coeff)
            else:
                poly[monom] = Mul(*coeff)

        polys.append(poly)

    return polys, tuple(gens)

def _dict_from_expr_if_gens(expr, opt):
    """Transform an expression into a multinomial form given generators. """
    (poly,), gens = _parallel_dict_from_expr_if_gens((expr,), opt)
    return poly, gens

def _dict_from_expr_no_gens(expr, opt):
    """Transform an expression into a multinomial form and figure out generators. """
    (poly,), gens = _parallel_dict_from_expr_no_gens((expr,), opt)
    return poly, gens

def parallel_dict_from_expr(exprs, **args):
    """Transform expressions into a multinomial form. """
    reps, opt = _parallel_dict_from_expr(exprs, build_options(args))
    return reps, opt.gens

def _parallel_dict_from_expr(exprs, opt):
    """Transform expressions into a multinomial form. """
    if opt.expand is not False:
        exprs = [ expr.expand() for expr in exprs ]

    if any(expr.is_commutative is False for expr in exprs):
        raise PolynomialError('non-commutative expressions are not supported')

    if opt.gens:
        reps, gens = _parallel_dict_from_expr_if_gens(exprs, opt)
    else:
        reps, gens = _parallel_dict_from_expr_no_gens(exprs, opt)

    return reps, opt.clone({'gens': gens})

def dict_from_expr(expr, **args):
    """Transform an expression into a multinomial form. """
    rep, opt = _dict_from_expr(expr, build_options(args))
    return rep, opt.gens

def _dict_from_expr(expr, opt):
    """Transform an expression into a multinomial form. """
    if opt.expand is not False:
        expr = expr.expand()

    if expr.is_commutative is False:
        raise PolynomialError('non-commutative expressions are not supported')

    if opt.gens:
        rep, gens = _dict_from_expr_if_gens(expr, opt)
    else:
        rep, gens = _dict_from_expr_no_gens(expr, opt)

    return rep, opt.clone({'gens': gens})

def expr_from_dict(rep, *gens):
    """Convert a multinomial form into an expression. """
    result = []

    for monom, coeff in rep.iteritems():
        term = [coeff]

        for g, m in zip(gens, monom):
            term.append(Pow(g, m))

        result.append(Mul(*term))

    return Add(*result)

parallel_dict_from_basic = parallel_dict_from_expr
dict_from_basic = dict_from_expr
basic_from_dict = expr_from_dict

def _dict_reorder(rep, gens, new_gens):
    """Reorder levels using dict representation. """
    gens = list(gens)

    monoms = rep.keys()
    coeffs = rep.values()

    new_monoms = [ [] for _ in xrange(len(rep)) ]

    for gen in new_gens:
        try:
            j = gens.index(gen)

            for M, new_M in zip(monoms, new_monoms):
                new_M.append(M[j])
        except ValueError:
            for new_M in new_monoms:
                new_M.append(0)

    return map(tuple, new_monoms), coeffs