/usr/share/pyshared/sympy/printing/fcode.py is in python-sympy 0.7.1.rc1-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 | """
Fortran code printer
The FCodePrinter converts single sympy expressions into single Fortran
expressions, using the functions defined in the Fortran 77 standard where
possible. Some useful pointers to Fortran can be found on wikipedia:
http://en.wikipedia.org/wiki/Fortran
Most of the code below is based on the "Professional Programmer\'s Guide to
Fortran77" by Clive G. Page:
http://www.star.le.ac.uk/~cgp/prof77.html
Fortran is a case-insensitive language. This might cause trouble because sympy
is case sensitive. The implementation below does not care and leaves the
responsibility for generating properly cased Fortran code to the user.
"""
from sympy.core import S, C, Add
from sympy.printing.codeprinter import CodePrinter
from sympy.printing.precedence import precedence
from sympy.functions import sin, cos, tan, asin, acos, atan, atan2, sinh, \
cosh, tanh, sqrt, log, exp, Abs, sign, conjugate, Piecewise
implicit_functions = set([
sin, cos, tan, asin, acos, atan, atan2, sinh, cosh, tanh, sqrt, log, exp,
Abs, sign, conjugate
])
class FCodePrinter(CodePrinter):
"""A printer to convert sympy expressions to strings of Fortran code"""
printmethod = "_fcode"
_default_settings = {
'order': None,
'full_prec': 'auto',
'assign_to': None,
'precision': 15,
'user_functions': {},
'human': True,
'source_format': 'fixed',
}
def __init__(self, settings=None):
CodePrinter.__init__(self, settings)
self._init_leading_padding()
assign_to = self._settings['assign_to']
if isinstance(assign_to, basestring):
self._settings['assign_to'] = C.Symbol(assign_to)
elif not isinstance(assign_to, (C.Basic, type(None))):
raise TypeError("FCodePrinter cannot assign to object of type %s"%
type(assign_to))
def _rate_index_position(self, p):
"""function to calculate score based on position among indices
This method is used to sort loops in an optimized order, see
CodePrinter._sort_optimized()
"""
return -p*5
def _get_statement(self, codestring):
return codestring
def _init_leading_padding(self):
# leading columns depend on fixed or free format
if self._settings['source_format'] == 'fixed':
self._lead_code = " "
self._lead_cont = " @ "
self._lead_comment = "C "
elif self._settings['source_format'] == 'free':
self._lead_code = ""
self._lead_cont = " "
self._lead_comment = "! "
else:
raise ValueError(
"Unknown source format: %s" % self._settings['source_format']
)
def _pad_leading_columns(self, lines):
result = []
for line in lines:
if line.startswith('!'):
result.append(self._lead_comment + line[1:].lstrip())
else:
result.append(self._lead_code + line)
return result
def _get_loop_opening_ending(self, indices):
"""Returns a tuple (open_lines, close_lines) containing lists of codelines
"""
open_lines = []
close_lines = []
for i in indices:
# fortran arrays start at 1 and end at dimension
var, start, stop = map(self._print,
[i.label, i.lower+1, i.upper+1])
open_lines.append("do %s = %s, %s" % (var, start, stop))
close_lines.append("end do")
return open_lines, close_lines
def doprint(self, expr):
"""Returns Fortran code for expr (as a string)"""
# find all number symbols
self._number_symbols = set()
# keep a set of expressions that are not strictly translatable to
# Fortran.
self._not_supported = set()
lines = []
if isinstance(expr, Piecewise):
# support for top-level Piecewise function
for i, (e, c) in enumerate(expr.args):
if i == 0:
lines.append("if (%s) then" % self._print(c))
elif i == len(expr.args)-1 and c == True:
lines.append("else")
else:
lines.append("else if (%s) then" % self._print(c))
lines.extend(self._doprint_a_piece(e, self._settings['assign_to']))
lines.append("end if")
else:
lines.extend(self._doprint_a_piece(expr, self._settings['assign_to']))
# format the output
if self._settings["human"]:
frontlines = []
if len(self._not_supported) > 0:
frontlines.append("! Not Fortran:")
for expr in sorted(self._not_supported, key=self._print):
frontlines.append("! %s" % expr)
for name, value in sorted(self._number_symbols, key=str):
frontlines.append("parameter (%s = %s)" % (str(name), value))
frontlines.extend(lines)
lines = frontlines
lines = self.indent_code(lines)
lines = self._wrap_fortran(lines)
result = "\n".join(lines)
else:
lines = self.indent_code(lines)
lines = self._wrap_fortran(lines)
result = self._number_symbols, self._not_supported, "\n".join(lines)
del self._not_supported
del self._number_symbols
return result
def _print_Add(self, expr):
# purpose: print complex numbers nicely in Fortran.
# collect the purely real and purely imaginary parts:
pure_real = []
pure_imaginary = []
mixed = []
for arg in expr.args:
if arg.is_real and arg.is_number:
pure_real.append(arg)
elif arg.is_imaginary and arg.is_number:
pure_imaginary.append(arg)
else:
mixed.append(arg)
if len(pure_imaginary) > 0:
if len(mixed) > 0:
PREC = precedence(expr)
term = Add(*mixed)
t = self._print(term)
if t.startswith('-'):
sign = "-"
t = t[1:]
else:
sign = "+"
if precedence(term) < PREC:
t = "(%s)" % t
return "cmplx(%s,%s) %s %s" % (
self._print(Add(*pure_real)),
self._print(-S.ImaginaryUnit*Add(*pure_imaginary)),
sign, t,
)
else:
return "cmplx(%s,%s)" % (
self._print(Add(*pure_real)),
self._print(-S.ImaginaryUnit*Add(*pure_imaginary)),
)
else:
return CodePrinter._print_Add(self, expr)
def _print_Function(self, expr):
name = self._settings["user_functions"].get(expr.__class__)
if name is None:
if expr.func == conjugate:
name = "conjg"
else:
name = expr.func.__name__
if hasattr(expr, '_imp_') and isinstance(expr._imp_, C.Lambda):
# inlined function.
# the expression is printed with _print to avoid loops
return self._print(expr._imp_(*expr.args))
if expr.func not in implicit_functions:
self._not_supported.add(expr)
return "%s(%s)" % (name, self.stringify(expr.args, ", "))
_print_factorial = _print_Function
def _print_ImaginaryUnit(self, expr):
# purpose: print complex numbers nicely in Fortran.
return "cmplx(0,1)"
def _print_int(self, expr):
return str(expr)
def _print_Mul(self, expr):
# purpose: print complex numbers nicely in Fortran.
if expr.is_imaginary and expr.is_number:
return "cmplx(0,%s)" % (
self._print(-S.ImaginaryUnit*expr)
)
else:
return CodePrinter._print_Mul(self, expr)
_print_Exp1 = CodePrinter._print_NumberSymbol
_print_Pi = CodePrinter._print_NumberSymbol
def _print_Pow(self, expr):
PREC = precedence(expr)
if expr.exp is S.NegativeOne:
return '1.0/%s'%(self.parenthesize(expr.base, PREC))
elif expr.exp == 0.5:
if expr.base.is_integer:
# Fortan intrinsic sqrt() does not accept integer argument
if expr.base.is_Number:
return 'sqrt(%s.0d0)' % self._print(expr.base)
else:
return 'sqrt(dble(%s))' % self._print(expr.base)
else:
return 'sqrt(%s)' % self._print(expr.base)
else:
return CodePrinter._print_Pow(self, expr)
def _print_Rational(self, expr):
p, q = int(expr.p), int(expr.q)
return "%d.0d0/%d.0d0" % (p, q)
def _print_Float(self, expr):
printed = CodePrinter._print_Float(self, expr)
e = printed.find('e')
if e > -1:
return "%sd%s" % (printed[:e], printed[e+1:])
return "%sd0" % printed
def _print_Indexed(self, expr):
inds = [ self._print(i) for i in expr.indices ]
return "%s(%s)" % (self._print(expr.base.label), ", ".join(inds))
def _print_Idx(self, expr):
return self._print(expr.label)
def _wrap_fortran(self, lines):
"""Wrap long Fortran lines
Argument:
lines -- a list of lines (without \\n character)
A comment line is split at white space. Code lines are split with a more
complex rule to give nice results.
"""
# routine to find split point in a code line
my_alnum = set("_+-.0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ_")
my_white = set(" \t()")
def split_pos_code(line, endpos):
if len(line) <= endpos:
return len(line)
pos = endpos
split = lambda pos: \
(line[pos] in my_alnum and line[pos-1] not in my_alnum) or \
(line[pos] not in my_alnum and line[pos-1] in my_alnum) or \
(line[pos] in my_white and line[pos-1] not in my_white) or \
(line[pos] not in my_white and line[pos-1] in my_white)
while not split(pos):
pos -= 1
if pos == 0:
return endpos
return pos
# split line by line and add the splitted lines to result
result = []
if self._settings['source_format'] == 'free':
trailing = ' &'
else:
trailing = ''
for line in lines:
if line.startswith(self._lead_comment):
# comment line
if len(line) > 72:
pos = line.rfind(" ", 6, 72)
if pos == -1:
pos = 72
hunk = line[:pos]
line = line[pos:].lstrip()
result.append(hunk)
while len(line) > 0:
pos = line.rfind(" ", 0, 66)
if pos == -1 or len(line) < 66:
pos = 66
hunk = line[:pos]
line = line[pos:].lstrip()
result.append("%s%s" % (self._lead_comment, hunk))
else:
result.append(line)
elif line.startswith(self._lead_code):
# code line
pos = split_pos_code(line, 72)
hunk = line[:pos].rstrip()
line = line[pos:].lstrip()
if line: hunk += trailing
result.append(hunk)
while len(line) > 0:
pos = split_pos_code(line, 65)
hunk = line[:pos].rstrip()
line = line[pos:].lstrip()
if line: hunk += trailing
result.append("%s%s" % (self._lead_cont, hunk))
else:
result.append(line)
return result
def indent_code(self, code):
"""Accepts a string of code or a list of code lines"""
if isinstance(code, basestring):
code_lines = self.indent_code(code.splitlines(True))
return ''.join(code_lines)
free = self._settings['source_format'] == 'free'
code = [ line.lstrip(' \t') for line in code ]
inc_keyword = ('do ', 'if(', 'if ', 'do\n', 'else')
dec_keyword = ('end do', 'enddo', 'end if', 'endif', 'else')
increase = [ int(any(map(line.startswith, inc_keyword))) for line in code ]
decrease = [ int(any(map(line.startswith, dec_keyword))) for line in code ]
continuation = [ int(any(map(line.endswith, ['&', '&\n']))) for line in code ]
level = 0
cont_padding = 0
tabwidth = 3
new_code = []
for i, line in enumerate(code):
if line == '' or line == '\n':
new_code.append(line)
continue
level -= decrease[i]
if free:
padding = " "*(level*tabwidth + cont_padding)
else:
padding = " "*level*tabwidth
line = "%s%s" % (padding, line)
if not free:
line = self._pad_leading_columns([line])[0]
new_code.append(line)
if continuation[i]:
cont_padding = 2*tabwidth
else:
cont_padding = 0
level += increase[i]
if not free:
return self._wrap_fortran(new_code)
return new_code
def fcode(expr, **settings):
"""Converts an expr to a string of Fortran 77 code
Arguments:
expr -- a sympy expression to be converted
Optional arguments:
assign_to -- When given, the argument is used as the name of the
variable to which the Fortran expression is assigned.
(This is helpful in case of line-wrapping.)
precision -- the precision for numbers such as pi [default=15]
user_functions -- A dictionary where keys are FunctionClass instances
and values are there string representations.
human -- If True, the result is a single string that may contain
some parameter statements for the number symbols. If
False, the same information is returned in a more
programmer-friendly data structure.
source_format -- The source format can be either 'fixed' or 'free'.
[default='fixed']
>>> from sympy import fcode, symbols, Rational, pi, sin
>>> x, tau = symbols('x,tau')
>>> fcode((2*tau)**Rational(7,2))
' 8*sqrt(2.0d0)*tau**(7.0d0/2.0d0)'
>>> fcode(sin(x), assign_to="s")
' s = sin(x)'
>>> print fcode(pi)
parameter (pi = 3.14159265358979d0)
pi
"""
# run the printer
printer = FCodePrinter(settings)
return printer.doprint(expr)
def print_fcode(expr, **settings):
"""Prints the Fortran representation of the given expression.
See fcode for the meaning of the optional arguments.
"""
print fcode(expr, **settings)
|