/usr/share/pyshared/sympy/series/gruntz.py is in python-sympy 0.7.1.rc1-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 | """
Limits
======
Implemented according to the PhD thesis
http://www.cybertester.com/data/gruntz.pdf, which contains very thorough
descriptions of the algorithm including many examples. We summarize here the
gist of it.
All functions are sorted according to how rapidly varying they are at infinity
using the following rules. Any two functions f and g can be compared using the
properties of L:
L=lim log|f(x)| / log|g(x)| (for x -> oo)
We define >, < ~ according to::
1. f > g .... L=+-oo
we say that:
- f is greater than any power of g
- f is more rapidly varying than g
- f goes to infinity/zero faster than g
2. f < g .... L=0
we say that:
- f is lower than any power of g
3. f ~ g .... L!=0, +-oo
we say that:
- both f and g are bounded from above and below by suitable integral
powers of the other
Examples
========
::
2 < x < exp(x) < exp(x**2) < exp(exp(x))
2 ~ 3 ~ -5
x ~ x**2 ~ x**3 ~ 1/x ~ x**m ~ -x
exp(x) ~ exp(-x) ~ exp(2x) ~ exp(x)**2 ~ exp(x+exp(-x))
f ~ 1/f
So we can divide all the functions into comparability classes (x and x^2 belong
to one class, exp(x) and exp(-x) belong to some other class). In principle, we
could compare any two functions, but in our algorithm, we don't compare
anything below the class 2~3~-5 (for example log(x) is below this), so we set
2~3~-5 as the lowest comparability class.
Given the function f, we find the list of most rapidly varying (mrv set)
subexpressions of it. This list belongs to the same comparability class. Let's
say it is {exp(x), exp(2x)}. Using the rule f ~ 1/f we find an element "w"
(either from the list or a new one) from the same comparability class which
goes to zero at infinity. In our example we set w=exp(-x) (but we could also
set w=exp(-2x) or w=exp(-3x) ...). We rewrite the mrv set using w, in our case
{1/w, 1/w^2}, and substitute it into f. Then we expand f into a series in w::
f = c0*w^e0 + c1*w^e1 + ... + O(w^en), where e0<e1<...<en, c0!=0
but for x->oo, lim f = lim c0*w^e0, because all the other terms go to zero,
because w goes to zero faster than the ci and ei. So::
for e0>0, lim f = 0
for e0<0, lim f = +-oo (the sign depends on the sign of c0)
for e0=0, lim f = lim c0
We need to recursively compute limits at several places of the algorithm, but
as is shown in the PhD thesis, it always finishes.
Important functions from the implementation:
compare(a, b, x) compares "a" and "b" by computing the limit L.
mrv(e, x) returns the list of most rapidly varying (mrv) subexpressions of "e"
rewrite(e, Omega, x, wsym) rewrites "e" in terms of w
leadterm(f, x) returns the lowest power term in the series of f
mrv_leadterm(e, x) returns the lead term (c0, e0) for e
limitinf(e, x) computes lim e (for x->oo)
limit(e, z, z0) computes any limit by converting it to the case x->oo
All the functions are really simple and straightforward except rewrite(), which
is the most difficult/complex part of the algorithm. When the algorithm fails,
the bugs are usually in the series expansion (i.e. in SymPy) or in rewrite.
This code is almost exact rewrite of the Maple code inside the Gruntz thesis.
Debugging
---------
Because the gruntz algorithm is highly recursive, it's difficult to figure out
what went wrong inside a debugger. Instead, turn on nice debug prints by
defining the environment variable SYMPY_DEBUG. For example:
[user@localhost]: SYMPY_DEBUG=True ./bin/isympy
In [1]: limit(sin(x)/x, x, 0)
limitinf(_x*sin(1/_x), _x) = 1
+-mrv_leadterm(_x*sin(1/_x), _x) = (1, 0)
| +-mrv(_x*sin(1/_x), _x) = set([_x])
| | +-mrv(_x, _x) = set([_x])
| | +-mrv(sin(1/_x), _x) = set([_x])
| | +-mrv(1/_x, _x) = set([_x])
| | +-mrv(_x, _x) = set([_x])
| +-mrv_leadterm(exp(_x)*sin(exp(-_x)), _x, set([exp(_x)])) = (1, 0)
| +-rewrite(exp(_x)*sin(exp(-_x)), set([exp(_x)]), _x, _w) = (1/_w*sin(_w), -_x)
| +-sign(_x, _x) = 1
| +-mrv_leadterm(1, _x) = (1, 0)
+-sign(0, _x) = 0
+-limitinf(1, _x) = 1
And check manually which line is wrong. Then go to the source code and debug
this function to figure out the exact problem.
"""
from sympy import SYMPY_DEBUG
from sympy.core import Basic, S, oo, Symbol, C, I, Dummy, Wild
from sympy.core.function import Function, UndefinedFunction
from sympy.functions import log, exp
from sympy.series.order import Order
from sympy.simplify import powsimp
from sympy import cacheit
from sympy.core.compatibility import reduce
O = Order
def debug(func):
"""Only for debugging purposes: prints a tree
It will print a nice execution tree with arguments and results
of all decorated functions.
"""
if not SYMPY_DEBUG:
#normal mode - do nothing
return func
#debug mode
def decorated(*args, **kwargs):
#r = func(*args, **kwargs)
r = maketree(func, *args, **kwargs)
#print "%s = %s(%s, %s)" % (r, func.__name__, args, kwargs)
return r
return decorated
from time import time
it = 0
do_timings = False
def timeit(func):
global do_timings
if not do_timings:
return func
def dec(*args, **kwargs):
global it
it += 1
t0 = time()
r = func(*args, **kwargs)
t1 = time()
print "%s %.3f %s%s" % ('-' * (2+it), t1-t0, func.func_name, args)
it -= 1
return r
return dec
def tree(subtrees):
"Only debugging purposes: prints a tree"
def indent(s, type=1):
x = s.split("\n")
r = "+-%s\n"%x[0]
for a in x[1:]:
if a == "":
continue
if type == 1:
r += "| %s\n"%a
else:
r += " %s\n"%a
return r
if len(subtrees) == 0:
return ""
f = []
for a in subtrees[:-1]:
f.append(indent(a))
f.append(indent(subtrees[-1], 2))
return ''.join(f)
tmp = []
iter = 0
def maketree(f, *args, **kw):
"Only debugging purposes: prints a tree"
global tmp
global iter
oldtmp = tmp
tmp = []
iter += 1
# If there is a bug and the algorithm enters an infinite loop, enable the
# following line. It will print the names and parameters of all major functions
# that are called, *before* they are called
#print "%s%s %s%s" % (iter, reduce(lambda x, y: x + y,map(lambda x: '-',range(1,2+iter))), f.func_name, args)
r = f(*args, **kw)
iter -= 1
s = "%s%s = %s\n" % (f.func_name, args, r)
if tmp != []:
s += tree(tmp)
tmp = oldtmp
tmp.append(s)
if iter == 0:
print tmp[0]
tmp = []
return r
def compare(a, b, x):
"""Returns "<" if a<b, "=" for a == b, ">" for a>b"""
# log(exp(...)) must always be simplified here for termination
la, lb = log(a), log(b)
if isinstance(a, Basic) and a.func is exp:
la = a.args[0]
if isinstance(b, Basic) and b.func is exp:
lb = b.args[0]
c = limitinf(la/lb, x)
if c == 0:
return "<"
elif c.is_unbounded:
return ">"
else:
return "="
class SubsSet(dict):
"""
Stores (expr, dummy) pairs, and how to rewrite expr-s.
The gruntz algorithm needs to rewrite certain expressions in term of a new
variable w. We cannot use subs, because it is just too smart for us. For
example:
> Omega=[exp(exp(_p - exp(-_p))/(1 - 1/_p)), exp(exp(_p))]
> O2=[exp(-exp(_p) + exp(-exp(-_p))*exp(_p)/(1 - 1/_p))/_w, 1/_w]
> e = exp(exp(_p - exp(-_p))/(1 - 1/_p)) - exp(exp(_p))
> e.subs(Omega[0],O2[0]).subs(Omega[1],O2[1])
-1/w + exp(exp(p)*exp(-exp(-p))/(1 - 1/p))
is really not what we want!
So we do it the hard way and keep track of all the things we potentially
want to substitute by dummy variables. Consider the expression
exp(x - exp(-x)) + exp(x) + x.
The mrv set is {exp(x), exp(-x), exp(x - exp(-x))}.
We introduce corresponding dummy variables d1, d2, d3 and rewrite:
d3 + d1 + x.
This class first of all keeps track of the mapping expr->variable, i.e.
will at this stage be a dictionary
{exp(x): d1, exp(-x): d2, exp(x - exp(-x)): d3}.
[It turns out to be more convenient this way round.]
But sometimes expressions in the mrv set have other expressions from the
mrv set as subexpressions, and we need to keep track of that as well. In
this case, d3 is really exp(x - d2), so rewrites at this stage is
{d3: exp(x-d2)}.
The function rewrite uses all this information to correctly rewrite our
expression in terms of w. In this case w can be choosen to be exp(-x),
i.e. d2. The correct rewriting then is
exp(-w)/w + 1/w + x.
"""
def __init__(self):
self.rewrites = {}
def __repr__(self):
return super(SubsSet, self).__repr__() + ', ' + self.rewrites.__repr__()
def __getitem__(self, key):
if not key in self:
self[key] = Dummy()
return dict.__getitem__(self, key)
def do_subs(self, e):
for expr, var in self.iteritems():
e = e.subs(var, expr)
return e
def meets(self, s2):
""" Tell whether or not self and s2 have non-empty intersection """
return set(self.keys()).intersection(s2.keys()) != set()
def union(self, s2, exps=None):
""" Compute the union of self and s2, adjusting exps """
res = self.copy()
tr = {}
for expr, var in s2.iteritems():
if expr in self:
if exps: exps = exps.subs(var, res[expr])
tr[var] = res[expr]
else:
res[expr] = var
for var, rewr in s2.rewrites.iteritems():
res.rewrites[var] = rewr.subs(tr)
return res, exps
def copy(self):
r = SubsSet()
r.rewrites = self.rewrites.copy()
for expr, var in self.iteritems():
r[expr] = var
return r
@debug
def mrv(e, x):
"""Returns a SubsSet of most rapidly varying (mrv) subexpressions of 'e',
and e rewritten in terms of these"""
e = powsimp(e, deep=True, combine='exp')
assert isinstance(e, Basic)
if not e.has(x):
return SubsSet(), e
elif e == x:
s = SubsSet()
return s, s[x]
elif e.is_Mul or e.is_Add:
i, d = e.as_independent(x) # throw away x-independent terms
if d.func != e.func:
s, expr = mrv(d, x)
return s, e.func(i, expr)
a, b = d.as_two_terms()
s1, e1 = mrv(a, x)
s2, e2 = mrv(b, x)
return mrv_max1(s1, s2, e.func(i, e1, e2), x)
elif e.is_Pow:
b, e = e.as_base_exp()
if e.has(x):
return mrv(exp(e * log(b)), x)
else:
s, expr = mrv(b, x)
return s, expr**e
elif e.func is log:
s, expr = mrv(e.args[0], x)
return s, log(expr)
elif e.func is exp:
# We know from the theory of this algorithm that exp(log(...)) may always
# be simplified here, and doing so is vital for termination.
if e.args[0].func is log:
return mrv(e.args[0].args[0], x)
if limitinf(e.args[0], x).is_unbounded:
s1 = SubsSet()
e1 = s1[e]
s2, e2 = mrv(e.args[0], x)
su = s1.union(s2)[0]
su.rewrites[e1] = exp(e2)
return mrv_max3(s1, e1, s2, exp(e2), su, e1, x)
else:
s, expr = mrv(e.args[0], x)
return s, exp(expr)
elif e.is_Function:
l = [mrv(a, x) for a in e.args]
l2 = [s for (s, _) in l if s != SubsSet()]
if len(l2) != 1:
# e.g. something like BesselJ(x, x)
raise NotImplementedError("MRV set computation for functions in"
" several variables not implemented.")
s, ss = l2[0], SubsSet()
args = map(lambda x: ss.do_subs(x[1]), l)
return s, e.func(*args)
elif e.is_Derivative:
raise NotImplementedError("MRV set computation for derviatives"
" not implemented yet.")
return mrv(e.args[0], x)
raise NotImplementedError("Don't know how to calculate the mrv of '%s'" % e)
def mrv_max3(f, expsf, g, expsg, union, expsboth, x):
"""Computes the maximum of two sets of expressions f and g, which
are in the same comparability class, i.e. max() compares (two elements of)
f and g and returns either (f, expsf) [if f is larger], (g, expsg)
[if g is larger] or (union, expsboth) [if f, g are of the same class].
"""
assert isinstance(f, SubsSet)
assert isinstance(g, SubsSet)
if f == SubsSet():
return g, expsg
elif g == SubsSet():
return f, expsf
elif f.meets(g):
return union, expsboth
c = compare(f.keys()[0], g.keys()[0], x)
if c == ">":
return f, expsf
elif c == "<":
return g, expsg
else:
assert c == "="
return union, expsboth
def mrv_max1(f, g, exps, x):
"""Computes the maximum of two sets of expressions f and g, which
are in the same comparability class, i.e. mrv_max1() compares (two elements of)
f and g and returns the set, which is in the higher comparability class
of the union of both, if they have the same order of variation.
Also returns exps, with the appropriate substitutions made.
"""
u, b = f.union(g, exps)
return mrv_max3(f, g.do_subs(exps), g, f.do_subs(exps),
u, b, x)
@debug
@cacheit
@timeit
def sign(e, x):
"""Returns a sign of an expression e(x) for x->oo.
e > 0 for x sufficiently large ... 1
e == 0 for x sufficiently large ... 0
e < 0 for x sufficiently large ... -1
The result of this function is currently undefined if e changes sign
arbitarily often for arbitrarily large x (e.g. sin(x)).
Note that this returns zero only if e is *constantly* zero
for x sufficiently large. [If e is constant, of course, this is just
the same thing as the sign of e.]
"""
from sympy import sign as _sign
assert isinstance(e, Basic)
if e.is_positive:
return 1
elif e.is_negative:
return -1
if e.is_Rational or e.is_Float:
assert not e is S.NaN
if e == 0:
return 0
elif e.evalf() > 0:
return 1
else:
return -1
elif not e.has(x):
return _sign(e)
elif e == x:
return 1
elif e.is_Mul:
a, b = e.as_two_terms()
sa = sign(a, x)
if not sa:
return 0
return sa * sign(b, x)
elif e.func is exp:
return 1
elif e.is_Pow:
s = sign(e.base, x)
if s == 1:
return 1
if e.exp.is_Integer:
return s**e.exp
elif e.func is log:
return sign(e.args[0] -1, x)
# if all else fails, do it the hard way
c0, e0 = mrv_leadterm(e, x)
return sign(c0, x)
@debug
@timeit
@cacheit
def limitinf(e, x):
"""Limit e(x) for x-> oo"""
#rewrite e in terms of tractable functions only
e = e.rewrite('tractable', deep=True)
if not e.has(x):
return e #e is a constant
if not x.is_positive:
# We make sure that x.is_positive is True so we
# get all the correct mathematical bechavior from the expression.
# We need a fresh variable.
p = Dummy('p', positive=True, bounded=True)
e = e.subs(x, p)
x = p
c0, e0 = mrv_leadterm(e, x)
sig = sign(e0, x)
if sig == 1:
return S.Zero # e0>0: lim f = 0
elif sig == -1: #e0<0: lim f = +-oo (the sign depends on the sign of c0)
if c0.match(I*Wild("a", exclude=[I])):
return c0*oo
s = sign(c0, x)
#the leading term shouldn't be 0:
assert s != 0
return s*oo
elif sig == 0:
return limitinf(c0, x) #e0=0: lim f = lim c0
def moveup2(s, x):
r = SubsSet()
for expr, var in s.iteritems():
r[expr.subs(x, exp(x))] = var
for var, expr in s.rewrites.iteritems():
r.rewrites[var] = s.rewrites[var].subs(x, exp(x))
return r
def moveup(l, x):
return [e.subs(x, exp(x)) for e in l]
@debug
@timeit
def calculate_series(e, x, skip_abs=False, logx=None):
""" Calculates at least one term of the series of "e" in "x".
This is a place that fails most often, so it is in its own function.
"""
f = e
for n in [1, 2, 4, 6, 8]:
series = f.nseries(x, n=n, logx=logx)
if not series.has(O):
# The series expansion is locally exact.
return series
series = series.removeO()
if series:
if (not skip_abs) or series.has(x):
break
else:
raise ValueError('(%s).series(%s, n=8) gave no terms.' % (f, x))
return series
@debug
@timeit
@cacheit
def mrv_leadterm(e, x):
"""Returns (c0, e0) for e."""
Omega = SubsSet()
if not e.has(x):
return (e, S.Zero)
if Omega == SubsSet():
Omega, exps = mrv(e, x)
if not Omega:
# e really does not depend on x after simplification
series = calculate_series(e, x)
c0, e0 = series.leadterm(x)
assert e0 == 0
return c0, e0
if x in Omega:
#move the whole omega up (exponentiate each term):
Omega_up = moveup2(Omega, x)
e_up = moveup([e], x)[0]
exps_up = moveup([exps], x)[0]
# NOTE: there is no need to move this down!
e = e_up
Omega = Omega_up
exps = exps_up
#
# The positive dummy, w, is used here so log(w*2) etc. will expand;
# a unique dummy is needed in this algorithm
#
# For limits of complex functions, the algorithm would have to be
# improved, or just find limits of Re and Im components separately.
#
w = Dummy("w", real=True, positive=True, bounded=True)
f, logw = rewrite(exps, Omega, x, w)
series = calculate_series(f, w, logx=logw)
series = series.subs(log(w), logw) # this should not be necessary
return series.leadterm(w)
def build_expression_tree(Omega, rewrites):
""" Helper function for rewrite.
We need to sort Omega (mrv set) so that we replace an expression before
we replace any expression in terms of which it has to be rewritten:
e1 ---> e2 ---> e3
\
-> e4
Here we can do e1, e2, e3, e4 or e1, e2, e4, e3.
To do this we assemble the nodes into a tree, and sort them by height.
This function builds the tree, rewrites then sorts the nodes.
"""
class Node:
def ht(self):
return reduce(lambda x, y: x + y,
map(lambda x: x.ht(), self.before), 1)
nodes = {}
for expr, v in Omega:
n = Node()
n.before = []
n.var = v
n.expr = expr
nodes[v] = n
for _, v in Omega:
if v in rewrites:
n = nodes[v]
r = rewrites[v]
for _, v2 in Omega:
if r.has(v2):
n.before.append(nodes[v2])
return nodes
@debug
@timeit
def rewrite(e, Omega, x, wsym):
"""e(x) ... the function
Omega ... the mrv set
wsym ... the symbol which is going to be used for w
Returns the rewritten e in terms of w and log(w). See test_rewrite1()
for examples and correct results.
"""
assert isinstance(Omega, SubsSet)
assert len(Omega) != 0
#all items in Omega must be exponentials
for t in Omega.keys():
assert t.func is exp
rewrites = Omega.rewrites
Omega = Omega.items()
nodes = build_expression_tree(Omega, rewrites)
Omega.sort(key=lambda x: nodes[x[1]].ht(), reverse=True)
g, _ = Omega[-1] #g is going to be the "w" - the simplest one in the mrv set
sig = sign(g.args[0], x)
if sig == 1:
wsym = 1/wsym #if g goes to oo, substitute 1/w
elif sig != -1:
raise NotImplementedError('Result depends on the sign of %s' % sig)
#O2 is a list, which results by rewriting each item in Omega using "w"
O2 = []
for f, var in Omega:
c = limitinf(f.args[0]/g.args[0], x)
arg = f.args[0]
if var in rewrites:
assert rewrites[var].func is exp
arg = rewrites[var].args[0]
O2.append((var, exp((arg - c*g.args[0]).expand())*wsym**c))
#Remember that Omega contains subexpressions of "e". So now we find
#them in "e" and substitute them for our rewriting, stored in O2
# the following powsimp is necessary to automatically combine exponentials,
# so that the .subs() below succeeds:
# TODO this should not be necessary
f = powsimp(e, deep=True, combine='exp')
for a, b in O2:
f = f.subs(a, b)
for _, var in Omega:
assert not f.has(var)
#finally compute the logarithm of w (logw).
logw = g.args[0]
if sig == 1:
logw = -logw #log(w)->log(1/w)=-log(w)
return f, logw
def gruntz(e, z, z0, dir="+"):
"""
Compute the limit of e(z) at the point z0 using the Gruntz algorithm.
z0 can be any expression, including oo and -oo.
For dir="+" (default) it calculates the limit from the right
(z->z0+) and for dir="-" the limit from the left (z->z0-). For infinite z0
(oo or -oo), the dir argument doesn't matter.
This algorithm is fully described in the module docstring in the gruntz.py
file. It relies heavily on the series expansion. Most frequently, gruntz()
is only used if the faster limit() function (which uses heuristics) fails.
"""
if not isinstance(z, Symbol):
raise NotImplementedError("Second argument must be a Symbol")
#convert all limits to the limit z->oo; sign of z is handled in limitinf
r = None
if z0 == oo:
r = limitinf(e, z)
elif z0 == -oo:
r = limitinf(e.subs(z, -z), z)
else:
if dir == "-":
e0 = e.subs(z, z0 - 1/z)
elif dir == "+":
e0 = e.subs(z, z0 + 1/z)
else:
raise NotImplementedError("dir must be '+' or '-'")
r = limitinf(e0, z)
# This is a bit of a heuristic for nice results... we always rewrite
# tractable functions in terms of familiar intractable ones.
# It might be nicer to rewrite the exactly to what they were initially,
# but that would take some work to implement.
return r.rewrite('intractable', deep=True)
|