This file is indexed.

/usr/share/pyshared/sympy/simplify/hyperexpand.py is in python-sympy 0.7.1.rc1-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
"""
Expand Hypergeometric (and Meijer G) functions into named
special functions.

The algorithm for doing this uses a collection of lookup tables of
hypergeometric functions, and various of their properties, to expand
many hypergeometric functions in terms of special functions.

It is based on the following paper:
      Kelly B. Roach.  Meijer G Function Representations.
      In: Proceedings of the 1997 International Symposium on Symbolic and
      Algebraic Computation, pages 205-211, New York, 1997. ACM.

It is described in great(er) detail in the Sphinx documentation.
"""
from sympy.core import S, Dummy, symbols, sympify, Tuple, expand, I, Mul
from sympy import SYMPY_DEBUG

def add_formulae(formulae):
    """ Create our knowledge base.
        Leave this at the top for easy reference. """
    z = Dummy('z')
    a, b, c = symbols('a b c', cls=Dummy)
    def add(ap, bq, res):
        formulae.append(Formula(ap, bq, z, res, (a, b, c)))
    def addb(ap, bq, B, C, M):
        formulae.append(Formula(ap, bq, z, None, (a, b, c), B, C, M))

    from sympy.matrices import diag, Matrix

    # Luke, Y. L. (1969), The Special Functions and Their Approximations,
    # Volume 1, section 6.2

    from sympy import (exp, sqrt, cosh, log, asin, atan, I, lowergamma, cos,
                       atanh, besseli, gamma, erf, pi, sin, besselj)

    # 0F0
    add((), (), exp(z))

    # 1F0
    add((-a, ), (), (1-z)**a)

    # 2F1
    addb((a, a - S.Half), (2*a,),
         Matrix([2**(2*a-1)*(1 + sqrt(1-z))**(1-2*a),
                 2**(2*a-1)*(1 + sqrt(1-z))**(-2*a)]),
         Matrix([[1, 0]]),
         Matrix([[(a-S.Half)*z/(1-z), (S.Half-a)*z/(1-z)],
                 [a/(1-z), a*(z-2)/(1-z)]]))
    addb((1, 1), (2,),
         Matrix([log(1 - z), 1]), Matrix([[-1/z, 0]]),
         Matrix([[0, z/(z - 1)], [0, 0]]))
    addb((S.Half, 1), (S('3/2'),),
         Matrix([log((1 + sqrt(z))/(1 - sqrt(z)))/sqrt(z), 1]),
         Matrix([[S(1)/2, 0]]),
         Matrix([[-S(1)/2, 1/(1 - z)], [0, 0]]))
    addb((S.Half, S.Half), (S('3/2'),),
         Matrix([asin(sqrt(z))/sqrt(z), 1/sqrt(1 - z)]),
         Matrix([[1, 0]]),
         Matrix([[-S(1)/2, S(1)/2], [0, z/(1 - z)/2]]))
    addb((-a, S.Half - a), (S.Half,),
         Matrix([(1 + sqrt(z))**(2*a) + (1 - sqrt(z))**(2*a),
                 sqrt(z)*(1 + sqrt(z))**(2*a-1)
                 - sqrt(z)*(1 - sqrt(z))**(2*a-1)]),
         Matrix([[S.Half, 0]]),
         Matrix([[0, a], [z*(2*a-1)/2/(1-z), S.Half - z*(2*a-1)/(1-z)]]))

    # A. P. Prudnikov, Yu. A. Brychkov and O. I. Marichev (1990).
    # Integrals and Series: More Special Functions, Vol. 3,.
    # Gordon and Breach Science Publisher
    add([a, -a], [S.Half], cos(2*a*asin(sqrt(z))))
    addb([1, 1], [3*S.Half],
         Matrix([asin(sqrt(z))/sqrt(z*(1-z)), 1]), Matrix([[1, 0]]),
         Matrix([[(z - S.Half)/(1 - z), 1/(1 - z)/2], [0, 0]]))

    # 3F2
    addb([-S.Half, 1, 1], [S.Half, 2],
         Matrix([sqrt(z)*atanh(sqrt(z)), log(1 - z), 1]),
         Matrix([[-S(2)/3, -S(1)/(3*z), S(2)/3]]),
         Matrix([[S(1)/2, 0, z/(1 - z)/2],
                 [0, 0, z/(z - 1)],
                 [0, 0, 0]]))
    # actually the formula for 3/2 is much nicer ...
    addb([-S.Half, 1, 1], [2, 2],
         Matrix([sqrt(1 - z), log(sqrt(1 - z)/2 + S.Half), 1]),
         Matrix([[S(4)/9 - 16/(9*z), 4/(3*z), 16/(9*z)]]),
         Matrix([[z/2/(z - 1), 0, 0], [1/(2*(z - 1)), 0, S.Half], [0, 0, 0]]))

    # 1F1
    addb([1], [b], Matrix([z**(1 - b) * exp(z) * lowergamma(b - 1, z), 1]),
         Matrix([[b - 1, 0]]),Matrix([[1 - b + z, 1], [0, 0]]))
    addb([a], [2*a],
         Matrix([z**(S.Half - a)*exp(z/2)*besseli(a - S.Half, z/2)
                 * gamma(a + S.Half)/4**(S.Half - a),
                 z**(S.Half - a)*exp(z/2)*besseli(a + S.Half, z/2)
                 * gamma(a + S.Half)/4**(S.Half - a)]),
         Matrix([[1, 0]]),
         Matrix([[z/2, z/2], [z/2, (z/2 - 2*a)]]))
    add([-S.Half], [S.Half], exp(z) - sqrt(pi*z)*(-I)*erf(I*sqrt(z)))

    # 2F2
    addb([S.Half, a], [S(3)/2, a + 1],
         Matrix([a/(2*a - 1)*(-I)*sqrt(pi/z)*erf(I*sqrt(z)),
                 a/(2*a - 1)*(-z)**(-a)*lowergamma(a, -z), a/(2*a - 1)*exp(z)]),
         Matrix([[1, -1, 0]]),
         Matrix([[-S.Half, 0, 1], [0, -a, 1], [0, 0, z]]))

    # 0F1
    add((), (S.Half,), cosh(2*sqrt(z)))
    addb([], [b],
         Matrix([gamma(b)*z**((1-b)/2)*besseli(b-1, 2*sqrt(z)),
                 gamma(b)*z**(1 - b/2)*besseli(b  , 2*sqrt(z))]),
         Matrix([[1, 0]]), Matrix([[0, 1], [z, (1-b)]]))

    # 0F3
    x = 4*z**(S(1)/4)
    def fp(a,z): return besseli(a, x) + besselj(a, x)
    def fm(a,z): return besseli(a, x) - besselj(a, x)
    addb([], [S.Half, a, a+S.Half],
         Matrix([fp(2*a - 1, z), fm(2*a, z)*z**(S(1)/4),
                 fm(2*a - 1, z)*z**(S(1)/2), fp(2*a, z)*z**(S(3)/4)])
           * 2**(-2*a)*gamma(2*a)*z**((1-2*a)/4),
         Matrix([[1, 0, 0, 0]]),
         Matrix([[0, 1, 0, 0],
                 [0, S(1)/2 - a, 1, 0],
                 [0, 0, S(1)/2, 1],
                 [z, 0, 0, 1 - a]]))
    x = 2*(-4*z)**(S(1)/4)
    addb([], [a, a + S.Half, 2*a],
         (2*sqrt(-z))**(1-2*a)*gamma(2*a)**2 *
         Matrix([besselj(2*a-1, x)*besseli(2*a-1, x),
                 x*(besseli(2*a, x)*besselj(2*a-1, x)
                    - besseli(2*a-1, x)*besselj(2*a, x)),
                 x**2*besseli(2*a, x)*besselj(2*a, x),
                 x**3*(besseli(2*a,x)*besselj(2*a-1,x)
                       + besseli(2*a-1, x)*besselj(2*a, x))]),
         Matrix([[1, 0, 0, 0]]),
         Matrix([[0, S(1)/4, 0, 0],
                 [0, (1-2*a)/2, -S(1)/2, 0],
                 [0, 0, 1-2*a, S(1)/4],
                 [-32*z, 0, 0, 1-a]]))

    # 1F2
    addb([a], [a - S.Half, 2*a],
         Matrix([z**(S.Half - a)*besseli(a-S.Half, sqrt(z))**2,
                 z**(1-a)*besseli(a-S.Half, sqrt(z))
                         *besseli(a-S(3)/2, sqrt(z)),
                 z**(S(3)/2-a)*besseli(a-S(3)/2, sqrt(z))**2]),
         Matrix([[-gamma(a + S.Half)**2/4**(S.Half - a),
                 2*gamma(a - S.Half)*gamma(a + S.Half)/4**(1 - a),
                 0]]),
         Matrix([[1 - 2*a, 1, 0], [z/2, S.Half - a, S.Half], [0, z, 0]]))
    addb([S.Half], [b, 2 - b],
         pi*(1-b)/sin(pi*b) *
         Matrix([besseli(1-b, sqrt(z))*besseli(b-1, sqrt(z)),
                 sqrt(z)*(besseli(-b, sqrt(z))*besseli(b-1, sqrt(z))
                          + besseli(1-b, sqrt(z))*besseli(b, sqrt(z))),
                 besseli(-b, sqrt(z))*besseli(b, sqrt(z))]),
         Matrix([[1, 0, 0]]),
         Matrix([[b-1, S(1)/2, 0],
                 [z, 0, z],
                 [0, S(1)/2, -b]]))

    # 2F3
    # XXX with this five-parameter formula is pretty slow with the current
    #     Formula.find_instantiations (creates 2!*3!*3**(2+3) ~ 3000
    #     instantiations ... But it's not too bad.
    addb([a, a + S.Half], [2*a, b, 2*a - b + 1],
         gamma(b)*gamma(2*a - b + 1) * (sqrt(z)/2)**(1-2*a) *
         Matrix([besseli(b-1, sqrt(z))*besseli(2*a-b, sqrt(z)),
                 sqrt(z)*besseli(b, sqrt(z))*besseli(2*a-b, sqrt(z)),
                 sqrt(z)*besseli(b-1, sqrt(z))*besseli(2*a-b+1, sqrt(z)),
                 besseli(b, sqrt(z))*besseli(2*a-b+1, sqrt(z))]),
         Matrix([[1, 0, 0, 0]]),
         Matrix([[0, S(1)/2, S(1)/2, 0],
                 [z/2, 1-b, 0, z/2],
                 [z/2, 0, b-2*a, z/2],
                 [0, S(1)/2, S(1)/2, -2*a]]))

def make_simp(z):
    """ Create a function that simplifies rational functions in `z`. """
    def simp(expr):
        """ Efficiently simplify the rational function `expr`. """
        from sympy import poly
        numer, denom = expr.as_numer_denom()
        c, numer, denom = poly(numer, z).cancel(poly(denom, z))
        return c * numer.as_expr() / denom.as_expr()
    return simp

def debug(*args):
    if SYMPY_DEBUG:
        for a in args:
            print a,
        print


class Mod1(object):
    """
    Represent an expression 'mod 1'.

    Beware: __eq__ and the hash are NOT compatible. (by design)
    This means that m1 == m2 does not imply hash(m1) == hash(m2).
    Code that creates Mod1 objects (like compute_buckets below) should be
    careful only to produce one instance of Mod1 for each class.
    """
    # TODO this should be backported to any implementation of a Mod object
    #      (c/f issue 2490)

    def __new__(cls, r):
        if r.is_Rational and not r.free_symbols:
            return r - r.p//r.q
        res = object.__new__(cls)
        res.expr = r
        return res

    def __repr__(self):
        return str(self.expr) + ' % 1'

    def __eq__(self, other):
        from sympy import simplify
        if not isinstance(other, Mod1):
            return False
        if simplify(self.expr - other.expr).is_integer is True:
            return True
        return False

class IndexPair(object):
    """ Holds a pair of indices, and methods to compute their invariants. """

    def __init__(self, ap, bq):
        from sympy import expand, Tuple
        self.ap = Tuple(*[expand(x) for x in sympify(ap)])
        self.bq = Tuple(*[expand(x) for x in sympify(bq)])

    @property
    def sizes(self):
        return (len(self.ap), len(self.bq))

    def __str__(self):
        return 'IndexPair(%s, %s)' % (self.ap, self.bq)

    def compute_buckets(self, oabuckets=None, obbuckets=None):
        """
        Partition parameters `ap`, `bq` into buckets, that is return two dicts
        abuckets, bbuckets such that every key in [ab]buckets is a rational in
        range [0, 1) and the corresponding items are items of ap/bq congruent to
        the key mod 1.

        If oabuckets, obbuckets is specified, try to use the same Mod1 objects
        for parameters where possible.

        >>> from sympy.simplify.hyperexpand import IndexPair
        >>> from sympy import S
        >>> ap = (S(1)/2, S(1)/3, S(-1)/2, -2)
        >>> bq = (1, 2)
        >>> IndexPair(ap, bq).compute_buckets()
        ({0: (-2,), 1/3: (1/3,), 1/2: (1/2, -1/2)}, {0: (1, 2)})
        """
        # TODO this should probably be cached somewhere
        abuckets = {}
        bbuckets = {}

        oaparametric = []
        obparametric = []
        if oabuckets is not None:
            for parametric, buckets in [(oaparametric, oabuckets),
                                        (obparametric, obbuckets)]:
                parametric += filter(lambda x: isinstance(x, Mod1),
                                     buckets.keys())

        for params, bucket, oparametric in [(self.ap, abuckets, oaparametric),
                                            (self.bq, bbuckets, obparametric)]:
            parametric = []
            for p in params:
                res = Mod1(p)
                if isinstance(res, Mod1):
                    parametric.append(p)
                    continue
                if res in bucket:
                    bucket[res] += (p,)
                else:
                    bucket[res] = (p,)
            while parametric:
                p0 = parametric[0]
                p0mod1 = Mod1(p0)
                if oparametric.count(p0mod1):
                    i = oparametric.index(p0mod1)
                    p0mod1 = oparametric.pop(i)
                bucket[p0mod1] = (p0,)
                pos = []
                for po in parametric[1:]:
                    if Mod1(po) == p0mod1:
                        bucket[p0mod1] += (po,)
                    else:
                        pos.append(po)
                parametric = pos

        return abuckets, bbuckets

    def build_invariants(self):
        """
        Compute the invariant vector of (`ap`, `bq`), that is:
            (gamma, ((s1, n1), ..., (sk, nk)), ((t1, m1), ..., (tr, mr)))
        where gamma is the number of integer a < 0,
              s1 < ... < sk
              nl is the number of parameters a_i congruent to sl mod 1
              t1 < ... < tr
              ml is the number of parameters b_i congruent to tl mod 1

        If the index pair contains parameters, then this is not truly an
        invariant, since the parameters cannot be sorted uniquely mod1.

        >>> from sympy.simplify.hyperexpand import IndexPair
        >>> from sympy import S
        >>> ap = (S(1)/2, S(1)/3, S(-1)/2, -2)
        >>> bq = (1, 2)

        Here gamma = 1,
             k = 3, s1 = 0, s2 = 1/3, s3 = 1/2
                    n1 = 1, n2 = 1,   n2 = 2
             r = 1, t1 = 0
                    m1 = 2:
        >>> IndexPair(ap, bq).build_invariants()
        (1, ((0, 1), (1/3, 1), (1/2, 2)), ((0, 2),))
        """
        abuckets, bbuckets = self.compute_buckets()

        gamma = 0
        if S(0) in abuckets:
            gamma = len(filter(lambda x: x < 0, abuckets[S(0)]))

        def tr(bucket):
            bucket = bucket.items()
            if not any(isinstance(x[0], Mod1) for x in bucket):
                bucket.sort(key=lambda x: x[0])
            bucket = tuple(map(lambda x: (x[0], len(x[1])), bucket))
            return bucket

        return (gamma, tr(abuckets), tr(bbuckets))

    def difficulty(self, ip):
        """ Estimate how many steps it takes to reach `ip` from self.
            Return -1 if impossible. """
        oabuckets, obbuckets = self.compute_buckets()
        abuckets, bbuckets = ip.compute_buckets(oabuckets, obbuckets)

        gt0 = lambda x: (x > 0) is True
        if S(0) in abuckets and (not S(0) in oabuckets or
             len(filter(gt0, abuckets[S(0)])) != len(filter(gt0, oabuckets[S(0)]))):
            return -1

        diff = 0
        for bucket, obucket in [(abuckets, oabuckets), (bbuckets, obbuckets)]:
            for mod in set(bucket.keys() + obucket.keys()):
                if (not mod in bucket) or (not mod in obucket) \
                   or len(bucket[mod]) != len(obucket[mod]):
                    return -1
                l1 = list(bucket[mod])
                l2 = list(obucket[mod])
                l1.sort()
                l2.sort()
                for i, j in zip(l1, l2):
                    diff += abs(i - j)

        return diff

class IndexQuadruple(object):
    """ Holds a quadruple of indices. """
    def __init__(self, an, ap, bm, bq):
        from sympy import expand, Tuple
        def tr(l): return Tuple(*[expand(x) for x in sympify(l)])
        self.an = tr(an)
        self.ap = tr(ap)
        self.bm = tr(bm)
        self.bq = tr(bq)

    def compute_buckets(self):
        """
        Compute buckets for the fours sets of parameters.
        We guarantee that any two equal Mod1 objects returned are actually the
        same, and that the buckets are sorted by real part (an and bq
        descendending, bm and ap ascending).

        >>> from sympy.simplify.hyperexpand import IndexQuadruple
        >>> from sympy.abc import y
        >>> from sympy import S
        >>> IndexQuadruple([1, 3, 2, S(3)/2], [1 + y, y, 2, y + 3], [2], [y]).compute_buckets()
        ({0: [3, 2, 1], 1/2: [3/2]}, {y + 1 % 1: [y, y + 1, y + 3], 0: [2]}, {0: [2]}, {y + 1 % 1: [y]})
        """
        mod1s = []
        pan, pap, pbm, pbq = {}, {}, {}, {}
        for dic, lis in [(pan, self.an), (pap, self.ap), (pbm, self.bm),
                           (pbq, self.bq)]:
            for x in lis:
                m = Mod1(x)
                if mod1s.count(m):
                    i = mod1s.index(m)
                    m = mod1s[i]
                else:
                    mod1s.append(m)
                dic.setdefault(m, []).append(x)

        for dic, flip in [(pan, True), (pap, False), (pbm, False), (pbq, True)]:
            l = dic.items()
            dic.clear()
            for m, items in l:
                x0 = items[0]
                items.sort(key=lambda x: x-x0)
                if flip:
                    items.reverse()
                dic[m] = items

        return pan, pap, pbm, pbq

    def __str__(self):
        return 'IndexQuadruple(%s, %s, %s, %s)' % (self.an, self.ap,
                                                   self.bm, self.bq)

# Dummy generator
x = Dummy('x')

class Formula(object):
    """
    This class represents hypergeometric formulae.

    Its data members are:
    - z, the argument
    - closed_form, the closed form expression
    - symbols, the free symbols (parameters) in the formula
    - indices, the parameters
    - B, C, M (see _compute_basis)
    - lcms, a dictionary which maps symbol -> lcm of denominators
    - isolation, a dictonary which maps symbol -> (num, coeff) pairs

    >>> from sympy.abc import a, b, z
    >>> from sympy.simplify.hyperexpand import Formula
    >>> f = Formula((a/2, a/3 + b, (1+a)/2), (a, b, (a+b)/7), z, None, [a, b])

    The lcm of all denominators of coefficients of a is 2*3*7
    >>> f.lcms[a]
    42

    for b it is just 7:
    >>> f.lcms[b]
    7

    We can isolate a in the (1+a)/2 term, with denominator 2:
    >>> f.isolation[a]
    (2, 2, 1)

    b is isolated in the b term, with coefficient one:
    >>> f.isolation[b]
    (4, 1, 1)
    """

    def _compute_basis(self, closed_form):
        """
        Compute a set of functions B=(f1, ..., fn), a nxn matrix M
        and a 1xn matrix C such that:
           closed_form = C B
           z d/dz B = M B.
        """
        from sympy.matrices import Matrix, eye, zeros

        afactors = map(lambda a: x + a, self.indices.ap)
        bfactors = map(lambda b: x + b - 1, self.indices.bq)
        expr = x*Mul(*bfactors) - self.z*Mul(*afactors)
        poly = Poly(expr, x)

        n = poly.degree() - 1
        b = [closed_form]
        for _ in xrange(n):
            b.append(self.z*b[-1].diff(self.z))

        self.B = Matrix(b)
        self.C = Matrix([[1] + [0]*n])

        m = eye(n)
        m = m.col_insert(0, zeros((n, 1)))
        l = poly.all_coeffs()[1:]
        l.reverse()
        self.M = m.row_insert(n, -Matrix([l])/poly.all_coeffs()[0])

    def __init__(self, ap, bq, z, res, symbols, B=None, C=None, M=None):
        ap = Tuple(*map(expand, sympify(ap)))
        bq = Tuple(*map(expand, sympify(bq)))
        z  = sympify(z)
        res = sympify(res)
        symbols = filter(lambda x: ap.has(x) or bq.has(x), sympify(symbols))

        self.z  = z
        self.symbols = symbols
        self.B = B
        self.C = C
        self.M = M

        params = list(ap) + list(bq)
        lcms = {}
        isolation = {}
        for a in symbols:
            from sympy import ilcm
            l = 1
            isolating = []
            others = list(symbols[:])
            others.remove(a)
            i = 0
            for p in params:
                if p.has(a):
                    c, m = None, None
                    if p.is_Add:
                        c, m = p.as_independent(a)[1].as_coeff_mul(a)
                    else:
                        c, m = p.as_coeff_mul(a)
                    if m != (a,) or not c.is_Rational:
                        raise NotImplementedError('?')
                    l = ilcm(l, c.q)

                    if not p.has(*others):
                        isolating.append((i, c.q, c.p))
                lcms[a] = l
                i += 1
            if len(isolating) == 0:
                raise NotImplementedError('parameter is not isolated')
            isolating.sort(key=lambda x:x[1])
            isolating.sort(key=lambda x:-x[2])
            isolation[a] = isolating[-1]

        self.lcms = lcms
        self.isolation = isolation

        self.indices = IndexPair(ap, bq)

        # TODO with symbolic parameters, it could be advantageous
        #      (for prettier answers) to compute a basis only *after*
        #      instantiation
        if res is not None:
            self._compute_basis(res)

    @property
    def closed_form(self):
        return (self.C*self.B)[0]

    def find_instantiations(self, ip):
        """
        Try to find instantiations of the free symbols that match
        `ip.ap`, `ip.bq`. Return the instantiated formulae as a list.
        Note that the returned instantiations need not actually match,
        or be valid!
        """
        ap = ip.ap
        bq = ip.bq
        if len(ap) != len(self.indices.ap) or len(bq) != len(self.indices.bq):
            raise TypeError('Cannot instantiate other number of parameters')

        from sympy import solve
        from sympy.core.compatibility import permutations, product
        res = []
        our_params = list(self.indices.ap) + list(self.indices.bq)
        for na in permutations(ap):
            for nb in permutations(bq):
                all_params = list(na) + list(nb)
                repl = {}
                for a in self.symbols:
                    i, d, _ = self.isolation[a]
                    repl[a] = (solve(our_params[i] - all_params[i], a)[0], d)
                for change in product(*[(-1, 0, 1)]*len(self.symbols)):
                    rep = {}
                    for i, a in zip(change, repl.keys()):
                        rep[a] = repl[a][0] + i*repl[a][1]
                    res.append(Formula(self.indices.ap.subs(rep),
                                       self.indices.bq.subs(rep),
                                       self.z, None, [], self.B.subs(rep),
                                       self.C.subs(rep), self.M.subs(rep)))
                # if say a = -1/2, and there is 2*a in the formula, then
                # there will be a negative integer. But this origin is also
                # reachable from a = 1/2 ...
                # So throw this in as well.
                # The code is not as general as it could be, but good enough.
                if len(self.symbols) == 1:
                    a = self.symbols[0]
                    aval, d = repl[a]
                    if aval < 0 and d == 1:
                        from sympy import ceiling
                        aval -= ceiling(aval) - 1
                        res.append(Formula(self.indices.ap.subs(a, aval),
                                           self.indices.bq.subs(a, aval),
                                       self.z, None, [], self.B.subs(a, aval),
                                       self.C.subs(rep), self.M.subs(a, aval)))
        return res

    def is_suitable(self):
        """
        Decide if `self` is a suitable origin.

        >>> from sympy.simplify.hyperexpand import Formula
        >>> from sympy import S

        If ai - bq in Z and bq >= ai this is fine:
        >>> Formula((S(1)/2,), (S(3)/2,), None, None, []).is_suitable()
        True

        but ai = bq is not:
        >>> Formula((S(1)/2,), (S(1)/2,), None, None, []).is_suitable()
        False

        and ai > bq is not either:
        >>> Formula((S(1)/2,), (-S(1)/2,), None, None, []).is_suitable()
        False

        None of the bj can be a non-positive integer:
        >>> Formula((S(1)/2,), (0,), None, None, []).is_suitable()
        False
        >>> Formula((S(1)/2,), (-1, 1,), None, None, []).is_suitable()
        False

        None of the ai can be zero:
        >>> Formula((S(1)/2, 0), (1,), None, None, []).is_suitable()
        False


        More complicated examples:
        >>> Formula((S(1)/2, 1), (2, -S(2)/3), None, None, []).is_suitable()
        True
        >>> Formula((S(1)/2, 1), (2, -S(2)/3, S(3)/2), None, None, []).is_suitable()
        True
        """
        from sympy import oo, zoo
        if len(self.symbols) > 0:
            return None
        for a in self.indices.ap:
            for b in self.indices.bq:
                if (a-b).is_integer and not a < b:
                    return False
        for a in self.indices.ap:
            if a == 0:
                return False
        for b in self.indices.bq:
            if b <= 0 and b.is_integer:
                return False
        for e in [self.B, self.M, self.C]:
            if e is None:
                continue
            if e.has(S.NaN) or e.has(oo) or e.has(-oo) or e.has(zoo):
                return False
        return True


class FormulaCollection(object):
    """ A collection of formulae to use as origins. """

    def __init__(self):
            """ Doing this globally at module init time is a pain ... """
            self.symbolic_formulae = {}
            self.concrete_formulae = {}
            self.formulae = []

            add_formulae(self.formulae)

            # Now process the formulae into a helpful form.
            # These dicts are indexed by (p, q).

            for f in self.formulae:
                sizes = f.indices.sizes
                if len(f.symbols) > 0:
                    self.symbolic_formulae.setdefault(sizes, []).append(f)
                else:
                    inv = f.indices.build_invariants()
                    self.concrete_formulae.setdefault(sizes, {})[inv] = f

    def lookup_origin(self, ip):
        """
        Given the suitable parameters `ip.ap`, `ip.bq`, try to find an origin
        in our knowledge base.

        >>> from sympy.simplify.hyperexpand import FormulaCollection, IndexPair
        >>> f = FormulaCollection()
        >>> f.lookup_origin(IndexPair((), ())).closed_form
        exp(_z)
        >>> f.lookup_origin(IndexPair([1], ())).closed_form
        1/(-_z + 1)

        >>> from sympy import S
        >>> f.lookup_origin(IndexPair([S('1/4'), S('3/4 + 4')], [S.Half])).closed_form
        1/(2*(_z**(1/2) + 1)**(17/2)) + 1/(2*(-_z**(1/2) + 1)**(17/2))
        """
        inv = ip.build_invariants()
        sizes = ip.sizes
        if sizes in self.concrete_formulae and \
           inv in self.concrete_formulae[sizes]:
            return self.concrete_formulae[sizes][inv]

        # We don't have a concrete formula. Try to instantiate.
        if not sizes in self.symbolic_formulae:
            return None # Too bad...

        possible = []
        for f in self.symbolic_formulae[sizes]:
            l = f.find_instantiations(ip)
            for f2 in l:
                if not f2.is_suitable():
                    continue
                diff = f2.indices.difficulty(ip)
                if diff != -1:
                    possible.append((diff, f2))

        if not possible:
            # Give up.
            return None

        # find the nearest origin
        possible.sort(key=lambda x:x[0])
        return possible[0][1]


class Operator(object):
    """
    Base class for operators to be applied to our functions.

    These operators are differential operators. They are by convention
    expressed in the variable D = z*d/dz (although this base class does
    not actually care).
    Note that when the operator is applied to an object, we typically do
    *not* blindly differentiate but instead use a different representation
    of the z*d/dz operator (see make_derivative_operator).

    To subclass from this, define a __init__ method that initalises a
    self._poly variable. This variable stores a polynomial. By convention
    the generator is z*d/dz, and acts to the right of all coefficients.

    Thus this poly
        x**2 + 2*z*x + 1
    represents the differential operator
        (z*d/dz)**2 + 2*z**2*d/dz.

    This class is used only in the implementation of the hypergeometric
    function expansion algorithm.
    """

    def apply(self, obj, op):
        """
        Apply `self` to the object `obj`, where the generator is given by `op`.

        >>> from sympy.simplify.hyperexpand import Operator
        >>> from sympy.polys.polytools import Poly
        >>> from sympy.abc import x, y, z
        >>> op = Operator()
        >>> op._poly = Poly(x**2 + z*x + y, x)
        >>> op.apply(z**7, lambda f: f.diff(z))
        y*z**7 + 7*z**7 + 42*z**5
        """
        coeffs = self._poly.all_coeffs()
        coeffs.reverse()
        diffs  = [obj]
        for c in coeffs[1:]:
            diffs.append(op(diffs[-1]))
        r = coeffs[0]*diffs[0]
        for c, d in zip(coeffs[1:], diffs[1:]):
            r += c*d
        return r

class MultOperator(Operator):
    """ Simply multiply by a "constant" """

    def __init__(self, p):
        self._poly = Poly(p, x)

class ShiftA(Operator):
    """ Increment an upper index. """

    def __init__(self, ai):
        ai = sympify(ai)
        if ai == 0:
            raise ValueError('Cannot increment zero upper index.')
        self._poly = Poly(x/ai + 1, x)

    def __str__(self):
        return '<Increment upper %s.>' % (1/self._poly.all_coeffs()[0])

class ShiftB(Operator):
    """ Decrement a lower index. """

    def __init__(self, bi):
        bi = sympify(bi)
        if bi == 1:
            raise ValueError('Cannot decrement unit lower index.')
        self._poly = Poly(x/(bi - 1) + 1, x)

    def __str__(self):
        return '<Decrement lower %s.>' % (1/self._poly.all_coeffs()[0] + 1)

class UnShiftA(Operator):
    """ Decrement an upper index. """

    def __init__(self, ap, bq, i, z):
        """ Note: i counts from zero! """
        ap, bq, i = map(sympify, [ap, bq, i])

        self._ap = ap
        self._bq = bq
        self._i  = i

        ap = list(ap)
        bq = list(bq)
        ai = ap.pop(i) - 1

        if ai == 0:
            raise ValueError('Cannot decrement unit upper index.')

        m = Poly(z*ai, x)
        for a in ap:
            m *= Poly(x + a, x)
        #print m

        A = Dummy('A')
        D = Poly(ai*A - ai, A)
        n = 1*D
        for b in bq:
            n *= (D + b - 1)
        #print n

        b0 = -n.all_coeffs()[-1]
        if b0 == 0:
            raise ValueError('Cannot decrement upper index: ' \
                               'cancels with lower')
        #print b0

        n = Poly(Poly(n.all_coeffs()[:-1], A).as_expr().subs(A, x/ai + 1), x)

        self._poly = Poly((n-m)/b0, x)

    def __str__(self):
        return '<Decrement upper index #%s of %s, %s.>' % (self._i,
                                                        self._ap, self._bq)

class UnShiftB(Operator):
    """ Increment a lower index. """

    def __init__(self, ap, bq, i, z):
        """ Note: i counts from zero! """
        ap, bq, i = map(sympify, [ap, bq, i])

        self._ap = ap
        self._bq = bq
        self._i  = i

        ap = list(ap)
        bq = list(bq)
        bi = bq.pop(i) + 1

        if bi == 0:
            raise ValueError('Cannot increment -1 lower index.')

        m = Poly(x*(bi-1), x)
        for b in bq:
            m *= Poly(x + b - 1, x)
        #print m

        B = Dummy('B')
        D = Poly((bi-1)*B - bi + 1, B)
        n = Poly(z, B)
        for a in ap:
            n *= (D + a)
        #print n

        b0 = n.all_coeffs()[-1]
        #print b0
        if b0 == 0:
            raise ValueError('Cannot increment index: ' \
                               'cancels with upper')
        #print b0

        n = Poly(Poly(n.all_coeffs()[:-1], B).as_expr().subs(B, x/(bi-1) + 1), x)
        #print n

        self._poly = Poly((m-n)/b0, x)

    def __str__(self):
        return '<Increment lower index #%s of %s, %s.>' % (self._i,
                                                        self._ap, self._bq)

class ReduceOrder(Operator):
    """ Reduce Order by cancelling an upper and a lower index. """

    def __new__(cls, ai, bj):
        """ For convenience if reduction is not possible, return None. """
        ai = sympify(ai)
        bj = sympify(bj)
        n = ai - bj
        if n < 0 or not n.is_Integer:
            return None
        if bj.is_integer and bj <= 0 and bj + n - 1 >= 0:
            return None

        self = Operator.__new__(cls)

        p = S(1)
        for k in xrange(n):
            p *= (x + bj + k)/(bj + k)

        self._poly = Poly(p, x)
        self._a = ai
        self._b = bj

        return self

    @classmethod
    def _meijer(cls, b, a, sign):
        """ Cancel b + sign*s and a + sign*s
            This is for meijer G functions. """
        from sympy import Add
        b = sympify(b)
        a = sympify(a)
        n = b - a
        if n < 0 or not n.is_Integer:
            return None

        self = Operator.__new__(cls)

        p = S(1)
        for k in xrange(n):
            p *= (sign*x + a + k)

        self._poly = Poly(p, x)
        if sign == -1:
            self._a = b
            self._b = a
        else:
            self._b = Add(1, a - 1, evaluate=False)
            self._a = Add(1, b - 1, evaluate=False)

        return self

    @classmethod
    def meijer_minus(cls, b, a):
        return cls._meijer(b, a, -1)
    @classmethod
    def meijer_plus(cls, a, b):
        return cls._meijer(1 - a, 1 - b, 1)

    def __str__(self):
        return '<Reduce order by cancelling upper %s with lower %s.>' % \
                  (self._a, self._b)

def _reduce_order(ap, bq, gen, key):
    """ Order reduction algorithm common to both Hypergeometric and Meijer G """
    ap = list(ap)
    bq = list(bq)

    ap.sort(key=key)
    bq.sort(key=key)

    nap = []
    # we will edit bq in place
    operators = []
    for a in ap:
        op = None
        for i in xrange(len(bq)):
            op = gen(a, bq[i])
            if op is not None:
                bq.pop(i)
                break
        if op is None:
            nap.append(a)
        else:
            operators.append(op)

    return nap, bq, operators

def reduce_order(ip):
    """
    Given the hypergeometric parameters `ip.ap`, `ip.bq`, find a sequence of operators
    to reduces order as much as possible.

    Return (nip, [operators]), where applying the operators to the
    hypergeometric function specified by nip.ap, nip.bq yields ap, bq.

    Examples:

    >>> from sympy.simplify.hyperexpand import reduce_order, IndexPair
    >>> reduce_order(IndexPair((1, 2), (3, 4)))
    (IndexPair((1, 2), (3, 4)), [])
    >>> reduce_order(IndexPair((1,), (1,)))
    (IndexPair((), ()), [<Reduce order by cancelling upper 1 with lower 1.>])
    >>> reduce_order(IndexPair((2, 4), (3, 3)))
    (IndexPair((2,), (3,)), [<Reduce order by cancelling upper 4 with lower 3.>])
    """
    nap, nbq, operators = _reduce_order(ip.ap, ip.bq, ReduceOrder, lambda x: x)

    return IndexPair(Tuple(*nap), Tuple(*nbq)), operators

def reduce_order_meijer(iq):
    """
    Given the Meijer G function parameters, `iq.am`, `iq.ap`, `iq.bm`,
    `iq.bq`, find a sequence of operators that reduces order as much as possible.

    Return niq, [operators].

    Examples:

    >>> from sympy.simplify.hyperexpand import reduce_order_meijer, IndexQuadruple
    >>> reduce_order_meijer(IndexQuadruple([3, 4], [5, 6], [3, 4], [1, 2]))[0]
    IndexQuadruple((4, 3), (5, 6), (3, 4), (2, 1))
    >>> reduce_order_meijer(IndexQuadruple([3, 4], [5, 6], [3, 4], [1, 8]))[0]
    IndexQuadruple((3,), (5, 6), (3, 4), (1,))
    >>> reduce_order_meijer(IndexQuadruple([3, 4], [5, 6], [7, 5], [1, 5]))[0]
    IndexQuadruple((3,), (), (), (1,))
    >>> reduce_order_meijer(IndexQuadruple([3, 4], [5, 6], [7, 5], [5, 3]))[0]
    IndexQuadruple((), (), (), ())
    """

    nan, nbq, ops1 = _reduce_order(iq.an, iq.bq, ReduceOrder.meijer_plus, lambda x: -x)
    nbm, nap, ops2 = _reduce_order(iq.bm, iq.ap, ReduceOrder.meijer_minus, lambda x: x)

    return IndexQuadruple(Tuple(*nan), Tuple(*nap), Tuple(*nbm), Tuple(*nbq)), \
           ops1 + ops2

def make_derivative_operator(M, z):
    """ Create a derivative operator, to be passed to Operator.apply. """
    from sympy import poly
    def doit(C):
        r = z*C.diff(z) + C*M
        r = r.applyfunc(make_simp(z))
        return r
    return doit

def apply_operators(obj, ops, op):
    """
    Apply the list of operators `ops` to object `obj`, substituting `op` for the
    generator.
    """
    res = obj
    for o in reversed(ops):
        res = o.apply(res, op)
    return res

def devise_plan(ip, nip, z):
    """
    Devise a plan (consisting of shift and un-shift operators) to be applied
    to the hypergeometric function (`nip.ap`, `nip.bq`) to yield
    (`ip.ap`, `ip.bq`).
    Returns a list of operators.

    >>> from sympy.simplify.hyperexpand import devise_plan, IndexPair
    >>> from sympy.abc import z

    Nothing to do:

    >>> devise_plan(IndexPair((1, 2), ()), IndexPair((1, 2), ()), z)
    []
    >>> devise_plan(IndexPair((), (1, 2)), IndexPair((), (1, 2)), z)
    []

    Very simple plans:

    >>> devise_plan(IndexPair((2,), ()), IndexPair((1,), ()), z)
    [<Increment upper 1.>]
    >>> devise_plan(IndexPair((), (2,)), IndexPair((), (1,)), z)
    [<Increment lower index #0 of [], [1].>]

    Several buckets:

    >>> from sympy import S
    >>> devise_plan(IndexPair((1, S.Half), ()), IndexPair((2, S('3/2')), ()), z)
    [<Decrement upper index #0 of [2, 1/2], [].>, <Decrement upper index #0 of [3/2, 2], [].>]

    A slightly more complicated plan:

    >>> devise_plan(IndexPair((1, 3), ()), IndexPair((2, 2), ()), z)
    [<Increment upper 2.>, <Decrement upper index #0 of [2, 2], [].>]

    Another more complicated plan: (note that the ap have to be shifted first!)

    >>> devise_plan(IndexPair((1, -1), (2,)), IndexPair((3, -2), (4,)), z)
    [<Decrement lower 3.>, <Decrement lower 4.>, <Decrement upper index #1 of [-1, 2], [4].>, <Decrement upper index #1 of [-1, 3], [4].>, <Increment upper -2.>]
    """
    abuckets, bbuckets = ip.compute_buckets()
    nabuckets, nbbuckets = nip.compute_buckets(abuckets, bbuckets)

    if len(abuckets.keys()) != len(nabuckets.keys()) or \
       len(bbuckets.keys()) != len(nbbuckets.keys()):
        raise ValueError('%s not reachable from %s' % (ip, nip))

    ops = []

    def do_shifts(fro, to, inc, dec):
        ops = []
        for i in xrange(len(fro)):
            if to[i] - fro[i] > 0:
                sh = inc
                ch = 1
            else:
                sh = dec
                ch = -1

            while to[i] != fro[i]:
                ops += [sh(fro, i)]
                fro[i] += ch

        return ops

    def do_shifts_a(nal, nbk, al, aother, bother):
        """ Shift us from (nal, nbk) to (al, nbk). """
        return do_shifts(nal, al, lambda p, i: ShiftA(p[i]),
                         lambda p, i: UnShiftA(p + aother, nbk + bother, i, z))

    def do_shifts_b(nal, nbk, bk, aother, bother):
        """ Shift us from (nal, nbk) to (nal, bk). """
        return do_shifts(nbk, bk,
                         lambda p, i: UnShiftB(nal + aother, p + bother, i, z),
                         lambda p, i: ShiftB(p[i]))

    for r in set(abuckets.keys() + bbuckets.keys()):
        al = ()
        nal = ()
        bk = ()
        nbk = ()
        if r in abuckets:
            al = abuckets[r]
            nal = nabuckets[r]
        if r in bbuckets:
            bk = bbuckets[r]
            nbk = nbbuckets[r]
        if len(al) != len(nal) or len(bk) != len(nbk):
            raise ValueError('%s not reachable from %s' % ((ap, bq), (nap, nbq)))

        al = sorted(list(al))
        nal = sorted(list(nal))
        bk = sorted(list(bk))
        nbk = sorted(list(nbk))

        def others(dic, key):
            l = []
            for k, value in dic.iteritems():
                if k != key:
                    l += list(dic[k])
            return l
        aother = others(nabuckets, r)
        bother = others(nbbuckets, r)

        if len(al) == 0:
            # there can be no complications, just shift the bs as we please
            ops += do_shifts_b([], nbk, bk, aother, bother)
        elif len(bk) == 0:
            # there can be no complications, just shift the as as we please
            ops += do_shifts_a(nal, [], al, aother, bother)
        else:
            namax = nal[-1]
            amax  = al[-1]

            if nbk[0] <= namax or bk[0] <= amax:
                raise ValueError('Non-suitable parameters.')

            if namax > amax:
                # we are going to shift down - first do the as, then the bs
                ops += do_shifts_a(nal, nbk, al, aother, bother)
                ops += do_shifts_b(al, nbk, bk, aother, bother)
            else:
                # we are going to shift up - first do the bs, then the as
                ops += do_shifts_b(nal, nbk, bk, aother, bother)
                ops += do_shifts_a(nal, bk, al, aother, bother)

        nabuckets[r] = al
        nbbuckets[r] = bk

    ops.reverse()
    return ops

def try_shifted_sum(ip, z):
    """ Try to recognise a hypergeometric sum that starts from k > 0. """
    from sympy.functions import rf, factorial
    abuckets, bbuckets = ip.compute_buckets()
    if not S(0) in abuckets or len(abuckets[S(0)]) != 1:
        return None
    r = abuckets[S(0)][0]
    if r <= 0:
        return None
    if not S(0) in bbuckets:
        return None
    l = list(bbuckets[S(0)])
    l.sort()
    k = l[0]
    if k <= 0:
        return None

    nap = list(ip.ap)
    nap.remove(r)
    nbq = list(ip.bq)
    nbq.remove(k)
    k -= 1
    nap = map(lambda x: x - k, nap)
    nbq = map(lambda x: x - k, nbq)

    ops = []
    for n in xrange(r - 1):
        ops.append(ShiftA(n + 1))
    ops.reverse()

    fac = factorial(k)/z**k
    for a in nap:
        fac /= rf(a, k)
    for b in nbq:
        fac *= rf(b, k)

    ops += [MultOperator(fac)]

    p = 0
    for n in xrange(k):
        m = z**n/factorial(n)
        for a in nap:
            m *= rf(a, n)
        for b in nbq:
            m /= rf(b, n)
        p += m

    return IndexPair(nap, nbq), ops, -p

def try_polynomial(ip, z):
    """ Recognise polynomial cases. Returns None if not such a case.
        Requires order to be fully reduced. """
    from sympy import oo, factorial, rf
    abuckets, bbuckets = ip.compute_buckets()
    a0 = list(abuckets.get(S(0), []))
    b0 = list(bbuckets.get(S(0), []))
    a0.sort()
    b0.sort()
    al0 = filter(lambda x: x <= 0, a0)
    bl0 = filter(lambda x: x <= 0, b0)

    if bl0:
        return oo
    if not al0:
        return None

    a = al0[-1]
    fac = 1
    res = S(1)
    for n in xrange(-a):
       fac *= z
       fac /= n + 1
       for a in ip.ap: fac *= a + n
       for b in ip.bq: fac /= b + n
       res += fac
    return res

collection = None
def _hyperexpand(ip, z, ops0=[], z0=Dummy('z0'), premult=1, chainmult=1):
    """
    Try to find an expression for the hypergeometric function
    `ip.ap`, `ip.bq`.

    The result is expressed in terms of a dummy variable z0. Then it
    is multiplied by premult. Then ops0 is applied, using chainmult*t*d/dt
    for the operator.

    These latter parameters are all trickery to make _meijergexpand short.
    """
    from sympy.simplify import powdenest, simplify

    # TODO
    # The following would be possible:
    # 1) Partial simplification (i.e. return a simpler hypergeometric function,
    #    even if we cannot express it in terms of named special functions).
    # 2) PFD Duplication (see Kelly Roach's paper)
    # 3) If the coefficients are a rational function of n (numerator parameters
    #    k, a1, ..., an, denominator parameters a1+k1, a2+k2, ..., an+kn, where
    #    k, k1, ..., kn are integers) then result can be expressed using Lerch
    #    transcendent. Under certain conditions, this simplifies to polylogs
    #    or even zeta functions. C/f Kelly Roach's paper.

    global collection
    if collection is None:
        collection = FormulaCollection()

    debug('Trying to expand hypergeometric function corresponding to', ip)

    # First reduce order as much as possible.
    nip, ops = reduce_order(ip)
    if ops:
        debug('  Reduced order to', nip)
    else:
        debug('  Could not reduce order.')

    # Now try polynomial cases
    res = try_polynomial(nip, z0)
    if res is not None:
        debug('  Recognised polynomial.')
        p = apply_operators(res, ops, lambda f: z0*f.diff(z0))
        p = apply_operators(p*premult, ops0, lambda f: chainmult*z0*f.diff(z0))
        return simplify(p).subs(z0, z)

    # Try to recognise a shifted sum.
    p = S(0)
    res = try_shifted_sum(nip, z0)
    if res != None:
        nip, nops, p = res
        debug('  Recognised shifted sum, reducerd order to', nip)
        ops += nops

    # apply the plan for poly
    p = apply_operators(p, ops, lambda f: z0*f.diff(z0))
    p = apply_operators(p*premult, ops0, lambda f: chainmult*z0*f.diff(z0))
    p = simplify(p).subs(z0, z)

    # Now try to find a formula
    f = collection.lookup_origin(nip)

    if f is None:
        debug('  Could not find an origin.')
        # There is nothing we can do.
        return None

    # We need to find the operators that convert f into (nap, nbq).
    ops += devise_plan(nip, f.indices, z0)

    # Now carry out the plan.
    C = apply_operators(f.C.subs(f.z, z0), ops,
                        make_derivative_operator(f.M.subs(f.z, z0), z0))
    C = apply_operators(C*premult, ops0,
                        make_derivative_operator(f.M.subs(f.z, z0)*chainmult, z0))

    if premult == 1:
        C = C.applyfunc(make_simp(z0))
    r = C*f.B.subs(f.z, z0)
    r = r[0].subs(z0, z) + p

    # This will simpliy things like sqrt(-z**2) to i*z.
    # It would be wrong under certain choices of branch, but all results we
    # return are under an "implicit suitable choice of branch" anyway.
    return powdenest(r, force=True)

def _meijergexpand(iq, z0, allow_hyper=False):
    """
    Try to find an expression for the Meijer G function specified
    by the IndexQuadruple `iq`. If `allow_hyper` is True, then returning
    an expression in terms of hypergeometric functions is allowed.

    Currently this just does slater's theorem.
    """
    from sympy import hyper, Piecewise, meijerg, powdenest
    iq_ = iq
    debug('Try to expand meijer G function corresponding to', iq)

    # We will play games with analytic continuation - rather use a fresh symbol
    z = Dummy('z')

    iq, ops = reduce_order_meijer(iq)
    if ops:
        debug('  Reduced order to', iq)
    else:
        debug('  Could not reduce order.')

    # TODO the following would be possible:
    # 1) Set up a collection of meijer g formulae.
    #    This handles some cases that cannot be done using Slater's theorem,
    #    and also yields nicer looking results.
    # 2) Paired Index Theorems
    # 3) PFD Duplication
    #    (See Kelly Roach's paper for (2) and (3).)
    #
    # TODO Also, we tend to create combinations of gamma functions that can be
    #      simplified.

    def can_do(pbm, pap):
        """ Test if slater applies. """
        for i in pbm:
            if len(pbm[i]) > 1:
                l = 0
                if i in pap:
                    l = len(pap[i])
                if l + 1 < len(pbm[i]):
                   return False
        return True

    def do_slater(an, bm, ap, bq, z, t, chainmult, realz):
        from sympy import gamma, residue, factorial, rf, expand_func
        iq = IndexQuadruple(an, bm, ap, bq)
        _, pbm, pap, _ = iq.compute_buckets()
        if not can_do(pbm, pap):
            return S(0), False

        res = S(0)
        for m in pbm:
            if len(pbm[m]) == 1:
                bh = pbm[m][0]
                fac = 1
                bo = list(bm)
                bo.remove(bh)
                for bj in bo: fac *= gamma(bj - bh)
                for aj in an: fac *= gamma(1 + bh - aj)
                for bj in bq: fac /= gamma(1 + bh - bj)
                for aj in ap: fac /= gamma(aj - bh)
                nap = [1 + bh - a for a in list(an) + list(ap)]
                nbq = [1 + bh - b for b in list(bo) + list(bq)]

                k = S(-1)**(len(ap) - len(bm))
                harg = k*z
                premult = (k*t)**bh
                hyp = _hyperexpand(IndexPair(nap, nbq), harg, ops,
                                   t, premult, chainmult)
                if hyp is None:
                    hyp = apply_operators(premult*hyper(nap, nbq, t), ops,
                                          lambda f: chainmult*t*f.diff(t)).subs(t, harg)
                res += fac * hyp
            else:
                b_ = pbm[m][0]
                ki = [bi - b_ for bi in pbm[m][1:]]
                u = len(ki)
                li = [ai - b_ for ai in pap[m][0:u+1]]
                bo = list(bm)
                for b in pbm[m]:
                    bo.remove(b)
                ao = list(ap)
                for a in pap[m][:u]:
                    ao.remove(a)
                lu = li[-1]
                di = [l - k for (l, k) in zip(li, ki)]

                # We first work out the integrand:
                s = Dummy('s')
                integrand = z**s
                for b in bm:
                    integrand *= gamma(b - s)
                for a in an:
                    integrand *= gamma(1 - a + s)
                for b in bq:
                    integrand /= gamma(1 - b + s)
                for a in ap:
                    integrand /= gamma(a - s)

                # Now sum the finitely many residues:
                # XXX This speeds up some cases - is it a good idea?
                integrand = expand_func(integrand)
                for r in range(lu):
                    resid = residue(integrand, s, b_ + r)
                    resid = apply_operators(resid, ops, lambda f: realz*f.diff(realz))
                    res -= resid

                # Now the hypergeometric term.
                au = b_ + lu
                k = S(-1)**(len(ao) + len(bo) + 1)
                harg = k*z
                premult = (k*t)**au
                nap = [1 + au - a for a in list(an) + list(ap)] + [1]
                nbq = [1 + au - b for b in list(bm) + list(bq)]

                hyp = _hyperexpand(IndexPair(nap, nbq), harg, ops,
                                   t, premult, chainmult)
                if hyp is None:
                    hyp = apply_operators(premult*hyper(nap, nbq, t), ops,
                                          lambda f: chainmult*t*f.diff(t)).subs(t, harg)

                C = S(-1)**(lu)/factorial(lu)
                for i in range(u):
                    C *= S(-1)**di[i]/rf(lu - li[i] + 1, di[i])
                for a in an:
                    C *= gamma(1 - a + au)
                for b in bo:
                    C *= gamma(b - au)
                for a in ao:
                    C /= gamma(a - au)
                for b in bq:
                    C /= gamma(1 - b + au)

                res += C*hyp

        cond = len(an) + len(ap) < len(bm) + len(bq)
        if len(an) + len(ap) == len(bm) + len(bq):
            cond = abs(z) < 1
        return res, cond

    t = Dummy('t')
    slater1, cond1 = do_slater(iq.an, iq.bm, iq.ap, iq.bq, z, t, 1, z)

    def tr(l): return [1 - x for x in l]
    for op in ops:
        op._poly = Poly(op._poly.subs(z, S(-1)**(len(iq.an) - len(iq.bq))/t), x)
    slater2, cond2 = do_slater(tr(iq.bm), tr(iq.an), tr(iq.bq), tr(iq.ap),
                               1/z, t, -1, z)

    slater1 = powdenest(slater1.subs(z, z0), force=True)
    slater2 = powdenest(slater2.subs(z, z0), force=True)

    if meijerg(iq.an, iq.ap, iq.bm, iq.bq, z).delta > 0:
        # The above condition means that the convergence region is connected.
        # Any expression we find can be continued analytically to the entire
        # convergence region.
        if cond1 is not False:
            cond1 = True
        if cond2 is not False:
            cond2 = True

    if not isinstance(cond1, bool): cond1 = cond1.subs(z, z0)
    if not isinstance(cond2, bool): cond2 = cond2.subs(z, z0)

    if cond1 is True and not slater1.has(hyper):
        return slater1
    if cond2 is True and not slater2.has(hyper):
        return slater2

    # We couldn't find an expression without hypergeometric functions.
    # TODO it would be helpful to give conditions under which the integral
    #      is known to diverge.
    r =  Piecewise((slater1, cond1), (slater2, cond2),
                   (meijerg(iq_.an, iq_.ap, iq_.bm, iq_.bq, z0), True))
    if r.has(hyper) and not allow_hyper:
        debug('  Could express using hypergeometric functions, but not allowed.')
    if not r.has(hyper) or allow_hyper:
        return r

    return meijerg(iq_.an, iq_.ap, iq_.bm, iq_.bq, z0)

def hyperexpand(f, allow_hyper=False):
    """
    Expand hypergeometric functions. If allow_hyper is True, allow partial
    simplification (that is a result different from input,
    but still containing hypergeometric functions).

    Examples:

    >>> from sympy.simplify.hyperexpand import hyperexpand
    >>> from sympy.functions import hyper
    >>> from sympy.abc import z
    >>> hyperexpand(hyper([], [], z))
    exp(z)

    Non-hyperegeometric parts of the expression and hypergeometric expressions
    that are not recognised are left unchanged:

    >>> hyperexpand(1 + hyper([1, 1, 1], [], z))
    1 + hyper((1, 1, 1), (), z)
    """
    from sympy.functions import hyper, meijerg
    from sympy import nan, zoo, oo
    f = sympify(f)
    def do_replace(ap, bq, z):
        r = _hyperexpand(IndexPair(ap, bq), z)
        if r is None:
            return hyper(ap, bq, z)
        else:
            return r
    def do_meijer(ap, bq, z):
        r = _meijergexpand(IndexQuadruple(ap[0], ap[1], bq[0], bq[1]), z,
                           allow_hyper)
        if not r.has(nan, zoo, oo, -oo):
            return r
    return f.replace(hyper, do_replace).replace(meijerg, do_meijer)

from sympy.polys.polytools import Poly