/usr/share/pyshared/sympy/simplify/hyperexpand.py is in python-sympy 0.7.1.rc1-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 | """
Expand Hypergeometric (and Meijer G) functions into named
special functions.
The algorithm for doing this uses a collection of lookup tables of
hypergeometric functions, and various of their properties, to expand
many hypergeometric functions in terms of special functions.
It is based on the following paper:
Kelly B. Roach. Meijer G Function Representations.
In: Proceedings of the 1997 International Symposium on Symbolic and
Algebraic Computation, pages 205-211, New York, 1997. ACM.
It is described in great(er) detail in the Sphinx documentation.
"""
from sympy.core import S, Dummy, symbols, sympify, Tuple, expand, I, Mul
from sympy import SYMPY_DEBUG
def add_formulae(formulae):
""" Create our knowledge base.
Leave this at the top for easy reference. """
z = Dummy('z')
a, b, c = symbols('a b c', cls=Dummy)
def add(ap, bq, res):
formulae.append(Formula(ap, bq, z, res, (a, b, c)))
def addb(ap, bq, B, C, M):
formulae.append(Formula(ap, bq, z, None, (a, b, c), B, C, M))
from sympy.matrices import diag, Matrix
# Luke, Y. L. (1969), The Special Functions and Their Approximations,
# Volume 1, section 6.2
from sympy import (exp, sqrt, cosh, log, asin, atan, I, lowergamma, cos,
atanh, besseli, gamma, erf, pi, sin, besselj)
# 0F0
add((), (), exp(z))
# 1F0
add((-a, ), (), (1-z)**a)
# 2F1
addb((a, a - S.Half), (2*a,),
Matrix([2**(2*a-1)*(1 + sqrt(1-z))**(1-2*a),
2**(2*a-1)*(1 + sqrt(1-z))**(-2*a)]),
Matrix([[1, 0]]),
Matrix([[(a-S.Half)*z/(1-z), (S.Half-a)*z/(1-z)],
[a/(1-z), a*(z-2)/(1-z)]]))
addb((1, 1), (2,),
Matrix([log(1 - z), 1]), Matrix([[-1/z, 0]]),
Matrix([[0, z/(z - 1)], [0, 0]]))
addb((S.Half, 1), (S('3/2'),),
Matrix([log((1 + sqrt(z))/(1 - sqrt(z)))/sqrt(z), 1]),
Matrix([[S(1)/2, 0]]),
Matrix([[-S(1)/2, 1/(1 - z)], [0, 0]]))
addb((S.Half, S.Half), (S('3/2'),),
Matrix([asin(sqrt(z))/sqrt(z), 1/sqrt(1 - z)]),
Matrix([[1, 0]]),
Matrix([[-S(1)/2, S(1)/2], [0, z/(1 - z)/2]]))
addb((-a, S.Half - a), (S.Half,),
Matrix([(1 + sqrt(z))**(2*a) + (1 - sqrt(z))**(2*a),
sqrt(z)*(1 + sqrt(z))**(2*a-1)
- sqrt(z)*(1 - sqrt(z))**(2*a-1)]),
Matrix([[S.Half, 0]]),
Matrix([[0, a], [z*(2*a-1)/2/(1-z), S.Half - z*(2*a-1)/(1-z)]]))
# A. P. Prudnikov, Yu. A. Brychkov and O. I. Marichev (1990).
# Integrals and Series: More Special Functions, Vol. 3,.
# Gordon and Breach Science Publisher
add([a, -a], [S.Half], cos(2*a*asin(sqrt(z))))
addb([1, 1], [3*S.Half],
Matrix([asin(sqrt(z))/sqrt(z*(1-z)), 1]), Matrix([[1, 0]]),
Matrix([[(z - S.Half)/(1 - z), 1/(1 - z)/2], [0, 0]]))
# 3F2
addb([-S.Half, 1, 1], [S.Half, 2],
Matrix([sqrt(z)*atanh(sqrt(z)), log(1 - z), 1]),
Matrix([[-S(2)/3, -S(1)/(3*z), S(2)/3]]),
Matrix([[S(1)/2, 0, z/(1 - z)/2],
[0, 0, z/(z - 1)],
[0, 0, 0]]))
# actually the formula for 3/2 is much nicer ...
addb([-S.Half, 1, 1], [2, 2],
Matrix([sqrt(1 - z), log(sqrt(1 - z)/2 + S.Half), 1]),
Matrix([[S(4)/9 - 16/(9*z), 4/(3*z), 16/(9*z)]]),
Matrix([[z/2/(z - 1), 0, 0], [1/(2*(z - 1)), 0, S.Half], [0, 0, 0]]))
# 1F1
addb([1], [b], Matrix([z**(1 - b) * exp(z) * lowergamma(b - 1, z), 1]),
Matrix([[b - 1, 0]]),Matrix([[1 - b + z, 1], [0, 0]]))
addb([a], [2*a],
Matrix([z**(S.Half - a)*exp(z/2)*besseli(a - S.Half, z/2)
* gamma(a + S.Half)/4**(S.Half - a),
z**(S.Half - a)*exp(z/2)*besseli(a + S.Half, z/2)
* gamma(a + S.Half)/4**(S.Half - a)]),
Matrix([[1, 0]]),
Matrix([[z/2, z/2], [z/2, (z/2 - 2*a)]]))
add([-S.Half], [S.Half], exp(z) - sqrt(pi*z)*(-I)*erf(I*sqrt(z)))
# 2F2
addb([S.Half, a], [S(3)/2, a + 1],
Matrix([a/(2*a - 1)*(-I)*sqrt(pi/z)*erf(I*sqrt(z)),
a/(2*a - 1)*(-z)**(-a)*lowergamma(a, -z), a/(2*a - 1)*exp(z)]),
Matrix([[1, -1, 0]]),
Matrix([[-S.Half, 0, 1], [0, -a, 1], [0, 0, z]]))
# 0F1
add((), (S.Half,), cosh(2*sqrt(z)))
addb([], [b],
Matrix([gamma(b)*z**((1-b)/2)*besseli(b-1, 2*sqrt(z)),
gamma(b)*z**(1 - b/2)*besseli(b , 2*sqrt(z))]),
Matrix([[1, 0]]), Matrix([[0, 1], [z, (1-b)]]))
# 0F3
x = 4*z**(S(1)/4)
def fp(a,z): return besseli(a, x) + besselj(a, x)
def fm(a,z): return besseli(a, x) - besselj(a, x)
addb([], [S.Half, a, a+S.Half],
Matrix([fp(2*a - 1, z), fm(2*a, z)*z**(S(1)/4),
fm(2*a - 1, z)*z**(S(1)/2), fp(2*a, z)*z**(S(3)/4)])
* 2**(-2*a)*gamma(2*a)*z**((1-2*a)/4),
Matrix([[1, 0, 0, 0]]),
Matrix([[0, 1, 0, 0],
[0, S(1)/2 - a, 1, 0],
[0, 0, S(1)/2, 1],
[z, 0, 0, 1 - a]]))
x = 2*(-4*z)**(S(1)/4)
addb([], [a, a + S.Half, 2*a],
(2*sqrt(-z))**(1-2*a)*gamma(2*a)**2 *
Matrix([besselj(2*a-1, x)*besseli(2*a-1, x),
x*(besseli(2*a, x)*besselj(2*a-1, x)
- besseli(2*a-1, x)*besselj(2*a, x)),
x**2*besseli(2*a, x)*besselj(2*a, x),
x**3*(besseli(2*a,x)*besselj(2*a-1,x)
+ besseli(2*a-1, x)*besselj(2*a, x))]),
Matrix([[1, 0, 0, 0]]),
Matrix([[0, S(1)/4, 0, 0],
[0, (1-2*a)/2, -S(1)/2, 0],
[0, 0, 1-2*a, S(1)/4],
[-32*z, 0, 0, 1-a]]))
# 1F2
addb([a], [a - S.Half, 2*a],
Matrix([z**(S.Half - a)*besseli(a-S.Half, sqrt(z))**2,
z**(1-a)*besseli(a-S.Half, sqrt(z))
*besseli(a-S(3)/2, sqrt(z)),
z**(S(3)/2-a)*besseli(a-S(3)/2, sqrt(z))**2]),
Matrix([[-gamma(a + S.Half)**2/4**(S.Half - a),
2*gamma(a - S.Half)*gamma(a + S.Half)/4**(1 - a),
0]]),
Matrix([[1 - 2*a, 1, 0], [z/2, S.Half - a, S.Half], [0, z, 0]]))
addb([S.Half], [b, 2 - b],
pi*(1-b)/sin(pi*b) *
Matrix([besseli(1-b, sqrt(z))*besseli(b-1, sqrt(z)),
sqrt(z)*(besseli(-b, sqrt(z))*besseli(b-1, sqrt(z))
+ besseli(1-b, sqrt(z))*besseli(b, sqrt(z))),
besseli(-b, sqrt(z))*besseli(b, sqrt(z))]),
Matrix([[1, 0, 0]]),
Matrix([[b-1, S(1)/2, 0],
[z, 0, z],
[0, S(1)/2, -b]]))
# 2F3
# XXX with this five-parameter formula is pretty slow with the current
# Formula.find_instantiations (creates 2!*3!*3**(2+3) ~ 3000
# instantiations ... But it's not too bad.
addb([a, a + S.Half], [2*a, b, 2*a - b + 1],
gamma(b)*gamma(2*a - b + 1) * (sqrt(z)/2)**(1-2*a) *
Matrix([besseli(b-1, sqrt(z))*besseli(2*a-b, sqrt(z)),
sqrt(z)*besseli(b, sqrt(z))*besseli(2*a-b, sqrt(z)),
sqrt(z)*besseli(b-1, sqrt(z))*besseli(2*a-b+1, sqrt(z)),
besseli(b, sqrt(z))*besseli(2*a-b+1, sqrt(z))]),
Matrix([[1, 0, 0, 0]]),
Matrix([[0, S(1)/2, S(1)/2, 0],
[z/2, 1-b, 0, z/2],
[z/2, 0, b-2*a, z/2],
[0, S(1)/2, S(1)/2, -2*a]]))
def make_simp(z):
""" Create a function that simplifies rational functions in `z`. """
def simp(expr):
""" Efficiently simplify the rational function `expr`. """
from sympy import poly
numer, denom = expr.as_numer_denom()
c, numer, denom = poly(numer, z).cancel(poly(denom, z))
return c * numer.as_expr() / denom.as_expr()
return simp
def debug(*args):
if SYMPY_DEBUG:
for a in args:
print a,
print
class Mod1(object):
"""
Represent an expression 'mod 1'.
Beware: __eq__ and the hash are NOT compatible. (by design)
This means that m1 == m2 does not imply hash(m1) == hash(m2).
Code that creates Mod1 objects (like compute_buckets below) should be
careful only to produce one instance of Mod1 for each class.
"""
# TODO this should be backported to any implementation of a Mod object
# (c/f issue 2490)
def __new__(cls, r):
if r.is_Rational and not r.free_symbols:
return r - r.p//r.q
res = object.__new__(cls)
res.expr = r
return res
def __repr__(self):
return str(self.expr) + ' % 1'
def __eq__(self, other):
from sympy import simplify
if not isinstance(other, Mod1):
return False
if simplify(self.expr - other.expr).is_integer is True:
return True
return False
class IndexPair(object):
""" Holds a pair of indices, and methods to compute their invariants. """
def __init__(self, ap, bq):
from sympy import expand, Tuple
self.ap = Tuple(*[expand(x) for x in sympify(ap)])
self.bq = Tuple(*[expand(x) for x in sympify(bq)])
@property
def sizes(self):
return (len(self.ap), len(self.bq))
def __str__(self):
return 'IndexPair(%s, %s)' % (self.ap, self.bq)
def compute_buckets(self, oabuckets=None, obbuckets=None):
"""
Partition parameters `ap`, `bq` into buckets, that is return two dicts
abuckets, bbuckets such that every key in [ab]buckets is a rational in
range [0, 1) and the corresponding items are items of ap/bq congruent to
the key mod 1.
If oabuckets, obbuckets is specified, try to use the same Mod1 objects
for parameters where possible.
>>> from sympy.simplify.hyperexpand import IndexPair
>>> from sympy import S
>>> ap = (S(1)/2, S(1)/3, S(-1)/2, -2)
>>> bq = (1, 2)
>>> IndexPair(ap, bq).compute_buckets()
({0: (-2,), 1/3: (1/3,), 1/2: (1/2, -1/2)}, {0: (1, 2)})
"""
# TODO this should probably be cached somewhere
abuckets = {}
bbuckets = {}
oaparametric = []
obparametric = []
if oabuckets is not None:
for parametric, buckets in [(oaparametric, oabuckets),
(obparametric, obbuckets)]:
parametric += filter(lambda x: isinstance(x, Mod1),
buckets.keys())
for params, bucket, oparametric in [(self.ap, abuckets, oaparametric),
(self.bq, bbuckets, obparametric)]:
parametric = []
for p in params:
res = Mod1(p)
if isinstance(res, Mod1):
parametric.append(p)
continue
if res in bucket:
bucket[res] += (p,)
else:
bucket[res] = (p,)
while parametric:
p0 = parametric[0]
p0mod1 = Mod1(p0)
if oparametric.count(p0mod1):
i = oparametric.index(p0mod1)
p0mod1 = oparametric.pop(i)
bucket[p0mod1] = (p0,)
pos = []
for po in parametric[1:]:
if Mod1(po) == p0mod1:
bucket[p0mod1] += (po,)
else:
pos.append(po)
parametric = pos
return abuckets, bbuckets
def build_invariants(self):
"""
Compute the invariant vector of (`ap`, `bq`), that is:
(gamma, ((s1, n1), ..., (sk, nk)), ((t1, m1), ..., (tr, mr)))
where gamma is the number of integer a < 0,
s1 < ... < sk
nl is the number of parameters a_i congruent to sl mod 1
t1 < ... < tr
ml is the number of parameters b_i congruent to tl mod 1
If the index pair contains parameters, then this is not truly an
invariant, since the parameters cannot be sorted uniquely mod1.
>>> from sympy.simplify.hyperexpand import IndexPair
>>> from sympy import S
>>> ap = (S(1)/2, S(1)/3, S(-1)/2, -2)
>>> bq = (1, 2)
Here gamma = 1,
k = 3, s1 = 0, s2 = 1/3, s3 = 1/2
n1 = 1, n2 = 1, n2 = 2
r = 1, t1 = 0
m1 = 2:
>>> IndexPair(ap, bq).build_invariants()
(1, ((0, 1), (1/3, 1), (1/2, 2)), ((0, 2),))
"""
abuckets, bbuckets = self.compute_buckets()
gamma = 0
if S(0) in abuckets:
gamma = len(filter(lambda x: x < 0, abuckets[S(0)]))
def tr(bucket):
bucket = bucket.items()
if not any(isinstance(x[0], Mod1) for x in bucket):
bucket.sort(key=lambda x: x[0])
bucket = tuple(map(lambda x: (x[0], len(x[1])), bucket))
return bucket
return (gamma, tr(abuckets), tr(bbuckets))
def difficulty(self, ip):
""" Estimate how many steps it takes to reach `ip` from self.
Return -1 if impossible. """
oabuckets, obbuckets = self.compute_buckets()
abuckets, bbuckets = ip.compute_buckets(oabuckets, obbuckets)
gt0 = lambda x: (x > 0) is True
if S(0) in abuckets and (not S(0) in oabuckets or
len(filter(gt0, abuckets[S(0)])) != len(filter(gt0, oabuckets[S(0)]))):
return -1
diff = 0
for bucket, obucket in [(abuckets, oabuckets), (bbuckets, obbuckets)]:
for mod in set(bucket.keys() + obucket.keys()):
if (not mod in bucket) or (not mod in obucket) \
or len(bucket[mod]) != len(obucket[mod]):
return -1
l1 = list(bucket[mod])
l2 = list(obucket[mod])
l1.sort()
l2.sort()
for i, j in zip(l1, l2):
diff += abs(i - j)
return diff
class IndexQuadruple(object):
""" Holds a quadruple of indices. """
def __init__(self, an, ap, bm, bq):
from sympy import expand, Tuple
def tr(l): return Tuple(*[expand(x) for x in sympify(l)])
self.an = tr(an)
self.ap = tr(ap)
self.bm = tr(bm)
self.bq = tr(bq)
def compute_buckets(self):
"""
Compute buckets for the fours sets of parameters.
We guarantee that any two equal Mod1 objects returned are actually the
same, and that the buckets are sorted by real part (an and bq
descendending, bm and ap ascending).
>>> from sympy.simplify.hyperexpand import IndexQuadruple
>>> from sympy.abc import y
>>> from sympy import S
>>> IndexQuadruple([1, 3, 2, S(3)/2], [1 + y, y, 2, y + 3], [2], [y]).compute_buckets()
({0: [3, 2, 1], 1/2: [3/2]}, {y + 1 % 1: [y, y + 1, y + 3], 0: [2]}, {0: [2]}, {y + 1 % 1: [y]})
"""
mod1s = []
pan, pap, pbm, pbq = {}, {}, {}, {}
for dic, lis in [(pan, self.an), (pap, self.ap), (pbm, self.bm),
(pbq, self.bq)]:
for x in lis:
m = Mod1(x)
if mod1s.count(m):
i = mod1s.index(m)
m = mod1s[i]
else:
mod1s.append(m)
dic.setdefault(m, []).append(x)
for dic, flip in [(pan, True), (pap, False), (pbm, False), (pbq, True)]:
l = dic.items()
dic.clear()
for m, items in l:
x0 = items[0]
items.sort(key=lambda x: x-x0)
if flip:
items.reverse()
dic[m] = items
return pan, pap, pbm, pbq
def __str__(self):
return 'IndexQuadruple(%s, %s, %s, %s)' % (self.an, self.ap,
self.bm, self.bq)
# Dummy generator
x = Dummy('x')
class Formula(object):
"""
This class represents hypergeometric formulae.
Its data members are:
- z, the argument
- closed_form, the closed form expression
- symbols, the free symbols (parameters) in the formula
- indices, the parameters
- B, C, M (see _compute_basis)
- lcms, a dictionary which maps symbol -> lcm of denominators
- isolation, a dictonary which maps symbol -> (num, coeff) pairs
>>> from sympy.abc import a, b, z
>>> from sympy.simplify.hyperexpand import Formula
>>> f = Formula((a/2, a/3 + b, (1+a)/2), (a, b, (a+b)/7), z, None, [a, b])
The lcm of all denominators of coefficients of a is 2*3*7
>>> f.lcms[a]
42
for b it is just 7:
>>> f.lcms[b]
7
We can isolate a in the (1+a)/2 term, with denominator 2:
>>> f.isolation[a]
(2, 2, 1)
b is isolated in the b term, with coefficient one:
>>> f.isolation[b]
(4, 1, 1)
"""
def _compute_basis(self, closed_form):
"""
Compute a set of functions B=(f1, ..., fn), a nxn matrix M
and a 1xn matrix C such that:
closed_form = C B
z d/dz B = M B.
"""
from sympy.matrices import Matrix, eye, zeros
afactors = map(lambda a: x + a, self.indices.ap)
bfactors = map(lambda b: x + b - 1, self.indices.bq)
expr = x*Mul(*bfactors) - self.z*Mul(*afactors)
poly = Poly(expr, x)
n = poly.degree() - 1
b = [closed_form]
for _ in xrange(n):
b.append(self.z*b[-1].diff(self.z))
self.B = Matrix(b)
self.C = Matrix([[1] + [0]*n])
m = eye(n)
m = m.col_insert(0, zeros((n, 1)))
l = poly.all_coeffs()[1:]
l.reverse()
self.M = m.row_insert(n, -Matrix([l])/poly.all_coeffs()[0])
def __init__(self, ap, bq, z, res, symbols, B=None, C=None, M=None):
ap = Tuple(*map(expand, sympify(ap)))
bq = Tuple(*map(expand, sympify(bq)))
z = sympify(z)
res = sympify(res)
symbols = filter(lambda x: ap.has(x) or bq.has(x), sympify(symbols))
self.z = z
self.symbols = symbols
self.B = B
self.C = C
self.M = M
params = list(ap) + list(bq)
lcms = {}
isolation = {}
for a in symbols:
from sympy import ilcm
l = 1
isolating = []
others = list(symbols[:])
others.remove(a)
i = 0
for p in params:
if p.has(a):
c, m = None, None
if p.is_Add:
c, m = p.as_independent(a)[1].as_coeff_mul(a)
else:
c, m = p.as_coeff_mul(a)
if m != (a,) or not c.is_Rational:
raise NotImplementedError('?')
l = ilcm(l, c.q)
if not p.has(*others):
isolating.append((i, c.q, c.p))
lcms[a] = l
i += 1
if len(isolating) == 0:
raise NotImplementedError('parameter is not isolated')
isolating.sort(key=lambda x:x[1])
isolating.sort(key=lambda x:-x[2])
isolation[a] = isolating[-1]
self.lcms = lcms
self.isolation = isolation
self.indices = IndexPair(ap, bq)
# TODO with symbolic parameters, it could be advantageous
# (for prettier answers) to compute a basis only *after*
# instantiation
if res is not None:
self._compute_basis(res)
@property
def closed_form(self):
return (self.C*self.B)[0]
def find_instantiations(self, ip):
"""
Try to find instantiations of the free symbols that match
`ip.ap`, `ip.bq`. Return the instantiated formulae as a list.
Note that the returned instantiations need not actually match,
or be valid!
"""
ap = ip.ap
bq = ip.bq
if len(ap) != len(self.indices.ap) or len(bq) != len(self.indices.bq):
raise TypeError('Cannot instantiate other number of parameters')
from sympy import solve
from sympy.core.compatibility import permutations, product
res = []
our_params = list(self.indices.ap) + list(self.indices.bq)
for na in permutations(ap):
for nb in permutations(bq):
all_params = list(na) + list(nb)
repl = {}
for a in self.symbols:
i, d, _ = self.isolation[a]
repl[a] = (solve(our_params[i] - all_params[i], a)[0], d)
for change in product(*[(-1, 0, 1)]*len(self.symbols)):
rep = {}
for i, a in zip(change, repl.keys()):
rep[a] = repl[a][0] + i*repl[a][1]
res.append(Formula(self.indices.ap.subs(rep),
self.indices.bq.subs(rep),
self.z, None, [], self.B.subs(rep),
self.C.subs(rep), self.M.subs(rep)))
# if say a = -1/2, and there is 2*a in the formula, then
# there will be a negative integer. But this origin is also
# reachable from a = 1/2 ...
# So throw this in as well.
# The code is not as general as it could be, but good enough.
if len(self.symbols) == 1:
a = self.symbols[0]
aval, d = repl[a]
if aval < 0 and d == 1:
from sympy import ceiling
aval -= ceiling(aval) - 1
res.append(Formula(self.indices.ap.subs(a, aval),
self.indices.bq.subs(a, aval),
self.z, None, [], self.B.subs(a, aval),
self.C.subs(rep), self.M.subs(a, aval)))
return res
def is_suitable(self):
"""
Decide if `self` is a suitable origin.
>>> from sympy.simplify.hyperexpand import Formula
>>> from sympy import S
If ai - bq in Z and bq >= ai this is fine:
>>> Formula((S(1)/2,), (S(3)/2,), None, None, []).is_suitable()
True
but ai = bq is not:
>>> Formula((S(1)/2,), (S(1)/2,), None, None, []).is_suitable()
False
and ai > bq is not either:
>>> Formula((S(1)/2,), (-S(1)/2,), None, None, []).is_suitable()
False
None of the bj can be a non-positive integer:
>>> Formula((S(1)/2,), (0,), None, None, []).is_suitable()
False
>>> Formula((S(1)/2,), (-1, 1,), None, None, []).is_suitable()
False
None of the ai can be zero:
>>> Formula((S(1)/2, 0), (1,), None, None, []).is_suitable()
False
More complicated examples:
>>> Formula((S(1)/2, 1), (2, -S(2)/3), None, None, []).is_suitable()
True
>>> Formula((S(1)/2, 1), (2, -S(2)/3, S(3)/2), None, None, []).is_suitable()
True
"""
from sympy import oo, zoo
if len(self.symbols) > 0:
return None
for a in self.indices.ap:
for b in self.indices.bq:
if (a-b).is_integer and not a < b:
return False
for a in self.indices.ap:
if a == 0:
return False
for b in self.indices.bq:
if b <= 0 and b.is_integer:
return False
for e in [self.B, self.M, self.C]:
if e is None:
continue
if e.has(S.NaN) or e.has(oo) or e.has(-oo) or e.has(zoo):
return False
return True
class FormulaCollection(object):
""" A collection of formulae to use as origins. """
def __init__(self):
""" Doing this globally at module init time is a pain ... """
self.symbolic_formulae = {}
self.concrete_formulae = {}
self.formulae = []
add_formulae(self.formulae)
# Now process the formulae into a helpful form.
# These dicts are indexed by (p, q).
for f in self.formulae:
sizes = f.indices.sizes
if len(f.symbols) > 0:
self.symbolic_formulae.setdefault(sizes, []).append(f)
else:
inv = f.indices.build_invariants()
self.concrete_formulae.setdefault(sizes, {})[inv] = f
def lookup_origin(self, ip):
"""
Given the suitable parameters `ip.ap`, `ip.bq`, try to find an origin
in our knowledge base.
>>> from sympy.simplify.hyperexpand import FormulaCollection, IndexPair
>>> f = FormulaCollection()
>>> f.lookup_origin(IndexPair((), ())).closed_form
exp(_z)
>>> f.lookup_origin(IndexPair([1], ())).closed_form
1/(-_z + 1)
>>> from sympy import S
>>> f.lookup_origin(IndexPair([S('1/4'), S('3/4 + 4')], [S.Half])).closed_form
1/(2*(_z**(1/2) + 1)**(17/2)) + 1/(2*(-_z**(1/2) + 1)**(17/2))
"""
inv = ip.build_invariants()
sizes = ip.sizes
if sizes in self.concrete_formulae and \
inv in self.concrete_formulae[sizes]:
return self.concrete_formulae[sizes][inv]
# We don't have a concrete formula. Try to instantiate.
if not sizes in self.symbolic_formulae:
return None # Too bad...
possible = []
for f in self.symbolic_formulae[sizes]:
l = f.find_instantiations(ip)
for f2 in l:
if not f2.is_suitable():
continue
diff = f2.indices.difficulty(ip)
if diff != -1:
possible.append((diff, f2))
if not possible:
# Give up.
return None
# find the nearest origin
possible.sort(key=lambda x:x[0])
return possible[0][1]
class Operator(object):
"""
Base class for operators to be applied to our functions.
These operators are differential operators. They are by convention
expressed in the variable D = z*d/dz (although this base class does
not actually care).
Note that when the operator is applied to an object, we typically do
*not* blindly differentiate but instead use a different representation
of the z*d/dz operator (see make_derivative_operator).
To subclass from this, define a __init__ method that initalises a
self._poly variable. This variable stores a polynomial. By convention
the generator is z*d/dz, and acts to the right of all coefficients.
Thus this poly
x**2 + 2*z*x + 1
represents the differential operator
(z*d/dz)**2 + 2*z**2*d/dz.
This class is used only in the implementation of the hypergeometric
function expansion algorithm.
"""
def apply(self, obj, op):
"""
Apply `self` to the object `obj`, where the generator is given by `op`.
>>> from sympy.simplify.hyperexpand import Operator
>>> from sympy.polys.polytools import Poly
>>> from sympy.abc import x, y, z
>>> op = Operator()
>>> op._poly = Poly(x**2 + z*x + y, x)
>>> op.apply(z**7, lambda f: f.diff(z))
y*z**7 + 7*z**7 + 42*z**5
"""
coeffs = self._poly.all_coeffs()
coeffs.reverse()
diffs = [obj]
for c in coeffs[1:]:
diffs.append(op(diffs[-1]))
r = coeffs[0]*diffs[0]
for c, d in zip(coeffs[1:], diffs[1:]):
r += c*d
return r
class MultOperator(Operator):
""" Simply multiply by a "constant" """
def __init__(self, p):
self._poly = Poly(p, x)
class ShiftA(Operator):
""" Increment an upper index. """
def __init__(self, ai):
ai = sympify(ai)
if ai == 0:
raise ValueError('Cannot increment zero upper index.')
self._poly = Poly(x/ai + 1, x)
def __str__(self):
return '<Increment upper %s.>' % (1/self._poly.all_coeffs()[0])
class ShiftB(Operator):
""" Decrement a lower index. """
def __init__(self, bi):
bi = sympify(bi)
if bi == 1:
raise ValueError('Cannot decrement unit lower index.')
self._poly = Poly(x/(bi - 1) + 1, x)
def __str__(self):
return '<Decrement lower %s.>' % (1/self._poly.all_coeffs()[0] + 1)
class UnShiftA(Operator):
""" Decrement an upper index. """
def __init__(self, ap, bq, i, z):
""" Note: i counts from zero! """
ap, bq, i = map(sympify, [ap, bq, i])
self._ap = ap
self._bq = bq
self._i = i
ap = list(ap)
bq = list(bq)
ai = ap.pop(i) - 1
if ai == 0:
raise ValueError('Cannot decrement unit upper index.')
m = Poly(z*ai, x)
for a in ap:
m *= Poly(x + a, x)
#print m
A = Dummy('A')
D = Poly(ai*A - ai, A)
n = 1*D
for b in bq:
n *= (D + b - 1)
#print n
b0 = -n.all_coeffs()[-1]
if b0 == 0:
raise ValueError('Cannot decrement upper index: ' \
'cancels with lower')
#print b0
n = Poly(Poly(n.all_coeffs()[:-1], A).as_expr().subs(A, x/ai + 1), x)
self._poly = Poly((n-m)/b0, x)
def __str__(self):
return '<Decrement upper index #%s of %s, %s.>' % (self._i,
self._ap, self._bq)
class UnShiftB(Operator):
""" Increment a lower index. """
def __init__(self, ap, bq, i, z):
""" Note: i counts from zero! """
ap, bq, i = map(sympify, [ap, bq, i])
self._ap = ap
self._bq = bq
self._i = i
ap = list(ap)
bq = list(bq)
bi = bq.pop(i) + 1
if bi == 0:
raise ValueError('Cannot increment -1 lower index.')
m = Poly(x*(bi-1), x)
for b in bq:
m *= Poly(x + b - 1, x)
#print m
B = Dummy('B')
D = Poly((bi-1)*B - bi + 1, B)
n = Poly(z, B)
for a in ap:
n *= (D + a)
#print n
b0 = n.all_coeffs()[-1]
#print b0
if b0 == 0:
raise ValueError('Cannot increment index: ' \
'cancels with upper')
#print b0
n = Poly(Poly(n.all_coeffs()[:-1], B).as_expr().subs(B, x/(bi-1) + 1), x)
#print n
self._poly = Poly((m-n)/b0, x)
def __str__(self):
return '<Increment lower index #%s of %s, %s.>' % (self._i,
self._ap, self._bq)
class ReduceOrder(Operator):
""" Reduce Order by cancelling an upper and a lower index. """
def __new__(cls, ai, bj):
""" For convenience if reduction is not possible, return None. """
ai = sympify(ai)
bj = sympify(bj)
n = ai - bj
if n < 0 or not n.is_Integer:
return None
if bj.is_integer and bj <= 0 and bj + n - 1 >= 0:
return None
self = Operator.__new__(cls)
p = S(1)
for k in xrange(n):
p *= (x + bj + k)/(bj + k)
self._poly = Poly(p, x)
self._a = ai
self._b = bj
return self
@classmethod
def _meijer(cls, b, a, sign):
""" Cancel b + sign*s and a + sign*s
This is for meijer G functions. """
from sympy import Add
b = sympify(b)
a = sympify(a)
n = b - a
if n < 0 or not n.is_Integer:
return None
self = Operator.__new__(cls)
p = S(1)
for k in xrange(n):
p *= (sign*x + a + k)
self._poly = Poly(p, x)
if sign == -1:
self._a = b
self._b = a
else:
self._b = Add(1, a - 1, evaluate=False)
self._a = Add(1, b - 1, evaluate=False)
return self
@classmethod
def meijer_minus(cls, b, a):
return cls._meijer(b, a, -1)
@classmethod
def meijer_plus(cls, a, b):
return cls._meijer(1 - a, 1 - b, 1)
def __str__(self):
return '<Reduce order by cancelling upper %s with lower %s.>' % \
(self._a, self._b)
def _reduce_order(ap, bq, gen, key):
""" Order reduction algorithm common to both Hypergeometric and Meijer G """
ap = list(ap)
bq = list(bq)
ap.sort(key=key)
bq.sort(key=key)
nap = []
# we will edit bq in place
operators = []
for a in ap:
op = None
for i in xrange(len(bq)):
op = gen(a, bq[i])
if op is not None:
bq.pop(i)
break
if op is None:
nap.append(a)
else:
operators.append(op)
return nap, bq, operators
def reduce_order(ip):
"""
Given the hypergeometric parameters `ip.ap`, `ip.bq`, find a sequence of operators
to reduces order as much as possible.
Return (nip, [operators]), where applying the operators to the
hypergeometric function specified by nip.ap, nip.bq yields ap, bq.
Examples:
>>> from sympy.simplify.hyperexpand import reduce_order, IndexPair
>>> reduce_order(IndexPair((1, 2), (3, 4)))
(IndexPair((1, 2), (3, 4)), [])
>>> reduce_order(IndexPair((1,), (1,)))
(IndexPair((), ()), [<Reduce order by cancelling upper 1 with lower 1.>])
>>> reduce_order(IndexPair((2, 4), (3, 3)))
(IndexPair((2,), (3,)), [<Reduce order by cancelling upper 4 with lower 3.>])
"""
nap, nbq, operators = _reduce_order(ip.ap, ip.bq, ReduceOrder, lambda x: x)
return IndexPair(Tuple(*nap), Tuple(*nbq)), operators
def reduce_order_meijer(iq):
"""
Given the Meijer G function parameters, `iq.am`, `iq.ap`, `iq.bm`,
`iq.bq`, find a sequence of operators that reduces order as much as possible.
Return niq, [operators].
Examples:
>>> from sympy.simplify.hyperexpand import reduce_order_meijer, IndexQuadruple
>>> reduce_order_meijer(IndexQuadruple([3, 4], [5, 6], [3, 4], [1, 2]))[0]
IndexQuadruple((4, 3), (5, 6), (3, 4), (2, 1))
>>> reduce_order_meijer(IndexQuadruple([3, 4], [5, 6], [3, 4], [1, 8]))[0]
IndexQuadruple((3,), (5, 6), (3, 4), (1,))
>>> reduce_order_meijer(IndexQuadruple([3, 4], [5, 6], [7, 5], [1, 5]))[0]
IndexQuadruple((3,), (), (), (1,))
>>> reduce_order_meijer(IndexQuadruple([3, 4], [5, 6], [7, 5], [5, 3]))[0]
IndexQuadruple((), (), (), ())
"""
nan, nbq, ops1 = _reduce_order(iq.an, iq.bq, ReduceOrder.meijer_plus, lambda x: -x)
nbm, nap, ops2 = _reduce_order(iq.bm, iq.ap, ReduceOrder.meijer_minus, lambda x: x)
return IndexQuadruple(Tuple(*nan), Tuple(*nap), Tuple(*nbm), Tuple(*nbq)), \
ops1 + ops2
def make_derivative_operator(M, z):
""" Create a derivative operator, to be passed to Operator.apply. """
from sympy import poly
def doit(C):
r = z*C.diff(z) + C*M
r = r.applyfunc(make_simp(z))
return r
return doit
def apply_operators(obj, ops, op):
"""
Apply the list of operators `ops` to object `obj`, substituting `op` for the
generator.
"""
res = obj
for o in reversed(ops):
res = o.apply(res, op)
return res
def devise_plan(ip, nip, z):
"""
Devise a plan (consisting of shift and un-shift operators) to be applied
to the hypergeometric function (`nip.ap`, `nip.bq`) to yield
(`ip.ap`, `ip.bq`).
Returns a list of operators.
>>> from sympy.simplify.hyperexpand import devise_plan, IndexPair
>>> from sympy.abc import z
Nothing to do:
>>> devise_plan(IndexPair((1, 2), ()), IndexPair((1, 2), ()), z)
[]
>>> devise_plan(IndexPair((), (1, 2)), IndexPair((), (1, 2)), z)
[]
Very simple plans:
>>> devise_plan(IndexPair((2,), ()), IndexPair((1,), ()), z)
[<Increment upper 1.>]
>>> devise_plan(IndexPair((), (2,)), IndexPair((), (1,)), z)
[<Increment lower index #0 of [], [1].>]
Several buckets:
>>> from sympy import S
>>> devise_plan(IndexPair((1, S.Half), ()), IndexPair((2, S('3/2')), ()), z)
[<Decrement upper index #0 of [2, 1/2], [].>, <Decrement upper index #0 of [3/2, 2], [].>]
A slightly more complicated plan:
>>> devise_plan(IndexPair((1, 3), ()), IndexPair((2, 2), ()), z)
[<Increment upper 2.>, <Decrement upper index #0 of [2, 2], [].>]
Another more complicated plan: (note that the ap have to be shifted first!)
>>> devise_plan(IndexPair((1, -1), (2,)), IndexPair((3, -2), (4,)), z)
[<Decrement lower 3.>, <Decrement lower 4.>, <Decrement upper index #1 of [-1, 2], [4].>, <Decrement upper index #1 of [-1, 3], [4].>, <Increment upper -2.>]
"""
abuckets, bbuckets = ip.compute_buckets()
nabuckets, nbbuckets = nip.compute_buckets(abuckets, bbuckets)
if len(abuckets.keys()) != len(nabuckets.keys()) or \
len(bbuckets.keys()) != len(nbbuckets.keys()):
raise ValueError('%s not reachable from %s' % (ip, nip))
ops = []
def do_shifts(fro, to, inc, dec):
ops = []
for i in xrange(len(fro)):
if to[i] - fro[i] > 0:
sh = inc
ch = 1
else:
sh = dec
ch = -1
while to[i] != fro[i]:
ops += [sh(fro, i)]
fro[i] += ch
return ops
def do_shifts_a(nal, nbk, al, aother, bother):
""" Shift us from (nal, nbk) to (al, nbk). """
return do_shifts(nal, al, lambda p, i: ShiftA(p[i]),
lambda p, i: UnShiftA(p + aother, nbk + bother, i, z))
def do_shifts_b(nal, nbk, bk, aother, bother):
""" Shift us from (nal, nbk) to (nal, bk). """
return do_shifts(nbk, bk,
lambda p, i: UnShiftB(nal + aother, p + bother, i, z),
lambda p, i: ShiftB(p[i]))
for r in set(abuckets.keys() + bbuckets.keys()):
al = ()
nal = ()
bk = ()
nbk = ()
if r in abuckets:
al = abuckets[r]
nal = nabuckets[r]
if r in bbuckets:
bk = bbuckets[r]
nbk = nbbuckets[r]
if len(al) != len(nal) or len(bk) != len(nbk):
raise ValueError('%s not reachable from %s' % ((ap, bq), (nap, nbq)))
al = sorted(list(al))
nal = sorted(list(nal))
bk = sorted(list(bk))
nbk = sorted(list(nbk))
def others(dic, key):
l = []
for k, value in dic.iteritems():
if k != key:
l += list(dic[k])
return l
aother = others(nabuckets, r)
bother = others(nbbuckets, r)
if len(al) == 0:
# there can be no complications, just shift the bs as we please
ops += do_shifts_b([], nbk, bk, aother, bother)
elif len(bk) == 0:
# there can be no complications, just shift the as as we please
ops += do_shifts_a(nal, [], al, aother, bother)
else:
namax = nal[-1]
amax = al[-1]
if nbk[0] <= namax or bk[0] <= amax:
raise ValueError('Non-suitable parameters.')
if namax > amax:
# we are going to shift down - first do the as, then the bs
ops += do_shifts_a(nal, nbk, al, aother, bother)
ops += do_shifts_b(al, nbk, bk, aother, bother)
else:
# we are going to shift up - first do the bs, then the as
ops += do_shifts_b(nal, nbk, bk, aother, bother)
ops += do_shifts_a(nal, bk, al, aother, bother)
nabuckets[r] = al
nbbuckets[r] = bk
ops.reverse()
return ops
def try_shifted_sum(ip, z):
""" Try to recognise a hypergeometric sum that starts from k > 0. """
from sympy.functions import rf, factorial
abuckets, bbuckets = ip.compute_buckets()
if not S(0) in abuckets or len(abuckets[S(0)]) != 1:
return None
r = abuckets[S(0)][0]
if r <= 0:
return None
if not S(0) in bbuckets:
return None
l = list(bbuckets[S(0)])
l.sort()
k = l[0]
if k <= 0:
return None
nap = list(ip.ap)
nap.remove(r)
nbq = list(ip.bq)
nbq.remove(k)
k -= 1
nap = map(lambda x: x - k, nap)
nbq = map(lambda x: x - k, nbq)
ops = []
for n in xrange(r - 1):
ops.append(ShiftA(n + 1))
ops.reverse()
fac = factorial(k)/z**k
for a in nap:
fac /= rf(a, k)
for b in nbq:
fac *= rf(b, k)
ops += [MultOperator(fac)]
p = 0
for n in xrange(k):
m = z**n/factorial(n)
for a in nap:
m *= rf(a, n)
for b in nbq:
m /= rf(b, n)
p += m
return IndexPair(nap, nbq), ops, -p
def try_polynomial(ip, z):
""" Recognise polynomial cases. Returns None if not such a case.
Requires order to be fully reduced. """
from sympy import oo, factorial, rf
abuckets, bbuckets = ip.compute_buckets()
a0 = list(abuckets.get(S(0), []))
b0 = list(bbuckets.get(S(0), []))
a0.sort()
b0.sort()
al0 = filter(lambda x: x <= 0, a0)
bl0 = filter(lambda x: x <= 0, b0)
if bl0:
return oo
if not al0:
return None
a = al0[-1]
fac = 1
res = S(1)
for n in xrange(-a):
fac *= z
fac /= n + 1
for a in ip.ap: fac *= a + n
for b in ip.bq: fac /= b + n
res += fac
return res
collection = None
def _hyperexpand(ip, z, ops0=[], z0=Dummy('z0'), premult=1, chainmult=1):
"""
Try to find an expression for the hypergeometric function
`ip.ap`, `ip.bq`.
The result is expressed in terms of a dummy variable z0. Then it
is multiplied by premult. Then ops0 is applied, using chainmult*t*d/dt
for the operator.
These latter parameters are all trickery to make _meijergexpand short.
"""
from sympy.simplify import powdenest, simplify
# TODO
# The following would be possible:
# 1) Partial simplification (i.e. return a simpler hypergeometric function,
# even if we cannot express it in terms of named special functions).
# 2) PFD Duplication (see Kelly Roach's paper)
# 3) If the coefficients are a rational function of n (numerator parameters
# k, a1, ..., an, denominator parameters a1+k1, a2+k2, ..., an+kn, where
# k, k1, ..., kn are integers) then result can be expressed using Lerch
# transcendent. Under certain conditions, this simplifies to polylogs
# or even zeta functions. C/f Kelly Roach's paper.
global collection
if collection is None:
collection = FormulaCollection()
debug('Trying to expand hypergeometric function corresponding to', ip)
# First reduce order as much as possible.
nip, ops = reduce_order(ip)
if ops:
debug(' Reduced order to', nip)
else:
debug(' Could not reduce order.')
# Now try polynomial cases
res = try_polynomial(nip, z0)
if res is not None:
debug(' Recognised polynomial.')
p = apply_operators(res, ops, lambda f: z0*f.diff(z0))
p = apply_operators(p*premult, ops0, lambda f: chainmult*z0*f.diff(z0))
return simplify(p).subs(z0, z)
# Try to recognise a shifted sum.
p = S(0)
res = try_shifted_sum(nip, z0)
if res != None:
nip, nops, p = res
debug(' Recognised shifted sum, reducerd order to', nip)
ops += nops
# apply the plan for poly
p = apply_operators(p, ops, lambda f: z0*f.diff(z0))
p = apply_operators(p*premult, ops0, lambda f: chainmult*z0*f.diff(z0))
p = simplify(p).subs(z0, z)
# Now try to find a formula
f = collection.lookup_origin(nip)
if f is None:
debug(' Could not find an origin.')
# There is nothing we can do.
return None
# We need to find the operators that convert f into (nap, nbq).
ops += devise_plan(nip, f.indices, z0)
# Now carry out the plan.
C = apply_operators(f.C.subs(f.z, z0), ops,
make_derivative_operator(f.M.subs(f.z, z0), z0))
C = apply_operators(C*premult, ops0,
make_derivative_operator(f.M.subs(f.z, z0)*chainmult, z0))
if premult == 1:
C = C.applyfunc(make_simp(z0))
r = C*f.B.subs(f.z, z0)
r = r[0].subs(z0, z) + p
# This will simpliy things like sqrt(-z**2) to i*z.
# It would be wrong under certain choices of branch, but all results we
# return are under an "implicit suitable choice of branch" anyway.
return powdenest(r, force=True)
def _meijergexpand(iq, z0, allow_hyper=False):
"""
Try to find an expression for the Meijer G function specified
by the IndexQuadruple `iq`. If `allow_hyper` is True, then returning
an expression in terms of hypergeometric functions is allowed.
Currently this just does slater's theorem.
"""
from sympy import hyper, Piecewise, meijerg, powdenest
iq_ = iq
debug('Try to expand meijer G function corresponding to', iq)
# We will play games with analytic continuation - rather use a fresh symbol
z = Dummy('z')
iq, ops = reduce_order_meijer(iq)
if ops:
debug(' Reduced order to', iq)
else:
debug(' Could not reduce order.')
# TODO the following would be possible:
# 1) Set up a collection of meijer g formulae.
# This handles some cases that cannot be done using Slater's theorem,
# and also yields nicer looking results.
# 2) Paired Index Theorems
# 3) PFD Duplication
# (See Kelly Roach's paper for (2) and (3).)
#
# TODO Also, we tend to create combinations of gamma functions that can be
# simplified.
def can_do(pbm, pap):
""" Test if slater applies. """
for i in pbm:
if len(pbm[i]) > 1:
l = 0
if i in pap:
l = len(pap[i])
if l + 1 < len(pbm[i]):
return False
return True
def do_slater(an, bm, ap, bq, z, t, chainmult, realz):
from sympy import gamma, residue, factorial, rf, expand_func
iq = IndexQuadruple(an, bm, ap, bq)
_, pbm, pap, _ = iq.compute_buckets()
if not can_do(pbm, pap):
return S(0), False
res = S(0)
for m in pbm:
if len(pbm[m]) == 1:
bh = pbm[m][0]
fac = 1
bo = list(bm)
bo.remove(bh)
for bj in bo: fac *= gamma(bj - bh)
for aj in an: fac *= gamma(1 + bh - aj)
for bj in bq: fac /= gamma(1 + bh - bj)
for aj in ap: fac /= gamma(aj - bh)
nap = [1 + bh - a for a in list(an) + list(ap)]
nbq = [1 + bh - b for b in list(bo) + list(bq)]
k = S(-1)**(len(ap) - len(bm))
harg = k*z
premult = (k*t)**bh
hyp = _hyperexpand(IndexPair(nap, nbq), harg, ops,
t, premult, chainmult)
if hyp is None:
hyp = apply_operators(premult*hyper(nap, nbq, t), ops,
lambda f: chainmult*t*f.diff(t)).subs(t, harg)
res += fac * hyp
else:
b_ = pbm[m][0]
ki = [bi - b_ for bi in pbm[m][1:]]
u = len(ki)
li = [ai - b_ for ai in pap[m][0:u+1]]
bo = list(bm)
for b in pbm[m]:
bo.remove(b)
ao = list(ap)
for a in pap[m][:u]:
ao.remove(a)
lu = li[-1]
di = [l - k for (l, k) in zip(li, ki)]
# We first work out the integrand:
s = Dummy('s')
integrand = z**s
for b in bm:
integrand *= gamma(b - s)
for a in an:
integrand *= gamma(1 - a + s)
for b in bq:
integrand /= gamma(1 - b + s)
for a in ap:
integrand /= gamma(a - s)
# Now sum the finitely many residues:
# XXX This speeds up some cases - is it a good idea?
integrand = expand_func(integrand)
for r in range(lu):
resid = residue(integrand, s, b_ + r)
resid = apply_operators(resid, ops, lambda f: realz*f.diff(realz))
res -= resid
# Now the hypergeometric term.
au = b_ + lu
k = S(-1)**(len(ao) + len(bo) + 1)
harg = k*z
premult = (k*t)**au
nap = [1 + au - a for a in list(an) + list(ap)] + [1]
nbq = [1 + au - b for b in list(bm) + list(bq)]
hyp = _hyperexpand(IndexPair(nap, nbq), harg, ops,
t, premult, chainmult)
if hyp is None:
hyp = apply_operators(premult*hyper(nap, nbq, t), ops,
lambda f: chainmult*t*f.diff(t)).subs(t, harg)
C = S(-1)**(lu)/factorial(lu)
for i in range(u):
C *= S(-1)**di[i]/rf(lu - li[i] + 1, di[i])
for a in an:
C *= gamma(1 - a + au)
for b in bo:
C *= gamma(b - au)
for a in ao:
C /= gamma(a - au)
for b in bq:
C /= gamma(1 - b + au)
res += C*hyp
cond = len(an) + len(ap) < len(bm) + len(bq)
if len(an) + len(ap) == len(bm) + len(bq):
cond = abs(z) < 1
return res, cond
t = Dummy('t')
slater1, cond1 = do_slater(iq.an, iq.bm, iq.ap, iq.bq, z, t, 1, z)
def tr(l): return [1 - x for x in l]
for op in ops:
op._poly = Poly(op._poly.subs(z, S(-1)**(len(iq.an) - len(iq.bq))/t), x)
slater2, cond2 = do_slater(tr(iq.bm), tr(iq.an), tr(iq.bq), tr(iq.ap),
1/z, t, -1, z)
slater1 = powdenest(slater1.subs(z, z0), force=True)
slater2 = powdenest(slater2.subs(z, z0), force=True)
if meijerg(iq.an, iq.ap, iq.bm, iq.bq, z).delta > 0:
# The above condition means that the convergence region is connected.
# Any expression we find can be continued analytically to the entire
# convergence region.
if cond1 is not False:
cond1 = True
if cond2 is not False:
cond2 = True
if not isinstance(cond1, bool): cond1 = cond1.subs(z, z0)
if not isinstance(cond2, bool): cond2 = cond2.subs(z, z0)
if cond1 is True and not slater1.has(hyper):
return slater1
if cond2 is True and not slater2.has(hyper):
return slater2
# We couldn't find an expression without hypergeometric functions.
# TODO it would be helpful to give conditions under which the integral
# is known to diverge.
r = Piecewise((slater1, cond1), (slater2, cond2),
(meijerg(iq_.an, iq_.ap, iq_.bm, iq_.bq, z0), True))
if r.has(hyper) and not allow_hyper:
debug(' Could express using hypergeometric functions, but not allowed.')
if not r.has(hyper) or allow_hyper:
return r
return meijerg(iq_.an, iq_.ap, iq_.bm, iq_.bq, z0)
def hyperexpand(f, allow_hyper=False):
"""
Expand hypergeometric functions. If allow_hyper is True, allow partial
simplification (that is a result different from input,
but still containing hypergeometric functions).
Examples:
>>> from sympy.simplify.hyperexpand import hyperexpand
>>> from sympy.functions import hyper
>>> from sympy.abc import z
>>> hyperexpand(hyper([], [], z))
exp(z)
Non-hyperegeometric parts of the expression and hypergeometric expressions
that are not recognised are left unchanged:
>>> hyperexpand(1 + hyper([1, 1, 1], [], z))
1 + hyper((1, 1, 1), (), z)
"""
from sympy.functions import hyper, meijerg
from sympy import nan, zoo, oo
f = sympify(f)
def do_replace(ap, bq, z):
r = _hyperexpand(IndexPair(ap, bq), z)
if r is None:
return hyper(ap, bq, z)
else:
return r
def do_meijer(ap, bq, z):
r = _meijergexpand(IndexQuadruple(ap[0], ap[1], bq[0], bq[1]), z,
allow_hyper)
if not r.has(nan, zoo, oo, -oo):
return r
return f.replace(hyper, do_replace).replace(meijerg, do_meijer)
from sympy.polys.polytools import Poly
|