/usr/share/pyshared/sympy/simplify/simplify.py is in python-sympy 0.7.1.rc1-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 | from sympy import SYMPY_DEBUG
from sympy.core import (Basic, S, C, Add, Mul, Pow, Rational, Integer,
Derivative, Wild, Symbol, sympify, expand, expand_mul, expand_func,
Function, Equality, Dummy, Atom, count_ops)
from sympy.core.compatibility import iterable
from sympy.core.numbers import igcd
from sympy.core.function import expand_log
from sympy.utilities import flatten
from sympy.functions import gamma, exp, sqrt, log
from sympy.simplify.cse_main import cse
from sympy.polys import (Poly, together, reduced, cancel, factor,
ComputationFailed, terms_gcd)
from sympy.core.compatibility import reduce
import sympy.mpmath as mpmath
def fraction(expr, exact=False):
"""Returns a pair with expression's numerator and denominator.
If the given expression is not a fraction then this function
will return the tuple (expr, 1).
This function will not make any attempt to simplify nested
fractions or to do any term rewriting at all.
If only one of the numerator/denominator pair is needed then
use numer(expr) or denom(expr) functions respectively.
>>> from sympy import fraction, Rational, Symbol
>>> from sympy.abc import x, y
>>> fraction(x/y)
(x, y)
>>> fraction(x)
(x, 1)
>>> fraction(1/y**2)
(1, y**2)
>>> fraction(x*y/2)
(x*y, 2)
>>> fraction(Rational(1, 2))
(1, 2)
This function will also work fine with assumptions:
>>> k = Symbol('k', negative=True)
>>> fraction(x * y**k)
(x, y**(-k))
If we know nothing about sign of some exponent and 'exact'
flag is unset, then structure this exponent's structure will
be analyzed and pretty fraction will be returned:
>>> from sympy import exp
>>> fraction(2*x**(-y))
(2, x**y)
>>> fraction(exp(-x))
(1, exp(x))
>>> fraction(exp(-x), exact=True)
(exp(-x), 1)
"""
expr = sympify(expr)
numer, denom = [], []
for term in Mul.make_args(expr):
if term.is_Pow or term.func is exp:
b, ex = term.as_base_exp()
if ex.is_negative:
if ex is S.NegativeOne:
denom.append(b)
else:
denom.append(Pow(b, -ex))
elif not exact and ex.is_Mul:
n, d = term.as_numer_denom()
numer.append(n)
denom.append(d)
else:
numer.append(term)
elif term.is_Rational:
n, d = term.as_numer_denom()
numer.append(n)
denom.append(d)
else:
numer.append(term)
return Mul(*numer), Mul(*denom)
def numer(expr):
return fraction(expr)[0]
def denom(expr):
return fraction(expr)[1]
def fraction_expand(expr):
a, b = fraction(expr)
return a.expand() / b.expand()
def numer_expand(expr):
a, b = fraction(expr)
return a.expand() / b
def denom_expand(expr):
a, b = fraction(expr)
return a / b.expand()
def separate(expr, deep=False, force=False):
"""A wrapper to expand(power_base=True) which separates a power
with a base that is a Mul into a product of powers, without performing
any other expansions, provided that assumptions about the power's base
and exponent allow.
deep=True (default is False) will do separations inside functions.
force=True (default is False) will cause the expansion to ignore
assumptions about the base and exponent. When False, the expansion will
only happen if the base is non-negative or the exponent is an integer.
>>> from sympy.abc import x, y, z
>>> from sympy import separate, sin, cos, exp
>>> (x*y)**2
x**2*y**2
>>> (2*x)**y
(2*x)**y
>>> separate(_)
2**y*x**y
>>> separate((x*y)**z)
(x*y)**z
>>> separate((x*y)**z, force=True)
x**z*y**z
>>> separate(sin((x*y)**z))
sin((x*y)**z)
>>> separate(sin((x*y)**z), deep=True, force=True)
sin(x**z*y**z)
>>> separate((2*sin(x))**y + (2*cos(x))**y)
2**y*sin(x)**y + 2**y*cos(x)**y
>>> separate((2*exp(y))**x)
2**x*exp(x*y)
>>> separate((2*cos(x))**y)
2**y*cos(x)**y
Notice that summations are left untouched. If this is not the
desired behavior, apply 'expand' to the expression:
>>> separate(((x+y)*z)**2)
z**2*(x + y)**2
>>> (((x+y)*z)**2).expand()
x**2*z**2 + 2*x*y*z**2 + y**2*z**2
>>> separate((2*y)**(1+z))
2**(z + 1)*y**(z + 1)
>>> ((2*y)**(1+z)).expand()
2*2**z*y*y**z
"""
return sympify(expr).expand(deep=deep, mul=False, power_exp=False,\
power_base=True, basic=False, multinomial=False, log=False, force=force)
def collect(expr, syms, evaluate=True, exact=False):
"""
Collect additive terms with respect to a list of symbols up
to powers with rational exponents. By the term symbol here
are meant arbitrary expressions, which can contain powers,
products, sums etc. In other words symbol is a pattern
which will be searched for in the expression's terms.
This function will not apply any redundant expanding to the
input expression, so user is assumed to enter expression in
final form. This makes 'collect' more predictable as there
is no magic behind the scenes. However it is important to
note, that powers of products are converted to products of
powers using 'separate' function.
There are two possible types of output. First, if 'evaluate'
flag is set, this function will return a single expression
or else it will return a dictionary with separated symbols
up to rational powers as keys and collected sub-expressions
as values respectively.
>>> from sympy import collect, sympify, Wild
>>> from sympy.abc import a, b, c, x, y, z
This function can collect symbolic coefficients in polynomial
or rational expressions. It will manage to find all integer or
rational powers of collection variable:
>>> collect(a*x**2 + b*x**2 + a*x - b*x + c, x)
c + x**2*(a + b) + x*(a - b)
The same result can be achieved in dictionary form:
>>> d = collect(a*x**2 + b*x**2 + a*x - b*x + c, x, evaluate=False)
>>> d[x**2]
a + b
>>> d[x]
a - b
>>> d[sympify(1)]
c
You can also work with multi-variate polynomials. However
remember that this function is greedy so it will care only
about a single symbol at time, in specification order:
>>> collect(x**2 + y*x**2 + x*y + y + a*y, [x, y])
x**2*(y + 1) + x*y + y*(a + 1)
Also more complicated expressions can be used as patterns:
>>> from sympy import sin, log
>>> collect(a*sin(2*x) + b*sin(2*x), sin(2*x))
(a + b)*sin(2*x)
>>> collect(a*x*log(x) + b*(x*log(x)), x*log(x))
x*(a + b)*log(x)
You can use wildcards in the pattern
>>> w = Wild('w1')
>>> collect(a*x**y - b*x**y, w**y)
x**y*(a - b)
It is also possible to work with symbolic powers, although
it has more complicated behavior, because in this case
power's base and symbolic part of the exponent are treated
as a single symbol:
>>> collect(a*x**c + b*x**c, x)
a*x**c + b*x**c
>>> collect(a*x**c + b*x**c, x**c)
x**c*(a + b)
However if you incorporate rationals to the exponents, then
you will get well known behavior:
>>> collect(a*x**(2*c) + b*x**(2*c), x**c)
(a + b)*(x**2)**c
Note also that all previously stated facts about 'collect'
function apply to the exponential function, so you can get:
>>> from sympy import exp
>>> collect(a*exp(2*x) + b*exp(2*x), exp(x))
(a + b)*exp(2*x)
If you are interested only in collecting specific powers
of some symbols then set 'exact' flag in arguments:
>>> collect(a*x**7 + b*x**7, x, exact=True)
a*x**7 + b*x**7
>>> collect(a*x**7 + b*x**7, x**7, exact=True)
x**7*(a + b)
You can also apply this function to differential equations, where
derivatives of arbitrary order can be collected. Note that if you
collect with respect to a function or a derivative of a function,
all derivatives of that function will also be collected. Use
exact=True to prevent this from happening:
>>> from sympy import Derivative as D, collect, Function
>>> f = Function('f') (x)
>>> collect(a*D(f,x) + b*D(f,x), D(f,x))
(a + b)*Derivative(f(x), x)
>>> collect(a*D(D(f,x),x) + b*D(D(f,x),x), f)
(a + b)*Derivative(f(x), x, x)
>>> collect(a*D(D(f,x),x) + b*D(D(f,x),x), D(f,x), exact=True)
a*Derivative(f(x), x, x) + b*Derivative(f(x), x, x)
>>> collect(a*D(f,x) + b*D(f,x) + a*f + b*f, f,x)
(a + b)*f(x) + (a + b)*Derivative(f(x), x)
Or you can even match both derivative order and exponent at the same
time.
>>> collect(a*D(D(f,x),x)**2 + b*D(D(f,x),x)**2, D(f,x))
(a + b)*Derivative(f(x), x, x)**2
Note: arguments are expected to be in expanded form, so you might have
to call expand() prior to calling this function.
"""
def make_expression(terms):
product = []
for term, rat, sym, deriv in terms:
if deriv is not None:
var, order = deriv
while order > 0:
term, order = Derivative(term, var), order-1
if sym is None:
if rat is S.One:
product.append(term)
else:
product.append(Pow(term, rat))
else:
product.append(Pow(term, rat*sym))
return Mul(*product)
def parse_derivative(deriv):
# scan derivatives tower in the input expression and return
# underlying function and maximal differentiation order
expr, sym, order = deriv.expr, deriv.variables[0], 1
for s in deriv.variables[1:]:
if s == sym:
order += 1
else:
raise NotImplementedError('Improve MV Derivative support in collect')
while isinstance(expr, Derivative):
s0 = expr.variables[0]
for s in expr.variables:
if s != s0:
raise NotImplementedError('Improve MV Derivative support in collect')
if s0 == sym:
expr, order = expr.expr, order+len(expr.variables)
else:
break
return expr, (sym, Rational(order))
def parse_term(expr):
"""Parses expression expr and outputs tuple (sexpr, rat_expo, sym_expo, deriv)
where:
- sexpr is the base expression
- rat_expo is the rational exponent that sexpr is raised to
- sym_expo is the symbolic exponent that sexpr is raised to
- deriv contains the derivatives the the expression
for example, the output of x would be (x, 1, None, None)
the output of 2**x would be (2, 1, x, None)
"""
rat_expo, sym_expo = S.One, None
sexpr, deriv = expr, None
if expr.is_Pow:
if isinstance(expr.base, Derivative):
sexpr, deriv = parse_derivative(expr.base)
else:
sexpr = expr.base
if expr.exp.is_Rational:
rat_expo = expr.exp
elif expr.exp.is_Mul:
coeff, tail = expr.exp.as_coeff_mul()
if coeff.is_Rational:
rat_expo, sym_expo = coeff, expr.exp._new_rawargs(*tail)
else:
sym_expo = expr.exp
else:
sym_expo = expr.exp
elif expr.func is C.exp:
arg = expr.args[0]
if arg.is_Rational:
sexpr, rat_expo = S.Exp1, arg
elif arg.is_Mul:
coeff, tail = arg.as_coeff_mul()
if coeff.is_Rational:
sexpr, rat_expo = C.exp(arg._new_rawargs(*tail)), coeff
elif isinstance(expr, Derivative):
sexpr, deriv = parse_derivative(expr)
return sexpr, rat_expo, sym_expo, deriv
def parse_expression(terms, pattern):
"""Parse terms searching for a pattern.
terms is a list of tuples as returned by parse_terms;
pattern is an expression treated as a product of factors
"""
pattern = Mul.make_args(pattern)
if len(terms) < len(pattern):
# pattern is longer than matched product
# so no chance for positive parsing result
return None
else:
pattern = [parse_term(elem) for elem in pattern]
terms = terms[:] # need a copy
elems, common_expo, has_deriv = [], None, False
for elem, e_rat, e_sym, e_ord in pattern:
if elem.is_Number:
# a constant is a match for everything
continue
for j in range(len(terms)):
if terms[j] is None:
continue
term, t_rat, t_sym, t_ord = terms[j]
# keeping track of whether one of the terms had
# a derivative or not as this will require rebuilding
# the expression later
if t_ord is not None:
has_deriv= True
if (term.match(elem) is not None and \
(t_sym == e_sym or t_sym is not None and \
e_sym is not None and \
t_sym.match(e_sym) is not None)):
if exact == False:
# we don't have to be exact so find common exponent
# for both expression's term and pattern's element
expo = t_rat / e_rat
if common_expo is None:
# first time
common_expo = expo
else:
# common exponent was negotiated before so
# there is no chance for a pattern match unless
# common and current exponents are equal
if common_expo != expo:
common_expo = 1
else:
# we ought to be exact so all fields of
# interest must match in every details
if e_rat != t_rat or e_ord != t_ord:
continue
# found common term so remove it from the expression
# and try to match next element in the pattern
elems.append(terms[j])
terms[j] = None
break
else:
# pattern element not found
return None
return filter(None, terms), elems, common_expo, has_deriv
if evaluate:
if expr.is_Mul:
ret = 1
for term in expr.args:
ret *= collect(term, syms, True, exact)
return ret
elif expr.is_Pow:
b = collect(expr.base, syms, True, exact)
return Pow(b, expr.exp)
summa = [separate(i) for i in Add.make_args(sympify(expr))]
if hasattr(syms, '__iter__') or hasattr(syms, '__getitem__'):
syms = [separate(s) for s in syms]
else:
syms = [separate(syms)]
collected, disliked = {}, S.Zero
for product in summa:
terms = [parse_term(i) for i in Mul.make_args(product)]
for symbol in syms:
if SYMPY_DEBUG:
print "DEBUG: parsing of expression %s with symbol %s " % (str(terms), str(symbol))
result = parse_expression(terms, symbol)
if SYMPY_DEBUG:
print "DEBUG: returned %s" % str(result)
if result is not None:
terms, elems, common_expo, has_deriv = result
# when there was derivative in current pattern we
# will need to rebuild its expression from scratch
if not has_deriv:
index = 1
for elem in elems:
index *= Pow(elem[0], elem[1])
if elem[2] is not None:
index **= elem[2]
else:
index = make_expression(elems)
terms = separate(make_expression(terms))
index = separate(index)
if index in collected.keys():
collected[index] += terms
else:
collected[index] = terms
break
else:
# none of the patterns matched
disliked += product
if disliked is not S.Zero:
collected[S.One] = disliked
if evaluate:
return Add(*[a*b for a, b in collected.iteritems()])
else:
return collected
def rcollect(expr, *vars):
"""
Recursively collect sums in an expression.
Example
=======
>>> from sympy.simplify import rcollect
>>> from sympy.abc import x, y
>>> expr = (x**2*y + x*y + x + y)/(x + y)
>>> rcollect(expr, y)
(x + y*(x**2 + x + 1))/(x + y)
"""
if expr.is_Atom or not expr.has(*vars):
return expr
else:
expr = expr.__class__(*[ rcollect(arg, *vars) for arg in expr.args ])
if expr.is_Add:
return collect(expr, vars)
else:
return expr
def separatevars(expr, symbols=[], dict=False, force=False):
"""
Separates variables in an expression, if possible. By
default, it separates with respect to all symbols in an
expression and collects constant coefficients that are
independent of symbols.
If dict=True then the separated terms will be returned
in a dictionary keyed to their corresponding symbols.
By default, all symbols in the expression will appear as
keys; if symbols are provided, then all those symbols will
be used as keys, and any terms in the expression containing
other symbols or non-symbols will be returned keyed to the
string 'coeff'.
If force=True, then power bases will only be separated if assumptions allow.
Note: the order of the factors is determined by Mul, so that the
separated expressions may not necessarily be grouped together.
Examples:
>>> from sympy.abc import x, y, z, alpha
>>> from sympy import separatevars, sin
>>> separatevars((x*y)**y)
(x*y)**y
>>> separatevars((x*y)**y, force=True)
x**y*y**y
>>> separatevars(2*x**2*z*sin(y)+2*z*x**2)
2*x**2*z*(sin(y) + 1)
>>> separatevars(2*x+y*sin(x))
2*x + y*sin(x)
>>> separatevars(2*x**2*z*sin(y)+2*z*x**2, symbols=(x, y), dict=True)
{'coeff': 2*z, x: x**2, y: sin(y) + 1}
>>> separatevars(2*x**2*z*sin(y)+2*z*x**2, [x, y, alpha], dict=True)
{'coeff': 2*z, alpha: 1, x: x**2, y: sin(y) + 1}
If the expression is not really separable, or is only partially
separable, separatevars will do the best it can to separate it.
>>> separatevars(x+x*y-3*(x**2))
-x*(3*x - y - 1)
If the expression is not separable then expr is returned unchanged
or (if dict=True) then None is returned.
>>> eq = 2*x+y*sin(x)
>>> separatevars(eq) == eq
True
>>> separatevars(2*x+y*sin(x), symbols=(x, y), dict=True) == None
True
"""
if dict:
return _separatevars_dict(_separatevars(expr, force), *symbols)
else:
return _separatevars(expr, force)
def _separatevars(expr, force):
# get a Pow ready for expansion
if expr.is_Pow:
expr = Pow(separatevars(expr.base, force=force), expr.exp)
# First try other expansion methods
expr = expr.expand(mul=False, multinomial=False, force=force)
_expr = expr.expand(power_exp=False, deep=False, force=force)
if not force:
# factor will expand bases so we mask them off now
pows = [p for p in _expr.atoms(Pow) if p.base.is_Mul]
dums = [Dummy(str(i)) for i in xrange(len(pows))]
_expr = _expr.subs(dict(zip(pows, dums)))
_expr = factor(_expr, expand=False)
if not force:
# and retore them
_expr = _expr.subs(dict(zip(dums, pows)))
if not _expr.is_Add:
expr = _expr
if expr.is_Add:
nonsepar = sympify(0)
# Find any common coefficients to pull out
commoncsetlist = []
for i in expr.args:
if i.is_Mul:
commoncsetlist.append(set(i.args))
else:
commoncsetlist.append(set((i,)))
commoncset = set(flatten(commoncsetlist))
commonc = sympify(1)
for i in commoncsetlist:
commoncset = commoncset.intersection(i)
commonc = Mul(*commoncset)
for i in expr.args:
coe = i.extract_multiplicatively(commonc)
if coe == None:
nonsepar += sympify(1)
else:
nonsepar += coe
if nonsepar == 0:
return commonc
else:
return commonc*nonsepar
else:
return expr
def _separatevars_dict(expr, *symbols):
if symbols:
assert all((t.is_Atom for t in symbols)), "symbols must be Atoms."
ret = dict(((i, S.One) for i in symbols + ('coeff',)))
for i in Mul.make_args(expr):
expsym = i.free_symbols
intersection = set(symbols).intersection(expsym)
if len(intersection) > 1:
return None
if len(intersection) == 0:
# There are no symbols, so it is part of the coefficient
ret['coeff'] *= i
else:
ret[intersection.pop()] *= i
return ret
def ratsimp(expr):
"""Put an expression over a common denominator, cancel and reduce.
== Examples ==
>>> from sympy import ratsimp
>>> from sympy.abc import x, y
>>> ratsimp(1/x + 1/y)
(x + y)/(x*y)
"""
f, g = cancel(expr).as_numer_denom()
try:
Q, r = reduced(f, [g], field=True, expand=False)
except ComputationFailed:
return f/g
return Add(*Q) + cancel(r/g)
def trigsimp(expr, deep=False, recursive=False):
"""
== Usage ==
trigsimp(expr) -> reduces expression by using known trig identities
== Notes ==
deep:
- Apply trigsimp inside functions
recursive:
- Use common subexpression elimination (cse()) and apply
trigsimp recursively (recursively==True is quite expensive
operation if the expression is large)
== Examples ==
>>> from sympy import trigsimp, sin, cos, log
>>> from sympy.abc import x, y
>>> e = 2*sin(x)**2 + 2*cos(x)**2
>>> trigsimp(e)
2
>>> trigsimp(log(e))
log(2*sin(x)**2 + 2*cos(x)**2)
>>> trigsimp(log(e), deep=True)
log(2)
"""
sin, cos, tan, cot = C.sin, C.cos, C.tan, C.cot
if not expr.has(sin, cos, tan, cot):
return expr
if recursive:
w, g = cse(expr)
g = trigsimp_nonrecursive(g[0])
for sub in reversed(w):
g = g.subs(sub[0], sub[1])
g = trigsimp_nonrecursive(g)
result = g
else:
result = trigsimp_nonrecursive(expr, deep)
return result
def trigsimp_nonrecursive(expr, deep=False):
"""
A nonrecursive trig simplifier, used from trigsimp.
== Usage ==
trigsimp_nonrecursive(expr) -> reduces expression by using known trig
identities
== Notes ==
deep ........ apply trigsimp inside functions
== Examples ==
>>> from sympy import cos, sin, log
>>> from sympy.simplify.simplify import trigsimp, trigsimp_nonrecursive
>>> from sympy.abc import x, y
>>> e = 2*sin(x)**2 + 2*cos(x)**2
>>> trigsimp(e)
2
>>> trigsimp_nonrecursive(log(e))
log(2*sin(x)**2 + 2*cos(x)**2)
>>> trigsimp_nonrecursive(log(e), deep=True)
log(2)
"""
sin, cos, tan, cot = C.sin, C.cos, C.tan, C.cot
if expr.is_Function:
if deep:
return expr.func(trigsimp_nonrecursive(expr.args[0], deep))
elif expr.is_Mul:
# do some simplifications like sin/cos -> tan:
a,b,c = map(Wild, 'abc')
matchers = (
(a*sin(b)**c/cos(b)**c, a*tan(b)**c),
(a*tan(b)**c*cos(b)**c, a*sin(b)**c),
(a*cot(b)**c*sin(b)**c, a*cos(b)**c),
(a*tan(b)**c/sin(b)**c, a/cos(b)**c),
(a*cot(b)**c/cos(b)**c, a/sin(b)**c),
)
for pattern, simp in matchers:
res = expr.match(pattern)
if res is not None:
# if c is missing or zero, do nothing:
if (not c in res) or res[c] == 0:
continue
# if "a" contains any of sin("b"), cos("b"), tan("b") or cot("b),
# skip the simplification:
if res[a].has(cos(res[b]), sin(res[b]), tan(res[b]), cot(res[b])):
continue
# simplify and finish:
expr = simp.subs(res)
break
if not expr.is_Mul:
return trigsimp_nonrecursive(expr, deep)
ret = S.One
for x in expr.args:
ret *= trigsimp_nonrecursive(x, deep)
return ret
elif expr.is_Pow:
return Pow(trigsimp_nonrecursive(expr.base, deep),
trigsimp_nonrecursive(expr.exp, deep))
elif expr.is_Add:
# TODO this needs to be faster
# The types of trig functions we are looking for
a,b,c = map(Wild, 'abc')
matchers = (
(a*sin(b)**2, a - a*cos(b)**2),
(a*tan(b)**2, a*(1/cos(b))**2 - a),
(a*cot(b)**2, a*(1/sin(b))**2 - a)
)
# Scan for the terms we need
ret = S.Zero
for term in expr.args:
term = trigsimp_nonrecursive(term, deep)
res = None
for pattern, result in matchers:
res = term.match(pattern)
if res is not None:
ret += result.subs(res)
break
if res is None:
ret += term
# Reduce any lingering artifacts, such as sin(x)**2 changing
# to 1-cos(x)**2 when sin(x)**2 was "simpler"
artifacts = (
(a - a*cos(b)**2 + c, a*sin(b)**2 + c, cos),
(a - a*(1/cos(b))**2 + c, -a*tan(b)**2 + c, cos),
(a - a*(1/sin(b))**2 + c, -a*cot(b)**2 + c, sin)
)
expr = ret
for pattern, result, ex in artifacts:
# Substitute a new wild that excludes some function(s)
# to help influence a better match. This is because
# sometimes, for example, 'a' would match sec(x)**2
a_t = Wild('a', exclude=[ex])
pattern = pattern.subs(a, a_t)
result = result.subs(a, a_t)
if expr.is_number:
continue
m = expr.match(pattern)
while m is not None:
if m[a_t] == 0 or -m[a_t] in m[c].args or m[a_t] + m[c] == 0:
break
expr = result.subs(m)
m = expr.match(pattern)
return expr
return expr
def radsimp(expr):
"""
Rationalize the denominator.
Examples:
>>> from sympy import radsimp, sqrt, Symbol
>>> radsimp(1/(2+sqrt(2)))
-2**(1/2)/2 + 1
>>> x,y = map(Symbol, 'xy')
>>> e = ((2+2*sqrt(2))*x+(2+sqrt(8))*y)/(2+sqrt(2))
>>> radsimp(e)
2**(1/2)*x + 2**(1/2)*y
"""
n,d = fraction(expr)
a,b,c = map(Wild, 'abc')
r = d.match(a+b*sqrt(c))
if r is not None:
a = r[a]
if r[b] == 0:
b,c = 0,0
else:
b,c = r[b],r[c]
syms = list(n.atoms(Symbol))
n = collect((n*(a-b*sqrt(c))).expand(), syms)
d = a**2 - c*b**2
return n/d
def posify(eq):
"""Return eq (with generic symbols made positive) and a restore dictionary.
Any symbol that has positive=None will be replaced with a positive dummy
symbol having the same name. This replacement will allow more symbolic
processing of expressions, especially those involving powers and logarithms.
A dictionary that can be sent to subs to restore eq to its original symbols
is also returned.
>>> from sympy import posify, Symbol, log
>>> from sympy.abc import x
>>> posify(x + Symbol('p', positive=True) + Symbol('n', negative=True))
(_x + n + p, {_x: x})
>> log(1/x).expand() # should be log(1/x) but it comes back as -log(x)
log(1/x)
>>> log(posify(1/x)[0]).expand() # take [0] and ignore replacements
-log(_x)
>>> eq, rep = posify(1/x)
>>> log(eq).expand().subs(rep)
-log(x)
>>> posify([x, 1 + x])
([_x, _x + 1], {_x: x})
"""
eq = sympify(eq)
if iterable(eq):
f = type(eq)
eq = list(eq)
syms = set()
for e in eq:
syms = syms.union(e.atoms(C.Symbol))
reps = {}
for s in syms:
reps.update(dict((v, k) for k, v in posify(s)[1].items()))
for i, e in enumerate(eq):
eq[i] = e.subs(reps)
return f(eq), dict([(r,s) for s, r in reps.iteritems()])
reps = dict([(s, Dummy(s.name, positive=True))
for s in eq.atoms(Symbol) if s.is_positive is None])
eq = eq.subs(reps)
return eq, dict([(r,s) for s, r in reps.iteritems()])
def powdenest(eq, force=False):
"""
Collect exponents on powers as assumptions allow.
Given (bb**be)**e, this can be simplified as follows:
o if bb is positive or e is an integer, bb**(be*e)
o if be has an integer in the denominatory, then
all integers from its numerator can be joined with e
Given a product of powers raised to a power, (bb1**be1 * bb2**be2...)**e,
simplification can be done as follows:
o if e is positive, the gcd of all bei can be joined with e;
o all non-negative bb can be separated from those that are negative
and their gcd can be joined with e; autosimplification already
handles this separation.
o integer factors from powers that have integers in the denominator
of the exponent can be removed from any term and the gcd of such
integers can be joined with e
Setting ``force`` to True will make symbols that are not explicitly
negative behave as though they are positive, resulting in more
denesting.
When there are sums of logs in exp() then a product of powers may be
obtained e.g. exp(3*(log(a) + 2*log(b))) - > a**3*b**6.
Examples:
>>> from sympy.abc import a, b, x, y, z
>>> from sympy import Symbol, exp, log, sqrt, symbols, powdenest
>>> powdenest((x**(2*a/3))**(3*x))
(x**(a/3))**(6*x)
>>> powdenest(exp(3*x*log(2)))
2**(3*x)
Assumptions may prevent expansion:
>> powdenest(sqrt(x**2)) # activate when log rules are fixed
(x**2)**(1/2)
>>> p = symbols('p', positive=True)
>>> powdenest(sqrt(p**2))
p
No other expansion is done.
>>> i, j = symbols('i,j', integer=1)
>>> powdenest((x**x)**(i + j)) # -X-> (x**x)**i*(x**x)**j
x**(x*(i + j))
But exp() will be denested by moving all non-log terms outside of
the function; this may result in the collapsing of the exp to a power
with a different base:
>>> powdenest(exp(3*y*log(x)))
x**(3*y)
>>> powdenest(exp(y*(log(a) + log(b))))
(a*b)**y
>>> powdenest(exp(3*(log(a) + log(b))))
a**3*b**3
If assumptions allow, symbols can also be moved to the outermost exponent:
>>> i = Symbol('i', integer=True)
>>> p = Symbol('p', positive=True)
>>> powdenest(((x**(2*i))**(3*y))**x)
((x**(2*i))**(3*y))**x
>>> powdenest(((x**(2*i))**(3*y))**x, force=1)
x**(6*i*x*y)
>> powdenest(((p**(2*a))**(3*y))**x) # activate when log rules are fixed
p**(6*a*x*y)
>>> powdenest(((x**(2*a/3))**(3*y/i))**x)
((x**(a/3))**(y/i))**(6*x)
>>> powdenest((x**(2*i)*y**(4*i))**z,1)
(x*y**2)**(2*i*z)
>>> n = Symbol('n', negative=1)
>> powdenest((x**i)**y, force=1) # activate when log rules are fixed
x**(i*y)
>> powdenest((n**i)**x, force=1) # activate when log rules are fixed
(n**i)**x
"""
if force:
eq, rep = posify(eq)
return powdenest(eq, force=0).subs(rep)
eq = S(eq)
if eq.is_Atom:
return eq
# handle everything that is not a power
# if subs would work then one could replace the following with
# return eq.subs(dict([(p, powdenest(p)) for p in eq.atoms(Pow)]))
# but subs expands (3**x)**2 to 3**x * 3**x so the 3**(5*x)
# is not recognized; in addition, that would take 2 passes through
# the expression (once to find Pows and again to replace them). The
# following does it in one pass. Which is more important, efficiency
# or simplicity? On the other hand, this only does a shallow replacement
# and doesn't enter Integrals or functions, etc... so perhaps the subs
# approach (or adding a deep flag) is the thing to do.
if not eq.is_Pow and not eq.func is exp:
args = list(Add.make_args(eq))
rebuild = False
for i, arg in enumerate(args):
margs = list(Mul.make_args(arg))
changed = False
for j, m in enumerate(margs):
if not m.is_Pow:
continue
m = powdenest(m, force=force)
if m != margs[j]:
changed = True
margs[j] = m
if changed:
rebuild = True
args[i] = C.Mul(*margs)
if rebuild:
eq = eq.func(*args)
return eq
b, e = eq.as_base_exp()
# denest exp with log terms in exponent
if b is S.Exp1 and e.is_Mul:
logs = []
other = []
efunc = C.Mul
for ei in Mul.make_args(e):
if any(aj.func is C.log for a in Mul.make_args(ei)
for ai in Add.make_args(a) for aj in Mul.make_args(ai)):
logs.append(ei)
else:
other.append(ei)
logs = logcombine(efunc(*logs), force=force)
return Pow(C.exp(logs), efunc(*other))
bb, be = b.as_base_exp()
if be is S.One and not (b.is_Mul or b.is_Rational):
return eq
# denest eq which is either Pow**e or Mul**e
if force or e.is_integer:
# replace all non-explicitly negative symbols with positive dummies
syms = eq.atoms(Symbol)
rep = [(s, C.Dummy(s.name, positive=True)) for s in syms if not s.is_negative]
sub = eq.subs(rep)
else:
rep = []
sub = eq
# if any factor is a bare symbol then there is nothing to be done
b, e = sub.as_base_exp()
if e is S.One or any(s.is_Symbol for s in Mul.make_args(b)):
return sub.subs([(new, old) for old, new in rep])
# let log handle the case of the base of the argument being a mul, e.g.
# sqrt(x**(2*i)*y**(6*i)) -> x**i*y**(3**i)
gcd = terms_gcd(log(b).expand(log=1))
if gcd.func is C.log or not gcd.is_Mul:
if hasattr(gcd.args[0], 'exp'):
gcd = powdenest(gcd.args[0])
c, _ = gcd.exp.as_coeff_mul()
ok = c.p != 1
if ok:
ok = c.q != 1
if not ok:
n, d = gcd.exp.as_numer_denom()
ok = d is not S.One and any(di.is_integer for di in Mul.make_args(d))
if ok:
return Pow(Pow(gcd.base, gcd.exp/c.p), c.p*e)
elif e.is_Mul:
return Pow(b, e).subs([(new, old) for old, new in rep])
return eq
else:
add= []
other = []
for g in gcd.args:
if g.is_Add:
add.append(g)
else:
other.append(g)
return powdenest(Pow(exp(logcombine(Mul(*add))), e*Mul(*other))).subs([(new, old) for old, new in rep])
def powsimp(expr, deep=False, combine='all', force=False):
"""
== Usage ==
powsimp(expr, deep) -> reduces expression by combining powers with
similar bases and exponents.
== Notes ==
If deep is True then powsimp() will also simplify arguments of
functions. By default deep is set to False.
If force is True then bases will be combined without checking for
assumptions, e.g. sqrt(x)*sqrt(y) -> sqrt(x*y) which is not true
if x and y are both negative.
You can make powsimp() only combine bases or only combine exponents by
changing combine='base' or combine='exp'. By default, combine='all',
which does both. combine='base' will only combine::
a a a 2x x
x * y => (x*y) as well as things like 2 => 4
and combine='exp' will only combine
::
a b (a + b)
x * x => x
combine='exp' will strictly only combine exponents in the way that used
to be automatic. Also use deep=True if you need the old behavior.
When combine='all', 'exp' is evaluated first. Consider the first
example below for when there could be an ambiguity relating to this.
This is done so things like the second example can be completely
combined. If you want 'base' combined first, do something like
powsimp(powsimp(expr, combine='base'), combine='exp').
== Examples ==
>>> from sympy import powsimp, exp, log, symbols
>>> from sympy.abc import x, y, z, n
>>> powsimp(x**y*x**z*y**z, combine='all')
x**(y + z)*y**z
>>> powsimp(x**y*x**z*y**z, combine='exp')
x**(y + z)*y**z
>>> powsimp(x**y*x**z*y**z, combine='base', force=True)
x**y*(x*y)**z
>>> powsimp(x**z*x**y*n**z*n**y, combine='all', force=True)
(n*x)**(y + z)
>>> powsimp(x**z*x**y*n**z*n**y, combine='exp')
n**(y + z)*x**(y + z)
>>> powsimp(x**z*x**y*n**z*n**y, combine='base', force=True)
(n*x)**y*(n*x)**z
>>> x, y = symbols('x y', positive=True)
>>> powsimp(log(exp(x)*exp(y)))
log(exp(x)*exp(y))
>>> powsimp(log(exp(x)*exp(y)), deep=True)
x + y
"""
if combine not in ['all', 'exp', 'base']:
raise ValueError("combine must be one of ('all', 'exp', 'base').")
y = Dummy('y')
if expr.is_Pow:
if deep:
return powsimp(y*powsimp(expr.base, deep, combine, force)**powsimp(\
expr.exp, deep, combine, force), deep, combine, force)/y
else:
return powsimp(y*expr, deep, combine, force)/y # Trick it into being a Mul
elif expr.is_Function:
if expr.func is exp and deep:
# Exp should really be like Pow
return powsimp(y*exp(powsimp(expr.args[0], deep, combine, force)), deep, combine, force)/y
elif expr.func is exp and not deep:
return powsimp(y*expr, deep, combine, force)/y
elif deep:
return expr.func(*[powsimp(t, deep, combine, force) for t in expr.args])
else:
return expr
elif expr.is_Add:
return Add(*[powsimp(t, deep, combine, force) for t in expr.args])
elif expr.is_Mul:
if combine in ('exp', 'all'):
# Collect base/exp data, while maintaining order in the
# non-commutative parts of the product
if combine is 'all' and deep and any((t.is_Add for t in expr.args)):
# Once we get to 'base', there is no more 'exp', so we need to
# distribute here.
return powsimp(expand_mul(expr, deep=False), deep, combine, force)
c_powers = {}
nc_part = []
newexpr = sympify(1)
for term in expr.args:
if term.is_Add and deep:
newexpr *= powsimp(term, deep, combine, force)
else:
if term.is_commutative:
b, e = term.as_base_exp()
if deep:
b, e = [powsimp(i, deep, combine, force) for i in [b, e]]
c_powers.setdefault(b, []).append(e)
else:
# This is the logic that combines exponents for equal,
# but non-commutative bases: A**x*A**y == A**(x+y).
if nc_part:
b1, e1 = nc_part[-1].as_base_exp()
b2, e2 = term.as_base_exp()
if (b1 == b2 and
e1.is_commutative and e2.is_commutative):
nc_part[-1] = Pow(b1, Add(e1, e2))
continue
nc_part.append(term)
# add up exponents of common bases
for b, e in c_powers.iteritems():
c_powers[b] = Add(*e)
# check for base and inverted base pairs
be = c_powers.items()
skip = set() # skip if we already saw them
for b, e in be:
if b in skip:
continue
bpos = b.is_positive
if bpos:
binv = 1/b
if b != binv and binv in c_powers:
if b.as_numer_denom()[0] is S.One:
c_powers.pop(b)
c_powers[binv] -= e
else:
skip.add(binv)
e = c_powers.pop(binv)
c_powers[b] -= e
newexpr = Mul(*([newexpr] + [Pow(b, e) for b, e in c_powers.iteritems()]))
if combine is 'exp':
return Mul(newexpr, Mul(*nc_part))
else:
# combine is 'all', get stuff ready for 'base'
if deep:
newexpr = expand_mul(newexpr, deep=False)
if newexpr.is_Add:
return powsimp(Mul(*nc_part), deep, combine='base', force=force) * \
Add(*[powsimp(i, deep, combine='base', force=force)
for i in newexpr.args])
else:
return powsimp(Mul(*nc_part), deep, combine='base', force=force)*\
powsimp(newexpr, deep, combine='base', force=force)
else:
# combine is 'base'
if deep:
expr = expand_mul(expr, deep=False)
if expr.is_Add:
return Add(*[powsimp(i, deep, combine, force) for i in expr.args])
else:
# Build c_powers and nc_part. These must both be lists not
# dicts because exp's are not combined.
c_powers = []
nc_part = []
for term in expr.args:
if term.is_commutative:
c_powers.append(list(term.as_base_exp()))
else:
# This is the logic that combines bases that are
# different and non-commutative, but with equal and
# commutative exponents: A**x*B**x == (A*B)**x.
if nc_part:
b1, e1 = nc_part[-1].as_base_exp()
b2, e2 = term.as_base_exp()
if (e1 == e2 and e2.is_commutative):
nc_part[-1] = Pow(Mul(b1, b2), e1)
continue
nc_part.append(term)
# Pull out numerical coefficients from exponent if assumptions allow
# e.g., 2**(2*x) => 4**x
for i in xrange(len(c_powers)):
b, e = c_powers[i]
if not (b.is_nonnegative or e.is_integer or force):
continue
exp_c, exp_t = e.as_coeff_mul()
if not (exp_c is S.One) and exp_t:
c_powers[i] = [Pow(b, exp_c), e._new_rawargs(*exp_t)]
# Combine bases whenever they have the same exponent and
# assumptions allow
# first gather the potential bases under the common exponent
c_exp = {}
for b, e in c_powers:
if deep:
e = powsimp(e, deep, combine, force)
c_exp.setdefault(e, []).append(b)
del c_powers
# Merge back in the results of the above to form a new product
c_powers = {}
for e in c_exp:
bases = c_exp[e]
# calculate the new base for e
if len(bases) == 1:
new_base = bases[0]
elif e.is_integer or force:
new_base = Mul(*bases)
else:
# see which ones can be joined
unk=[]
nonneg=[]
neg=[]
for bi in bases:
if not bi.is_negative is None: #then we know the sign
if bi.is_negative:
neg.append(bi)
else:
nonneg.append(bi)
else:
unk.append(bi)
if len(unk) == 1 and not neg or len(neg) == 1 and not unk:
# a single neg or a single unk can join the rest
nonneg.extend(unk + neg)
unk = neg = []
elif neg:
# their negative signs cancel in pairs
neg = [-w for w in neg]
if len(neg) % 2:
unk.append(S.NegativeOne)
# these shouldn't be joined
for b in unk:
c_powers.setdefault(b, []).append(e)
# here is a new joined base
new_base = Mul(*(nonneg + neg))
c_powers.setdefault(new_base, []).append(e)
# break out the powers from c_powers now
c_part = []
if combine == 'all':
#...joining the exponents
for b, e in c_powers.iteritems():
c_part.append(Pow(b, Add(*e)))
else:
#...joining nothing
for b, e in c_powers.iteritems():
for ei in e:
c_part.append(Pow(b, ei))
# we're done
return Mul(*(c_part + nc_part))
else:
return expr
def hypersimp(f, k):
"""Given combinatorial term f(k) simplify its consecutive term ratio
i.e. f(k+1)/f(k). The input term can be composed of functions and
integer sequences which have equivalent representation in terms
of gamma special function.
The algorithm performs three basic steps:
(1) Rewrite all functions in terms of gamma, if possible.
(2) Rewrite all occurrences of gamma in terms of products
of gamma and rising factorial with integer, absolute
constant exponent.
(3) Perform simplification of nested fractions, powers
and if the resulting expression is a quotient of
polynomials, reduce their total degree.
If f(k) is hypergeometric then as result we arrive with a
quotient of polynomials of minimal degree. Otherwise None
is returned.
For more information on the implemented algorithm refer to:
[1] W. Koepf, Algorithms for m-fold Hypergeometric Summation,
Journal of Symbolic Computation (1995) 20, 399-417
"""
f = sympify(f)
g = f.subs(k, k+1) / f
g = g.rewrite(gamma)
g = expand_func(g)
g = powsimp(g, deep=True, combine='exp')
if g.is_rational_function(k):
return simplify(g)
else:
return None
def hypersimilar(f, g, k):
"""Returns True if 'f' and 'g' are hyper-similar.
Similarity in hypergeometric sense means that a quotient of
f(k) and g(k) is a rational function in k. This procedure
is useful in solving recurrence relations.
For more information see hypersimp().
"""
f, g = map(sympify, (f, g))
h = (f/g).rewrite(gamma)
h = h.expand(func=True, basic=False)
return h.is_rational_function(k)
def combsimp(expr):
r"""
Simplify combinatorial expressions.
This function takes as input an expression containing factorials,
binomials, Pochhammer symbol and other "combinatorial" functions,
and tries to minimize the number of those functions and reduce
the size of their arguments. The result is be given in terms of
binomials and factorials.
The algorithm works by rewriting all combinatorial functions as
expressions involving rising factorials (Pochhammer symbols) and
applies recurrence relations and other transformations applicable
to rising factorials, to reduce their arguments, possibly letting
the resulting rising factorial to cancel. Rising factorials with
the second argument being an integer are expanded into polynomial
forms and finally all other rising factorial are rewritten in terms
more familiar binomials and factorials.
All transformation rules can be found (or was derived from) here:
1. http://functions.wolfram.com/GammaBetaErf/Pochhammer/17/01/02/
2. http://functions.wolfram.com/GammaBetaErf/Pochhammer/27/01/0005/
**Examples**
>>> from sympy.simplify import combsimp
>>> from sympy import factorial, binomial
>>> from sympy.abc import n, k
>>> combsimp(factorial(n)/factorial(n - 3))
n*(n - 2)*(n - 1)
>>> combsimp(binomial(n+1, k+1)/binomial(n, k))
(n + 1)/(k + 1)
"""
factorial = C.factorial
binomial = C.binomial
gamma = C.gamma
def as_coeff_Add(expr):
if expr.is_Add:
coeff, args = expr.args[0], expr.args[1:]
if coeff.is_Number:
if len(args) == 1:
return coeff, args[0]
else:
return coeff, expr._new_rawargs(*args)
return S.Zero, expr
class rf(Function):
@classmethod
def eval(cls, a, b):
if b.is_Integer:
if not b:
return S.Zero
n, result = int(b), S.One
if n > 0:
for i in xrange(0, n):
result *= a + i
return result
else:
for i in xrange(1, -n+1):
result *= a - i
return 1/result
else:
c, _b = as_coeff_Add(b)
if c.is_Integer:
if c > 0:
return rf(a, _b)*rf(a+_b, c)
elif c < 0:
return rf(a, _b)/rf(a+_b+c, -c)
c, _a = as_coeff_Add(a)
if c.is_Integer:
if c > 0:
return rf(_a, b)*rf(_a+b, c)/rf(_a, c)
elif c < 0:
return rf(_a, b)*rf(_a+c, -c)/rf(_a+b+c, -c)
expr = expr.replace(binomial,
lambda n, k: rf((n-k+1).expand(), k.expand())/rf(1, k.expand()))
expr = expr.replace(factorial,
lambda n: rf(1, n.expand()))
expr = expr.replace(gamma,
lambda n: rf(1, (n-1).expand()))
expr = expr.replace(rf,
lambda a, b: binomial(a+b-1, b)*factorial(b))
def rule(n, k):
coeff, rewrite = S.One, False
cn, _n = as_coeff_Add(n)
ck, _k = as_coeff_Add(k)
if cn.is_Integer and cn:
coeff *= rf(_n + 1, cn)/rf(_n - k + 1, cn)
rewrite = True
n = _n
if ck.is_Integer and ck:
coeff *= rf(n - ck - _k + 1, ck)/rf(_k + 1, ck)
rewrite = True
k = _k
if rewrite:
return coeff*binomial(n, k)
expr = expr.replace(binomial, rule)
return factor(expr)
def simplify(expr, ratio=1.7):
"""Naively simplifies the given expression.
Simplification is not a well defined term and the exact strategies
this function tries can change in the future versions of SymPy. If
your algorithm relies on "simplification" (whatever it is), try to
determine what you need exactly - is it powsimp()?, radsimp()?,
together()?, logcombine()?, or something else? And use this particular
function directly, because those are well defined and thus your algorithm
will be robust.
In some cases, applying :func:`simplify` may actually result in some more
complicated expression.
By default ``ratio=1.7`` prevents more extreme cases:
if (result length)/(input length) > ratio, then input is returned
unmodified (:func:`count_ops` is used to measure length).
For example, if ``ratio=1``, ``simplify`` output can't be longer
than input.
::
>>> from sympy import S, simplify, count_ops, oo
>>> root = S("(5/2 + 21**(1/2)/2)**(1/3)*(1/2 - I*3**(1/2)/2)"
... "+ 1/((1/2 - I*3**(1/2)/2)*(5/2 + 21**(1/2)/2)**(1/3))")
Since ``simplify(root)`` would result in a slightly longer expression,
root is returned inchanged instead::
>>> simplify(root, ratio=1) is root
True
If ``ratio=oo``, simplify will be applied anyway::
>>> count_ops(simplify(root, ratio=oo)) > count_ops(root)
True
Note that the shortest expression is not necessary the simplest, so
setting ``ratio`` to 1 may not be a good idea.
Heuristically, default value ``ratio=1.7`` seems like a reasonable choice.
"""
expr = sympify(expr)
if not isinstance(expr, Basic): # XXX: temporary hack
return expr
if isinstance(expr, Atom):
return expr
if isinstance(expr, C.Relational):
return expr.__class__(simplify(expr.lhs, ratio=ratio),
simplify(expr.rhs, ratio=ratio))
# TODO: Apply different strategies, considering expression pattern:
# is it a purely rational function? Is there any trigonometric function?...
# See also https://github.com/sympy/sympy/pull/185.
original_expr = expr
if expr.is_commutative is False:
return together(powsimp(expr))
expr = together(cancel(powsimp(expr)).expand())
if not isinstance(expr, Basic): # XXX: temporary hack
return expr
if expr.has(C.TrigonometricFunction):
expr = trigsimp(expr)
if expr.has(C.log):
expr = min([expand_log(expr, deep=True), logcombine(expr)],
key=count_ops)
if expr.has(C.CombinatorialFunction, gamma):
expr = combsimp(expr)
expr = powsimp(expr, combine='exp', deep=True)
numer, denom = expr.as_numer_denom()
if denom.is_Add:
a, b, c = map(Wild, 'abc')
r = denom.match(a + b*c**S.Half)
if r is not None and r[b]:
a, b, c = r[a], r[b], r[c]
numer *= a-b*c**S.Half
numer = numer.expand()
denom = a**2 - c*b**2
expr = numer/denom
if expr.could_extract_minus_sign():
n, d = expr.as_numer_denom()
if d != 0:
expr = -n/(-d)
if count_ops(expr) > ratio*count_ops(original_expr):
return original_expr
return expr
def _real_to_rational(expr):
"""
Replace all reals in expr with rationals.
>>> from sympy import nsimplify
>>> from sympy.abc import x
>>> nsimplify(.76 + .1*x**.5, rational=1)
x**(1/2)/10 + 19/25
"""
p = sympify(expr)
for r in p.atoms(C.Float):
newr = nsimplify(r)
if not newr.is_Rational or \
r.is_finite and not newr.is_finite:
newr = r
if newr < 0:
s = -1
newr *= s
else:
s = 1
d = Pow(10, int((mpmath.log(newr)/mpmath.log(10))))
newr = s*Rational(str(newr/d))*d
p = p.subs(r, newr)
return p
def nsimplify(expr, constants=[], tolerance=None, full=False, rational=False):
"""
Replace numbers with simple representations.
If rational=True then numbers are simply replaced with their rational
equivalents.
If rational=False, a simple formula that numerically matches the
given expression is sought (and the input should be possible to evalf
to a precision of at least 30 digits).
Optionally, a list of (rationally independent) constants to
include in the formula may be given.
A lower tolerance may be set to find less exact matches.
With full=True, a more extensive search is performed
(this is useful to find simpler numbers when the tolerance
is set low).
Examples:
>>> from sympy import nsimplify, sqrt, GoldenRatio, exp, I, exp, pi
>>> nsimplify(4/(1+sqrt(5)), [GoldenRatio])
-2 + 2*GoldenRatio
>>> nsimplify((1/(exp(3*pi*I/5)+1)))
1/2 - I*(5**(1/2)/10 + 1/4)**(1/2)
>>> nsimplify(I**I, [pi])
exp(-pi/2)
>>> nsimplify(pi, tolerance=0.01)
22/7
"""
if rational:
return _real_to_rational(expr)
expr = sympify(expr)
prec = 30
bprec = int(prec*3.33)
constants_dict = {}
for constant in constants:
constant = sympify(constant)
v = constant.evalf(prec)
if not v.is_Float:
raise ValueError("constants must be real-valued")
constants_dict[str(constant)] = v._to_mpmath(bprec)
exprval = expr.evalf(prec, chop=True)
re, im = exprval.as_real_imag()
# Must be numerical
if not ((re.is_Float or re.is_Integer) and (im.is_Float or im.is_Integer)):
return expr
def nsimplify_real(x):
orig = mpmath.mp.dps
xv = x._to_mpmath(bprec)
try:
# We'll be happy with low precision if a simple fraction
if not (tolerance or full):
mpmath.mp.dps = 15
rat = mpmath.findpoly(xv, 1)
if rat is not None:
return Rational(-int(rat[1]), int(rat[0]))
mpmath.mp.dps = prec
newexpr = mpmath.identify(xv, constants=constants_dict,
tol=tolerance, full=full)
if not newexpr:
raise ValueError
if full:
newexpr = newexpr[0]
return sympify(newexpr)
finally:
mpmath.mp.dps = orig
try:
if re: re = nsimplify_real(re)
if im: im = nsimplify_real(im)
except ValueError:
return expr
return re + im*S.ImaginaryUnit
def logcombine(expr, force=False):
"""
Takes logarithms and combines them using the following rules:
- log(x)+log(y) == log(x*y)
- a*log(x) == log(x**a)
These identities are only valid if x and y are positive and if a is real, so
the function will not combine the terms unless the arguments have the proper
assumptions on them. Use logcombine(func, force=True) to
automatically assume that the arguments of logs are positive and that
coefficients are real. Note that this will not change any assumptions
already in place, so if the coefficient is imaginary or the argument
negative, combine will still not combine the equations. Change the
assumptions on the variables to make them combine.
Examples:
>>> from sympy import Symbol, symbols, log, logcombine
>>> from sympy.abc import a, x, y, z
>>> logcombine(a*log(x)+log(y)-log(z))
a*log(x) + log(y) - log(z)
>>> logcombine(a*log(x)+log(y)-log(z), force=True)
log(x**a*y/z)
>>> x,y,z = symbols('x,y,z', positive=True)
>>> a = Symbol('a', real=True)
>>> logcombine(a*log(x)+log(y)-log(z))
log(x**a*y/z)
"""
# Try to make (a+bi)*log(x) == a*log(x)+bi*log(x). This needs to be a
# separate function call to avoid infinite recursion.
expr = expand_mul(expr, deep=False)
return _logcombine(expr, force)
def _logcombine(expr, force=False):
"""
Does the main work for logcombine, it's a separate function to avoid an
infinite recursion. See the docstrings of logcombine() for help.
"""
def _getlogargs(expr):
"""
Returns the arguments of the logarithm in an expression.
Example:
_getlogargs(a*log(x*y))
x*y
"""
if expr.func is log:
return [expr.args[0]]
else:
args = []
for i in expr.args:
if i.func is log:
args.append(_getlogargs(i))
return flatten(args)
return None
if type(expr) in (int, float) or expr.is_Number or expr.is_Rational or \
expr.is_NumberSymbol or type(expr) == C.Integral:
return expr
if isinstance(expr, Equality):
retval = Equality(_logcombine(expr.lhs-expr.rhs, force),\
Integer(0))
# If logcombine couldn't do much with the equality, try to make it like
# it was. Hopefully extract_additively won't become smart enought to
# take logs apart :)
right = retval.lhs.extract_additively(expr.lhs)
if right:
return Equality(expr.lhs, _logcombine(-right, force))
else:
return retval
if expr.is_Add:
argslist = 1
notlogs = 0
coeflogs = 0
for i in expr.args:
if i.func is log:
if (i.args[0].is_positive or (force and not \
i.args[0].is_nonpositive)):
argslist *= _logcombine(i.args[0], force)
else:
notlogs += i
elif i.is_Mul and any(map(lambda t: getattr(t,'func', False)==log,\
i.args)):
largs = _getlogargs(i)
assert len(largs) != 0
loglargs = 1
for j in largs:
loglargs *= log(j)
if all(getattr(t,'is_positive') for t in largs)\
and getattr(i.extract_multiplicatively(loglargs),'is_real', False)\
or (force\
and not all(getattr(t,'is_nonpositive') for t in largs)\
and not getattr(i.extract_multiplicatively(loglargs),\
'is_real')==False):
coeflogs += _logcombine(i, force)
else:
notlogs += i
elif i.has(log):
notlogs += _logcombine(i, force)
else:
notlogs += i
if notlogs + log(argslist) + coeflogs == expr:
return expr
else:
alllogs = _logcombine(log(argslist) + coeflogs, force)
return notlogs + alllogs
if expr.is_Mul:
a = Wild('a')
x = Wild('x')
coef = expr.match(a*log(x))
if coef\
and (coef[a].is_real\
or expr.is_Number\
or expr.is_NumberSymbol\
or type(coef[a]) in (int, float)\
or (force\
and not coef[a].is_imaginary))\
and (coef[a].func != log\
or force\
or (not getattr(coef[a],'is_real')==False\
and getattr(x, 'is_positive'))):
return log(coef[x]**coef[a])
else:
return _logcombine(expr.args[0], force)*reduce(lambda x, y:\
_logcombine(x, force)*_logcombine(y, force),\
expr.args[1:], 1)
if expr.is_Function:
return expr.func(*map(lambda t: _logcombine(t, force), expr.args))
if expr.is_Pow:
return _logcombine(expr.args[0], force)**\
_logcombine(expr.args[1], force)
return expr
|