This file is indexed.

/usr/share/pyshared/sympy/solvers/inequalities.py is in python-sympy 0.7.1.rc1-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
"""Tools for solving inequalities and systems of inequalities. """

from sympy.core import Symbol, Interval, Union
from sympy.core.relational import Relational, Eq, Ge, Lt
from sympy.core.singleton import S
from sympy.assumptions import ask, AppliedPredicate, Q
from sympy.functions import re, im, Abs
from sympy.logic import And, Or
from sympy.polys import Poly

def interval_evalf(interval):
    """Proper implementation of evalf() on Interval. """
    return Interval(interval.left.evalf(), interval.right.evalf(),
        left_open=interval.left_open, right_open=interval.right_open)

def solve_poly_inequality(poly, rel):
    """Solve a polynomial inequality with rational coefficients.  """
    reals, intervals = poly.real_roots(multiple=False), []

    if rel == '==':
        for root, _ in reals:
            interval = Interval(root, root)
            intervals.append(interval)
    elif rel == '!=':
        left = S.NegativeInfinity

        for right, _ in reals + [(S.Infinity, 1)]:
            interval = Interval(left, right, True, True)
            intervals.append(interval)
            left = right
    else:
        if poly.LC() > 0:
            sign = +1
        else:
            sign = -1

        eq_sign, equal = None, False

        if rel == '>':
            eq_sign = +1
        elif rel == '<':
            eq_sign = -1
        elif rel == '>=':
            eq_sign, equal = +1, True
        elif rel == '<=':
            eq_sign, equal = -1, True
        else:
            raise ValueError("'%s' is not a valid relation" % rel)

        right, right_open = S.Infinity, True

        for left, multiplicity in reversed(reals):
            if multiplicity % 2:
                if sign == eq_sign:
                    intervals.insert(0, Interval(left, right, not equal, right_open))

                sign, right, right_open = -sign, left, not equal
            else:
                if sign == eq_sign and not equal:
                    intervals.insert(0, Interval(left, right, True, right_open))
                    right, right_open = left, True
                elif sign != eq_sign and equal:
                    intervals.insert(0, Interval(left, left))

        if sign == eq_sign:
            intervals.insert(0, Interval(S.NegativeInfinity, right, True, right_open))

    return intervals

def solve_poly_inequalities(polys):
    """Solve a system of polynomial inequalities with rational coefficients. """
    result = S.EmptySet

    for _polys in polys:
        global_intervals = None

        for poly, rel in _polys:
            local_intervals = solve_poly_inequality(poly, rel)

            if global_intervals is None:
                global_intervals = local_intervals
            else:
                intervals = []

                for local_interval in local_intervals:
                    for global_interval in global_intervals:
                        interval = local_interval.intersect(global_interval)

                        if interval is not S.EmptySet:
                            intervals.append(interval)

                global_intervals = intervals

            if not global_intervals:
                break

        for interval in global_intervals:
            result = result.union(interval)

    return result

def reduce_poly_inequalities(exprs, gen, assume=True, relational=True):
    """Reduce a system of polynomial inequalities with rational coefficients. """
    exact = True
    polys = []

    for _exprs in exprs:
        _polys = []

        for expr in _exprs:
            if isinstance(expr, tuple):
                expr, rel = expr
            else:
                if expr.is_Relational:
                    expr, rel = expr.lhs - expr.rhs, expr.rel_op
                else:
                    expr, rel = expr, '=='

            poly = Poly(expr, gen)

            if not poly.get_domain().is_Exact:
                poly, exact = poly.to_exact(), False

            domain = poly.get_domain()

            if not (domain.is_ZZ or domain.is_QQ):
                raise NotImplementedError("inequality solving is not supported over %s" % domain)

            _polys.append((poly, rel))

        polys.append(_polys)

    solution = solve_poly_inequalities(polys)

    if not exact:
        solution = solution.evalf()

    if not relational:
        return solution

    real = ask(Q.real(gen), assumptions=assume)

    if not real:
        result = And(solution.as_relational(re(gen)), Eq(im(gen), 0))
    else:
        result = solution.as_relational(gen)

    return result

def reduce_abs_inequality(expr, rel, gen, assume=True):
    """Reduce an inequality with nested absolute values. """
    if not ask(Q.real(gen), assumptions=assume):
        raise NotImplementedError("can't solve inequalities with absolute values of a complex variable")

    def bottom_up_scan(expr):
        exprs = []

        if expr.is_Add or expr.is_Mul:
            op = expr.__class__

            for arg in expr.args:
                _exprs = bottom_up_scan(arg)

                if not exprs:
                    exprs = _exprs
                else:
                    args = []

                    for expr, conds in exprs:
                        for _expr, _conds in _exprs:
                            args.append((op(expr, _expr), conds + _conds))

                    exprs = args
        elif expr.is_Pow:
            n = expr.exp

            if not n.is_Integer or n < 0:
                raise ValueError("only non-negative integer powers are allowed")

            _exprs = bottom_up_scan(expr.base)

            for expr, conds in _exprs:
                exprs.append((expr**n, conds))
        elif isinstance(expr, Abs):
            _exprs = bottom_up_scan(expr.args[0])

            for expr, conds in _exprs:
                exprs.append(( expr, conds + [Ge(expr, 0)]))
                exprs.append((-expr, conds + [Lt(expr, 0)]))
        else:
            exprs = [(expr, [])]

        return exprs

    exprs = bottom_up_scan(expr)

    mapping = {'<': '>', '<=': '>='}
    inequalities = []

    for expr, conds in exprs:
        if rel not in mapping.keys():
            expr = Relational( expr, 0, rel)
        else:
            expr = Relational(-expr, 0, mapping[rel])

        inequalities.append([expr] + conds)

    return reduce_poly_inequalities(inequalities, gen, assume)

def reduce_abs_inequalities(exprs, gen, assume=True):
    """Reduce a system of inequalities with nested absolute values. """
    return And(*[ reduce_abs_inequality(expr, rel, gen, assume) for expr, rel in exprs ])

def reduce_inequalities(inequalities, assume=True):
    """Reduce a system of inequalities with rational coefficients. """
    if not hasattr(inequalities, '__iter__'):
        inequalities = [inequalities]

    poly_part, abs_part, extra_assume = {}, {}, []

    for inequality in inequalities:
        if isinstance(inequality, bool):
            if inequality is False:
                return False
            else:
                continue

        if isinstance(inequality, AppliedPredicate):
            extra_assume.append(inequality)
            continue

        if inequality.is_Relational:
            expr, rel = inequality.lhs - inequality.rhs, inequality.rel_op
        else:
            expr, rel = inequality, '=='

        gens = expr.atoms(Symbol)

        if not gens:
            return False
        elif len(gens) == 1:
            gen = gens.pop()
        else:
            raise NotImplementedError("only univariate inequalities are supported")

        components = expr.find(lambda u: u.is_Function)

        if not components:
            if gen in poly_part:
                poly_part[gen].append((expr, rel))
            else:
                poly_part[gen] = [(expr, rel)]
        else:
            if all(isinstance(comp, Abs) for comp in components):
                if gen in abs_part:
                    abs_part[gen].append((expr, rel))
                else:
                    abs_part[gen] = [(expr, rel)]
            else:
                raise NotImplementedError("can't reduce %s" % inequalities)

    extra_assume = And(*extra_assume)

    if assume is not None:
        assume = And(assume, extra_assume)
    else:
        assume = extra_assume

    poly_reduced = []
    abs_reduced = []

    for gen, exprs in poly_part.iteritems():
        poly_reduced.append(reduce_poly_inequalities([exprs], gen, assume))

    for gen, exprs in abs_part.iteritems():
        abs_reduced.append(reduce_abs_inequalities(exprs, gen, assume))

    return And(*(poly_reduced + abs_reduced))