/usr/share/pyshared/sympy/printing/str.py is in python-sympy 0.7.1.rc1-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 | """
A Printer for generating readable representation of most sympy classes.
"""
from sympy.core import S, Rational, Pow, Basic
from printer import Printer
from sympy.printing.precedence import precedence, PRECEDENCE
import sympy.mpmath.libmp as mlib
from sympy.mpmath.libmp import prec_to_dps
from sympy.polys.polyerrors import PolynomialError
from sympy.core.compatibility import cmp_to_key
class StrPrinter(Printer):
printmethod = "_sympystr"
_default_settings = {
"order": None,
"full_prec": "auto",
}
def parenthesize(self, item, level):
if precedence(item) <= level:
return "(%s)"%self._print(item)
else:
return self._print(item)
def stringify(self, args, sep, level=0):
return sep.join([self.parenthesize(item, level) for item in args])
def emptyPrinter(self, expr):
if isinstance(expr, str):
return expr
elif isinstance(expr, Basic):
if hasattr(expr, "args"):
return repr(expr)
else:
raise
else:
return str(expr)
def _print_Add(self, expr, order=None):
terms = self._as_ordered_terms(expr, order=order)
PREC = precedence(expr)
l = []
for term in terms:
t = self._print(term)
if t.startswith('-'):
sign = "-"
t = t[1:]
else:
sign = "+"
if precedence(term) < PREC:
l.extend([sign, "(%s)"%t])
else:
l.extend([sign, t])
sign = l.pop(0)
if sign=='+':
sign = ""
return sign + ' '.join(l)
def _print_AppliedPredicate(self, expr):
return '%s(%s)' % (expr.func, expr.arg)
def _print_Basic(self, expr):
l = [self._print(o) for o in expr.args]
return expr.__class__.__name__ + "(%s)"%", ".join(l)
def _print_Catalan(self, expr):
return 'Catalan'
def _print_ComplexInfinity(self, expr):
return 'zoo'
def _print_Derivative(self, expr):
return 'Derivative(%s)'%", ".join(map(self._print, expr.args))
def _print_dict(self, expr):
keys = expr.keys()
keys.sort( key=cmp_to_key(Basic.compare_pretty) )
items = []
for key in keys:
item = "%s: %s" % (self._print(key), self._print(expr[key]))
items.append(item)
return "{%s}"%", ".join(items)
def _print_Dummy(self, expr):
return '_' + expr.name
def _print_EulerGamma(self, expr):
return 'EulerGamma'
def _print_Exp1(self, expr):
return 'E'
def _print_ExprCondPair(self, expr):
return '(%s, %s)' % (expr.expr, expr.cond)
def _print_factorial(self, expr):
return "%s!" % self.parenthesize(expr.args[0], PRECEDENCE["Pow"])
def _print_FiniteSet(self, s):
if len(s) > 10:
#take ten elements from the set at random
q = iter(s)
printset = [q.next() for i in xrange(10)]
else:
printset = s
try:
printset = sorted(printset)
except: pass
return '{' + ', '.join(self._print(el) for el in printset) + '}'
def _print_Function(self, expr):
return expr.func.__name__ + "(%s)"%self.stringify(expr.args, ", ")
def _print_GeometryEntity(self, expr):
# GeometryEntity is special -- it's base is tuple
return str(expr)
def _print_GoldenRatio(self, expr):
return 'GoldenRatio'
def _print_ImaginaryUnit(self, expr):
return 'I'
def _print_Infinity(self, expr):
return 'oo'
def _print_Integral(self, expr):
def _xab_tostr(xab):
if len(xab) == 1:
return self._print(xab[0])
else:
return self._print((xab[0],) + tuple(xab[1:]))
L = ', '.join([_xab_tostr(l) for l in expr.limits])
return 'Integral(%s, %s)' % (self._print(expr.function), L)
def _print_FiniteSet(self, s):
if len(s) > 10:
#take ten elements from the set at random
q = iter(s)
printset = [q.next() for i in xrange(10)]
else:
printset = s
try:
printset = sorted(printset)
except: pass
return '{' + ', '.join(self._print(el) for el in printset) + '}'
def _print_Interval(self, i):
if i.left_open:
left = '('
else:
left = '['
if i.right_open:
right = ')'
else:
right = ']'
return "%s%s, %s%s" % \
(left, self._print(i.start), self._print(i.end), right)
def _print_Lambda(self, obj):
args, expr = obj.args
if len(args) == 1:
return "Lambda(%s, %s)" % (args.args[0], expr)
else:
arg_string = ", ".join(self._print(arg) for arg in args)
return "Lambda((%s), %s" % (arg_string, expr)
def _print_LatticeOp(self, expr):
args = sorted(expr.args, key=cmp_to_key(expr._compare_pretty))
return expr.func.__name__ + "(%s)"%", ".join(self._print(arg) for arg in args)
def _print_Limit(self, expr):
e, z, z0, dir = expr.args
if dir == "+":
return "Limit(%s, %s, %s)" % (e, z, z0)
else:
return "Limit(%s, %s, %s, dir='%s')" % (e, z, z0, dir)
def _print_list(self, expr):
return "[%s]"%self.stringify(expr, ", ")
def _print_Matrix(self, expr):
return expr._format_str(lambda elem: self._print(elem))
def _print_DeferredVector(self, expr):
return expr.name
def _print_Mul(self, expr):
coeff, terms = expr.as_coeff_mul()
if coeff.is_negative:
coeff = -coeff
if coeff is not S.One:
terms = (coeff,) + terms
sign = "-"
else:
terms = (coeff,) + terms
sign = ""
a = [] # items in the numerator
b = [] # items that are in the denominator (if any)
if self.order != 'old':
args = expr._new_rawargs(*terms).as_ordered_factors()
else:
args = terms
# Gather args for numerator/denominator
for item in args:
if item.is_Pow and item.exp.is_Rational and item.exp.is_negative:
b.append(Pow(item.base, -item.exp))
elif item.is_Rational and item is not S.Infinity:
if item.p != 1:
a.append(Rational(item.p))
if item.q != 1:
b.append(Rational(item.q))
else:
a.append(item)
if len(a)==0:
a = [S.One]
a_str = map(lambda x:self.parenthesize(x, precedence(expr)), a)
b_str = map(lambda x:self.parenthesize(x, precedence(expr)), b)
if len(b)==0:
return sign + '*'.join(a_str)
elif len(b)==1:
if len(a)==1 and not (a[0].is_Atom or a[0].is_Add):
return sign + "%s/"%a_str[0] + '*'.join(b_str)
else:
return sign + '*'.join(a_str) + "/%s"%b_str[0]
else:
return sign + '*'.join(a_str) + "/(%s)"%'*'.join(b_str)
def _print_NaN(self, expr):
return 'nan'
def _print_NegativeInfinity(self, expr):
return '-oo'
def _print_Normal(self, expr):
return "Normal(%s, %s)"%(expr.mu, expr.sigma)
def _print_Order(self, expr):
if len(expr.variables) <= 1:
return 'O(%s)'%self._print(expr.expr)
else:
return 'O(%s)'%self.stringify(expr.args, ', ', 0)
def _print_PDF(self, expr):
return 'PDF(%s, (%s, %s, %s))' % \
(self._print(expr.pdf.args[1]), self._print(expr.pdf.args[0]), \
self._print(expr.domain[0]), self._print(expr.domain[1]))
def _print_Pi(self, expr):
return 'pi'
def _print_Poly(self, expr):
terms, gens = [], [ self._print(s) for s in expr.gens ]
for monom, coeff in expr.terms():
s_monom = []
for i, exp in enumerate(monom):
if exp > 0:
if exp == 1:
s_monom.append(gens[i])
else:
s_monom.append(gens[i] + "**%d" % exp)
s_monom = "*".join(s_monom)
if coeff.is_Add:
if s_monom:
s_coeff = "(" + self._print(coeff) + ")"
else:
s_coeff = self._print(coeff)
else:
if s_monom:
if coeff is S.One:
terms.extend(['+', s_monom])
continue
if coeff is S.NegativeOne:
terms.extend(['-', s_monom])
continue
s_coeff = self._print(coeff)
if not s_monom:
s_term = s_coeff
else:
s_term = s_coeff + "*" + s_monom
if s_term.startswith('-'):
terms.extend(['-', s_term[1:]])
else:
terms.extend(['+', s_term])
if terms[0] in ['-', '+']:
modifier = terms.pop(0)
if modifier == '-':
terms[0] = '-' + terms[0]
format = expr.__class__.__name__ + "(%s, %s"
try:
format += ", modulus=%s" % expr.get_modulus()
except PolynomialError:
format += ", domain='%s'" % expr.get_domain()
format += ")"
return format % (' '.join(terms), ', '.join(gens))
def _print_ProductSet(self, p):
return ' x '.join(self._print(set) for set in p.sets)
def _print_AlgebraicNumber(self, expr):
if expr.is_aliased:
return self._print(expr.as_poly().as_expr())
else:
return self._print(expr.as_expr())
def _print_Pow(self, expr):
PREC = precedence(expr)
if expr.exp is S.NegativeOne:
return '1/%s'%(self.parenthesize(expr.base, PREC))
else:
return '%s**%s'%(self.parenthesize(expr.base, PREC),
self.parenthesize(expr.exp, PREC))
def _print_Integer(self, expr):
return str(expr.p)
def _print_int(self, expr):
return str(expr)
def _print_mpz(self, expr):
return str(expr)
def _print_Rational(self, expr):
return '%s/%s' % (expr.p, expr.q)
def _print_Fraction(self, expr):
return '%s/%s' % (expr.numerator, expr.denominator)
def _print_mpq(self, expr):
return '%s/%s' % (expr.numer(), expr.denom())
def _print_Float(self, expr):
prec = expr._prec
if prec < 5:
dps = 0
else:
dps = prec_to_dps(expr._prec)
if self._settings["full_prec"] == True:
strip = False
elif self._settings["full_prec"] == False:
strip = True
elif self._settings["full_prec"] == "auto":
strip = self._print_level > 1
return mlib.to_str(expr._mpf_, dps, strip_zeros=strip)
def _print_Relational(self, expr):
return '%s %s %s'%(self.parenthesize(expr.lhs, precedence(expr)),
expr.rel_op,
self.parenthesize(expr.rhs, precedence(expr)))
def _print_DMP(self, expr):
cls = expr.__class__.__name__
rep = self._print(expr.rep)
dom = self._print(expr.dom)
return "%s(%s, %s)" % (cls, rep, dom)
def _print_DMF(self, expr):
cls = expr.__class__.__name__
num = self._print(expr.num)
den = self._print(expr.den)
dom = self._print(expr.dom)
return "%s((%s, %s), %s)" % (cls, num, den, dom)
def _print_RootOf(self, expr):
return "RootOf(%s, %d)" % (self._print_Add(expr.expr, order='lex'), expr.index)
def _print_RootSum(self, expr):
args = [self._print_Add(expr.expr, order='lex')]
if expr.fun is not S.IdentityFunction:
args.append(self._print(expr.fun))
return "RootSum(%s)" % ", ".join(args)
def _print_Sample(self, expr):
return "Sample([%s])"%self.stringify(expr, ", ", 0)
def __print_set(self, expr):
items = list(expr)
items.sort( key=cmp_to_key(Basic.compare_pretty) )
args = ', '.join(self._print(item) for item in items)
if args:
args = '[%s]' % args
return '%s(%s)' % (type(expr).__name__, args)
_print_set = __print_set
_print_frozenset = __print_set
def _print_SparseMatrix(self, expr):
return self._print(expr.toMatrix())
def _print_Sum(self, expr):
def _xab_tostr(xab):
if len(xab) == 1:
return self._print(xab[0])
else:
return self._print((xab[0],) + tuple(xab[1:]))
L = ', '.join([_xab_tostr(l) for l in expr.limits])
return 'Sum(%s, %s)' % (self._print(expr.function), L)
def _print_Symbol(self, expr):
return expr.name
def _print_Predicate(self, expr):
return "Q.%s" % expr.name
def _print_str(self, expr):
return expr
def _print_tuple(self, expr):
if len(expr)==1:
return "(%s,)"%self._print(expr[0])
else:
return "(%s)"%self.stringify(expr, ", ")
def _print_Tuple(self, expr):
return self._print_tuple(expr)
def _print_Uniform(self, expr):
return "Uniform(%s, %s)"%(expr.a, expr.b)
def _print_Union(self, expr):
return ' U '.join(self._print(set) for set in expr.args)
def _print_Unit(self, expr):
return expr.abbrev
def _print_Wild(self, expr):
return expr.name + '_'
def _print_WildFunction(self, expr):
return expr.name + '_'
def _print_Zero(self, expr):
return "0"
def sstr(expr, **settings):
"""Returns the expression as a string.
Example:
>>> from sympy import symbols, Eq, sstr
>>> a, b = symbols('a b')
>>> sstr(Eq(a + b, 0))
'a + b == 0'
"""
p = StrPrinter(settings)
s = p.doprint(expr)
return s
class StrReprPrinter(StrPrinter):
"""(internal) -- see sstrrepr"""
def _print_str(self, s):
return repr(s)
def sstrrepr(expr, **settings):
"""return expr in mixed str/repr form
i.e. strings are returned in repr form with quotes, and everything else
is returned in str form.
This function could be useful for hooking into sys.displayhook
"""
p = StrReprPrinter(settings)
s = p.doprint(expr)
return s
|