This file is indexed.

/usr/share/pyshared/sympy/solvers/ode.py is in python-sympy 0.7.1.rc1-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
"""
This module contains dsolve() and different helper functions that it
uses.

dsolve() solves ordinary differential equations. See the docstring on
the various functions for their uses. Note that partial differential
equations support is in pde.py.  Note that ode_hint() functions have
docstrings describing their various methods, but they are intended for
internal use.  Use dsolve(ode, func, hint=hint) to solve an ode using a
specific hint.  See also the docstring on dsolve().

**Functions in this module**

    These are the user functions in this module:

    - dsolve() - Solves ODEs.
    - classify_ode() - Classifies ODEs into possible hints for dsolve().
    - checkodesol() - Checks if an equation is the solution to an ODE.
    - ode_order() - Returns the order (degree) of an ODE.
    - homogeneous_order() - Returns the homogeneous order of an
      expression.

    These are the non-solver helper functions that are for internal use.
    The user should use the various options to dsolve() to obtain the
    functionality provided by these functions:

    - odesimp() - Does all forms of ODE simplification.
    - ode_sol_simplicity() - A key function for comparing solutions by
      simplicity.
    - constantsimp() - Simplifies arbitrary constants.
    - constant_renumber() - Renumber arbitrary constants
    - _handle_Integral() - Evaluate unevaluated Integrals.

    See also the docstrings of these functions.

**Solving methods currently implemented**

The following methods are implemented for solving ordinary differential
equations.  See the docstrings of the various ode_hint() functions for
more information on each (run help(ode)):
    - 1st order separable differential equations
    - 1st order differential equations whose coefficients or dx and dy
      are functions homogeneous of the same order.
    - 1st order exact differential equations.
    - 1st order linear differential equations
    - 1st order Bernoulli differential equations.
    - 2nd order Liouville differential equations.
    - nth order linear homogeneous differential equation with constant
      coefficients.
    - nth order linear inhomogeneous differential equation with constant
      coefficients using the method of undetermined coefficients.
    - nth order linear inhomogeneous differential equation with constant
      coefficients using the method of variation of parameters.

**Philosophy behind this module**

This module is designed to make it easy to add new ODE solving methods
without having to mess with the solving code for other methods.  The
idea is that there is a classify_ode() function, which takes in an ODE
and tells you what hints, if any, will solve the ODE.  It does this
without attempting to solve the ODE, so it is fast.  Each solving method
is a hint, and it has its own function, named ode_hint.  That function
takes in the ODE and any match expression gathered by classify_ode and
returns a solved result.  If this result has any integrals in it, the
ode_hint function will return an unevaluated Integral class. dsolve(),
which is the user wrapper function around all of this, will then call
odesimp() on the result, which, among other things, will attempt to
solve the equation for the dependent variable (the function we are
solving for), simplify the arbitrary constants in the expression, and
evaluate any integrals, if the hint allows it.

**How to add new solution methods**

If you have an ODE that you want dsolve() to be able to solve, try to
avoid adding special case code here.  Instead, try finding a general
method that will solve your ODE, as well as others.  This way, the ode
module will become more robust, and unhindered by special case hacks.
WolphramAlpha and Maple's DETools[odeadvisor] function are two resources
you can use to classify a specific ODE.  It is also better for a method
to work with an nth order ODE instead of only with specific orders, if
possible.

To add a new method, there are a few things that you need to do.  First,
you need a hint name for your method.  Try to name your hint so that it
is unambiguous with all other methods, including ones that may not be
implemented yet.  If your method uses integrals, also include a
"hint_Integral" hint.  If there is more than one way to solve ODEs with
your method, include a hint for each one, as well as a "hint_best" hint.
Your ode_hint_best() function should choose the best using min with
ode_sol_simplicity as the key argument.  See
ode_1st_homogeneous_coeff_best(), for example. The function that uses
your method will be called ode_hint(), so the hint must only use
characters that are allowed in a Python function name (alphanumeric
characters and the underscore '_' character).  Include a function for
every hint, except for "_Integral" hints (dsolve() takes care of those
automatically).  Hint names should be all lowercase, unless a word is
commonly capitalized (such as Integral or Bernoulli). If you have a hint
that you do not want to run with "all_Integral" that doesn't have an
"_Integral" counterpart (such as a best hint that would defeat the
purpose of "all_Integral"), you will need to remove it manually in the
dsolve() code.  See also the classify_ode() docstring for guidelines on
writing a hint name.

Determine *in general* how the solutions returned by your method
compare with other methods that can potentially solve the same ODEs.
Then, put your hints in the allhints tuple in the order that they should
be called.  The ordering of this tuple determines which hints are
default. Note that exceptions are ok, because it is easy for the user to
choose individual hints with dsolve().  In general, "_Integral" variants
should go at the end of the list, and "_best" variants should go before
the various hints they apply to.  For example, the
"undetermined_coefficients" hint comes before the
"variation_of_parameters" hint because, even though variation of
parameters is more general than undetermined coefficients, undetermined
coefficients generally returns cleaner results for the ODEs that it can
solve than variation of parameters does, and it does not require
integration, so it is much faster.

Next, you need to have a match expression or a function that matches the
type of the ODE, which you should put in classify_ode() (if the match
function is more than just a few lines, like
_undetermined_coefficients_match(), it should go outside of
classify_ode()).  It should match the ODE without solving for it as much
as possible, so that classify_ode() remains fast and is not hindered by
bugs in solving code.  Be sure to consider corner cases. For example, if
your solution method involves dividing by something, make sure you
exclude the case where that division will be 0.

In most cases, the matching of the ODE will also give you the various
parts that you need to solve it. You should put that in a dictionary
(.match() will do this for you), and add that as matching_hints['hint']
= matchdict in the relevant part of classify_ode.  classify_ode will
then send this to dsolve(), which will send it to your function as the
match argument. Your function should be named ode_hint(eq, func, order,
match). If you need to send more information, put it in the match
dictionary.  For example, if you had to substitute in a dummy variable
in classify_ode to match the ODE, you will need to pass it to your
function using the match dict to access it.  You can access the
independent variable using func.args[0], and the dependent variable (the
function you are trying to solve for) as func.func.  If, while trying to
solve the ODE, you find that you cannot, raise NotImplementedError.
dsolve() will catch this error with the "all" meta-hint, rather than
causing the whole routine to fail.

Add a docstring to your function that describes the method employed.
Like with anything else in SymPy, you will need to add a doctest to the
docstring, in addition to real tests in test_ode.py.  Try to maintain
consistency with the other hint functions' docstrings.  Add your method
to the list at the top of this docstring.  Also, add your method to
ode.txt in the docs/src directory, so that the Sphinx docs will pull its
docstring into the main SymPy documentation.  Be sure to make the Sphinx
documentation by running "make html" from within the doc directory to
verify that the docstring formats correctly.

If your solution method involves integrating, use C.Integral() instead
of integrate().  This allows the user to bypass hard/slow integration by
using the "_Integral" variant of your hint.  In most cases, calling
.doit() will integrate your solution.  If this is not the case, you will
need to write special code in _handle_Integral().  Arbitrary constants
should be symbols named C1, C2, and so on.  All solution methods should
return an equality instance.  If you need an arbitrary number of
arbitrary constants, you can use constants =
numbered_symbols(prefix='C', cls=Symbol, start=1).  If it is
possible to solve for the dependent function in a general way, do so.
Otherwise, do as best as you can, but do not call solve in your
ode_hint() function.  odesimp() will attempt to solve the solution for
you, so you do not need to do that. Lastly, if your ODE has a common
simplification that can be applied to your solutions, you can add a
special case in odesimp() for it.  For example, solutions returned from
the "1st_homogeneous_coeff" hints often have many log() terms, so
odesimp() calls logcombine() on them (it also helps to write the
arbitrary constant as log(C1) instead of C1 in this case).  Also
consider common ways that you can rearrange your solution to have
constantsimp() take better advantage of it.  It is better to put
simplification in odesimp() than in your method, because it can then be
turned off with the simplify flag in dsolve(). If you have any
extraneous simplification in your function, be sure to only run it using
"if match.get('simplify', True):", especially if it can be slow or if it
can reduce the domain of the solution.

Finally, as with every contribution to SymPy, your method will need to
be tested. Add a test for each method in test_ode.py.  Follow the
conventions there, i.e., test the solver using dsolve(eq, f(x),
hint=your_hint), and also test the solution using checkodesol (you can
put these in a separate tests and skip/XFAIL if it runs too slow/doesn't
work).  Be sure to call your hint specifically in dsolve, that way the
test won't be broken simply by the introduction of another matching
hint. If your method works for higher order (>1) ODEs, you will need to
run sol = constant_renumber(sol, 'C', 1, order), for each solution, where
order is the order of the ODE. This is because constant_renumber renumbers
the arbitrary constants by printing order, which is platform dependent.
Try to test every corner case of your solver, including a range of
orders if it is a nth order solver, but if your solver is slow, auch as
if it involves hard integration, try to keep the test run time down.

Feel free to refactor existing hints to avoid duplicating code or
creating inconsistencies.  If you can show that your method exactly
duplicates an existing method, including in the simplicity and speed of
obtaining the solutions, then you can remove the old, less general
method. The existing code is tested extensively in test_ode.py, so if
anything is broken, one of those tests will surely fail.

"""
from sympy.core import Add, Basic, C, S, Mul, Pow, oo
from sympy.core.compatibility import iterable, cmp_to_key
from sympy.core.function import Derivative, diff, expand_mul
from sympy.core.multidimensional import vectorize
from sympy.core.relational import Equality, Eq
from sympy.core.symbol import Symbol, Wild, Dummy
from sympy.core.sympify import sympify

from sympy.functions import cos, exp, im, log, re, sin, tan, sign, sqrt
from sympy.matrices import wronskian
from sympy.polys import Poly, RootOf
from sympy.series import Order
from sympy.simplify import collect, logcombine, powsimp, separatevars, \
    simplify, trigsimp
from sympy.solvers import solve

from sympy.utilities import numbered_symbols

# This is a list of hints in the order that they should be applied.  That means
# that, in general, hints earlier in the list should produce simpler results
# than those later for ODEs that fit both.  This is just based on my own
# empirical observations, so if you find that *in general*, a hint later in
# the list is better than one before it, fell free to modify the list.  Note
# however that you can easily override the hint used in dsolve() for a specific ODE
# (see the docstring).  In general, "_Integral" hints should be grouped
# at the end of the list, unless there is a method that returns an unevaluable
# integral most of the time (which should surely go near the end of the list
# anyway).
# "default", "all", "best", and "all_Integral" meta-hints should not be
# included in this list, but "_best" and "_Integral" hints should be included.
allhints = ("separable", "1st_exact", "1st_linear", "Bernoulli", "Riccati_special_minus2",
"1st_homogeneous_coeff_best", "1st_homogeneous_coeff_subs_indep_div_dep",
"1st_homogeneous_coeff_subs_dep_div_indep", "nth_linear_constant_coeff_homogeneous",
"nth_linear_constant_coeff_undetermined_coefficients",
"nth_linear_constant_coeff_variation_of_parameters",
"Liouville", "separable_Integral", "1st_exact_Integral", "1st_linear_Integral",
"Bernoulli_Integral", "1st_homogeneous_coeff_subs_indep_div_dep_Integral",
"1st_homogeneous_coeff_subs_dep_div_indep_Integral",
"nth_linear_constant_coeff_variation_of_parameters_Integral",
"Liouville_Integral")

def sub_func_doit(eq, func, new):
    """When replacing the func with something else, we usually
    want the derivative evaluated, so this function helps in
    making that happen.

    To keep subs from having to look through all derivatives, we
    mask them off with dummy variables, do the func sub, and then
    replace masked off derivatives with their doit values.
    """
    reps = {}
    repu = {}
    for d in eq.atoms(Derivative):
        u = C.Dummy('u')
        repu[u] = d.subs(func, new).doit()
        reps[d] = u

    return eq.subs(reps).subs(func, new).subs(repu)

def dsolve(eq, func, hint="default", simplify=True, **kwargs):
    """
    Solves any (supported) kind of ordinary differential equation.

    **Usage**

        dsolve(eq, f(x), hint) -> Solve ordinary differential equation
        eq for function f(x), using method hint.


    **Details**

        ``eq`` can be any supported ordinary differential equation (see
            the ode docstring for supported methods).  This can either
            be an Equality, or an expression, which is assumed to be
            equal to 0.

        ``f(x)`` is a function of one variable whose derivatives in that
            variable make up the ordinary differential equation eq.

        ``hint`` is the solving method that you want dsolve to use.  Use
            classify_ode(eq, f(x)) to get all of the possible hints for
            an ODE.  The default hint, 'default', will use whatever hint
            is returned first by classify_ode().  See Hints below for
            more options that you can use for hint.
        ``simplify`` enables simplification by odesimp().  See its
            docstring for more information.  Turn this off, for example,
            to disable solving of solutions for func or simplification
            of arbitrary constants.  It will still integrate with this
            hint. Note that the solution may contain more arbitrary
            constants than the order of the ODE with this option
            enabled.

    **Hints**

        Aside from the various solving methods, there are also some
        meta-hints that you can pass to dsolve():

        "default":
                This uses whatever hint is returned first by
                classify_ode(). This is the default argument to
                dsolve().

        "all":
                To make dsolve apply all relevant classification hints,
                use dsolve(ODE, func, hint="all").  This will return a
                dictionary of hint:solution terms.  If a hint causes
                dsolve to raise the NotImplementedError, value of that
                hint's key will be the exception object raised.  The
                dictionary will also include some special keys:

                - order: The order of the ODE.  See also ode_order().
                - best: The simplest hint; what would be returned by
                  "best" below.
                - best_hint: The hint that would produce the solution
                  given by 'best'.  If more than one hint produces the
                  best solution, the first one in the tuple returned by
                  classify_ode() is chosen.
                - default: The solution that would be returned by
                  default.  This is the one produced by the hint that
                  appears first in the tuple returned by classify_ode().

        "all_Integral":
                This is the same as "all", except if a hint also has a
                corresponding "_Integral" hint, it only returns the
                "_Integral" hint.  This is useful if "all" causes
                dsolve() to hang because of a difficult or impossible
                integral.  This meta-hint will also be much faster than
                "all", because integrate() is an expensive routine.

        "best":
                To have dsolve() try all methods and return the simplest
                one.  This takes into account whether the solution is
                solvable in the function, whether it contains any
                Integral classes (i.e. unevaluatable integrals), and
                which one is the shortest in size.

        See also the classify_ode() docstring for more info on hints,
        and the ode docstring for a list of all supported hints.


    **Tips**
        - You can declare the derivative of an unknown function this way:
            >>> from sympy import Function, Derivative
            >>> from sympy.abc import x # x is the independent variable
            >>> f = Function("f")(x) # f is a function of x
            >>> # f_ will be the derivative of f with respect to x
            >>> f_ = Derivative(f, x)

        - See test_ode.py for many tests, which serves also as a set of
          examples for how to use dsolve().
        - dsolve always returns an Equality class (except for the case
          when the hint is "all" or "all_Integral").  If possible, it
          solves the solution explicitly for the function being solved
          for. Otherwise, it returns an implicit solution.
        - Arbitrary constants are symbols named C1, C2, and so on.
        - Because all solutions should be mathematically equivalent,
          some hints may return the exact same result for an ODE. Often,
          though, two different hints will return the same solution
          formatted differently.  The two should be equivalent. Also
          note that sometimes the values of the arbitrary constants in
          two different solutions may not be the same, because one
          constant may have "absorbed" other constants into it.
        - Do help(ode.ode_hintname) to get help more information on a
          specific hint, where hintname is the name of a hint without
          "_Integral".

    **Examples**

        >>> from sympy import Function, dsolve, Eq, Derivative, sin, cos
        >>> from sympy.abc import x
        >>> f = Function('f')
        >>> dsolve(Derivative(f(x),x,x)+9*f(x), f(x))
        f(x) == C1*cos(3*x) + C2*sin(3*x)
        >>> dsolve(sin(x)*cos(f(x)) + cos(x)*sin(f(x))*f(x).diff(x), f(x),
        ...     hint='separable')
        -log(sin(f(x))**2 - 1)/2 == C1 + log(sin(x)**2 - 1)/2
        >>> dsolve(sin(x)*cos(f(x)) + cos(x)*sin(f(x))*f(x).diff(x), f(x),
        ...     hint='1st_exact')
        f(x) == acos(C1/cos(x))
        >>> dsolve(sin(x)*cos(f(x)) + cos(x)*sin(f(x))*f(x).diff(x), f(x),
        ... hint='best')
        f(x) == acos(C1/cos(x))
        >>> # Note that even though separable is the default, 1st_exact produces
        >>> # a simpler result in this case.

    """
    # TODO: Implement initial conditions
    # See issue 1621.  We first need a way to represent things like f'(0).
    if isinstance(eq, Equality):
        if eq.rhs != 0:
            return dsolve(eq.lhs-eq.rhs, func, hint=hint, simplify=simplify, **kwargs)
        eq = eq.lhs

    # Magic that should only be used internally.  Prevents classify_ode from
    # being called more than it needs to be by passing its results through
    # recursive calls.
    if kwargs.get('classify', True):
        hints = classify_ode(eq, func, dict=True)
    else:
        # Here is what all this means:
        #
        # hint:    The hint method given to dsolve() by the user.
        # hints:   The dictionary of hints that match the ODE, along with
        #          other information (including the internal pass-through magic).
        # default: The default hint to return, the first hint from allhints
        #          that matches the hint.  This is obtained from classify_ode().
        # match:   The hints dictionary contains a match dictionary for each hint
        #          (the parts of the ODE for solving).  When going through the
        #          hints in "all", this holds the match string for the current
        #          hint.
        # order:   The order of the ODE, as determined by ode_order().
        hints = kwargs.get('hint',
                           {'default': hint,
                            hint: kwargs['match'],
                            'order': kwargs['order']})


    if hints['order'] == 0:
        raise ValueError(str(eq) + " is not a differential equation in " + str(func))

    if not hints['default']:
        # classify_ode will set hints['default'] to None if no hints match.
        raise NotImplementedError("dsolve: Cannot solve " + str(eq))

    if hint == 'default':
        return dsolve(eq, func, hint=hints['default'], simplify=simplify, classify=False,
        order=hints['order'], match=hints[hints['default']])
    elif hint in ('all', 'all_Integral', 'best'):
        retdict = {}
        failedhints = {}
        gethints = set(hints) - set(['order', 'default', 'ordered_hints'])
        if hint == 'all_Integral':
            for i in hints:
                if i.endswith('_Integral'):
                    gethints.remove(i[:-len('_Integral')])
            # special case
            if "1st_homogeneous_coeff_best" in gethints:
                gethints.remove("1st_homogeneous_coeff_best")
        for i in gethints:
            try:
                sol = dsolve(eq, func, hint=i, simplify=simplify, classify=False,
                   order=hints['order'], match=hints[i])
            except NotImplementedError, detail: # except NotImplementedError as detail:
                failedhints[i] = detail
            else:
                retdict[i] = sol
        retdict['best'] = min(retdict.values(), key=lambda x:
            ode_sol_simplicity(x, func, trysolving=not simplify))
        if hint == 'best':
            return retdict['best']
        for i in hints['ordered_hints']:
            if retdict['best'] == retdict.get(i, None):
                retdict['best_hint'] = i
                break
        retdict['default'] = hints['default']
        retdict['order'] = sympify(hints['order'])
        retdict.update(failedhints)
        return retdict
    elif hint not in allhints: # and hint not in ('default', 'ordered_hints'):
        raise ValueError("Hint not recognized: " + hint)
    elif hint not in hints:
        raise ValueError("ODE " + str(eq) + " does not match hint " + hint)
    elif hint.endswith('_Integral'):
        solvefunc = globals()['ode_' + hint[:-len('_Integral')]]
    else:
        solvefunc = globals()['ode_' + hint] # convert the string into a function
    # odesimp() will attempt to integrate, if necessary, apply constantsimp(),
    # attempt to solve for func, and apply any other hint specific simplifications
    if simplify:
        rv = odesimp(solvefunc(eq, func, order=hints['order'],
            match=hints[hint]), func, hints['order'], hint)
    else:
        # We still want to integrate (you can disable it separately with the hint)
        r = hints[hint]
        r['simplify'] = False # Some hints can take advantage of this option
        rv = _handle_Integral(solvefunc(eq, func, order=hints['order'],
            match=hints[hint]), func, hints['order'], hint)
    return rv

def classify_ode(eq, func, dict=False):
    """
    Returns a tuple of possible dsolve() classifications for an ODE.

    The tuple is ordered so that first item is the classification that
    dsolve() uses to solve the ODE by default.  In general,
    classifications at the near the beginning of the list will produce
    better solutions faster than those near the end, thought there are
    always exceptions.  To make dsolve use a different classification,
    use dsolve(ODE, func, hint=<classification>).  See also the dsolve()
    docstring for different meta-hints you can use.

    If dict is true, classify_ode() will return a dictionary of
    hint:match expression terms. This is intended for internal use by
    dsolve().  Note that because dictionaries are ordered arbitrarily,
    this will most likely not be in the same order as the tuple.

    You can get help on different hints by doing help(ode.ode_hintname),
    where hintname is the name of the hint without "_Integral".

    See sympy.ode.allhints or the sympy.ode docstring for a list of all
    supported hints that can be returned from classify_ode.

    **Notes on Hint Names**

    *"_Integral"*

        If a classification has "_Integral" at the end, it will return
        the expression with an unevaluated Integral class in it.  Note
        that a hint may do this anyway if integrate() cannot do the
        integral, though just using an "_Integral" will do so much
        faster.  Indeed, an "_Integral" hint will always be faster than
        its corresponding hint without "_Integral" because integrate()
        is an expensive routine.  If dsolve() hangs, it is probably
        because integrate() is hanging on a tough or impossible
        integral.  Try using an "_Integral" hint or "all_Integral" to
        get it return something.

        Note that some hints do not have "_Integral" counterparts.  This
        is because integrate() is not used in solving the ODE for those
        method. For example, nth order linear homogeneous ODEs with
        constant coefficients do not require integration to solve, so
        there is no "nth_linear_homogeneous_constant_coeff_Integrate"
        hint. You can easily evaluate any unevaluated Integrals in an
        expression by doing expr.doit().

    *Ordinals*

        Some hints contain an ordinal such as "1st_linear".  This is to
        help differentiate them from other hints, as well as from other
        methods that may not be implemented yet. If a hint has "nth" in
        it, such as the "nth_linear" hints, this means that the method
        used to applies to ODEs of any order.

    *"indep" and "dep"*

        Some hints contain the words "indep" or "dep".  These reference
        the independent variable and the dependent function,
        respectively. For example, if an ODE is in terms of f(x), then
        "indep" will refer to x and "dep" will refer to f.

    *"subs"*

        If a hints has the word "subs" in it, it means the the ODE is
        solved by substituting the expression given after the word
        "subs" for a single dummy variable.  This is usually in terms of
        "indep" and "dep" as above.  The substituted expression will be
        written only in characters allowed for names of Python objects,
        meaning operators will be spelled out.  For example, indep/dep
        will be written as indep_div_dep.

    *"coeff"*

        The word "coeff" in a hint refers to the coefficients of
        something in the ODE, usually of the derivative terms.  See the
        docstring for the individual methods for more info (help(ode)).
        This is contrast to "coefficients", as in
        "undetermined_coefficients", which refers to the common name of
        a method.

    *"_best"*

        Methods that have more than one fundamental way to solve will
        have a hint for each sub-method and a "_best"
        meta-classification. This will evaluate all hints and return the
        best, using the same considerations as the normal "best"
        meta-hint.


    **Examples**
        >>> from sympy import Function, classify_ode, Eq
        >>> from sympy.abc import x
        >>> f = Function('f')
        >>> classify_ode(Eq(f(x).diff(x), 0), f(x))
        ('separable', '1st_linear', '1st_homogeneous_coeff_best',
        '1st_homogeneous_coeff_subs_indep_div_dep',
        '1st_homogeneous_coeff_subs_dep_div_indep',
        'nth_linear_constant_coeff_homogeneous', 'separable_Integral',
        '1st_linear_Integral',
        '1st_homogeneous_coeff_subs_indep_div_dep_Integral',
        '1st_homogeneous_coeff_subs_dep_div_indep_Integral')
        >>> classify_ode(f(x).diff(x, 2) + 3*f(x).diff(x) + 2*f(x) - 4, f(x))
        ('nth_linear_constant_coeff_undetermined_coefficients',
        'nth_linear_constant_coeff_variation_of_parameters',
        'nth_linear_constant_coeff_variation_of_parameters_Integral')

    """
    from sympy import expand

    if len(func.args) != 1:
        raise ValueError("dsolve() and classify_ode() only work with functions " + \
            "of one variable")

    x = func.args[0]
    f = func.func
    y = Dummy('y')
    if isinstance(eq, Equality):
        if eq.rhs != 0:
            return classify_ode(eq.lhs-eq.rhs, func)
        eq = eq.lhs
    order = ode_order(eq, f(x))
    # hint:matchdict or hint:(tuple of matchdicts)
    # Also will contain "default":<default hint> and "order":order items.
    matching_hints = {"order": order}

    if not order:
        if dict:
            matching_hints["default"] = None
            return matching_hints
        else:
            return ()

    df = f(x).diff(x)
    a = Wild('a', exclude=[f(x)])
    b = Wild('b', exclude=[f(x)])
    c = Wild('c', exclude=[f(x)])
    d = Wild('d', exclude=[df, f(x).diff(x, 2)])
    e = Wild('e', exclude=[df])
    k = Wild('k', exclude=[df])
    n = Wild('n', exclude=[f(x)])
    c1 = Wild('c1', exclude=[x])
    a2 = Wild('a2', exclude=[x, f(x), df])
    b2 = Wild('b2', exclude=[x, f(x), df])
    c2 = Wild('c2', exclude=[x, f(x), df])
    d2 = Wild('d2', exclude=[x, f(x), df])

    eq = expand(eq)

    # Precondition to try remove f(x) from highest order derivative
    reduced_eq = None
    if eq.is_Add:
        deriv_coef = eq.coeff(f(x).diff(x, order))
        if deriv_coef != 1:
            r = deriv_coef.match(a*f(x)**c1)
            if r and r[c1]:
                den = f(x)**r[c1]
                reduced_eq = Add(*[arg/den for arg in eq.args])
    if not reduced_eq:
        reduced_eq = eq

    if order == 1:

        # Linear case: a(x)*y'+b(x)*y+c(x) == 0
        if eq.is_Add:
            ind, dep = reduced_eq.as_independent(f)
        else:
            u = Dummy('u')
            ind, dep = (reduced_eq + u).as_independent(f)
            ind, dep = [tmp.subs(u, 0) for tmp in [ind, dep]]
        r = {a: dep.coeff(df) or S.Zero, # if we get None for coeff, take 0
             b: dep.coeff(f(x)) or S.Zero, # ditto
             c: ind}
        # double check f[a] since the preconditioning may have failed
        if not r[a].has(f) and (r[a]*df + r[b]*f(x) + r[c]).expand() - reduced_eq == 0:
            r['a'] = a
            r['b'] = b
            r['c'] = c
            matching_hints["1st_linear"] = r
            matching_hints["1st_linear_Integral"] = r

        # Bernoulli case: a(x)*y'+b(x)*y+c(x)*y**n == 0
        r = collect(reduced_eq, f(x), exact = True).match(a*df + b*f(x) + c*f(x)**n)
        if r and r[c] != 0 and r[n] != 1: # See issue 1577
            r['a'] = a
            r['b'] = b
            r['c'] = c
            r['n'] = n
            matching_hints["Bernoulli"] = r
            matching_hints["Bernoulli_Integral"] = r

        # Riccati special n == -2 case: a2*y'+b2*y**2+c2*y/x+d2/x**2 == 0
        r = collect(reduced_eq, f(x), exact = True).match(a2*df + b2*f(x)**2 + c2*f(x)/x + d2/x**2)
        if r and r[b2] != 0 and (r[c2] != 0 or r[d2] != 0):
            r['a2'] = a2
            r['b2'] = b2
            r['c2'] = c2
            r['d2'] = d2
            matching_hints["Riccati_special_minus2"] = r

        # Exact Differential Equation: P(x,y)+Q(x,y)*y'=0 where dP/dy == dQ/dx
        # WITH NON-REDUCED FORM OF EQUATION
        r = collect(eq, df, exact = True).match(d + e * df)
        if r:
            r['d'] = d
            r['e'] = e
            r['y'] = y
            r[d] = r[d].subs(f(x),y)
            r[e] = r[e].subs(f(x),y)
            try:
                if r[d] != 0 and simplify(r[d].diff(y)) == simplify(r[e].diff(x)):
                    matching_hints["1st_exact"] = r
                    matching_hints["1st_exact_Integral"] = r
            except NotImplementedError:
                # Differentiating the coefficients might fail because of things
                # like f(2*x).diff(x).  See issue 1525 and issue 1620.
                pass

        # This match is used for several cases below; we now collect on
        # f(x) so the matching works.
        r = collect(reduced_eq, df, exact = True).match(d+e*df)
        if r:
            r['d'] = d
            r['e'] = e
            r['y'] = y
            r[d] = r[d].subs(f(x),y)
            r[e] = r[e].subs(f(x),y)

            # Separable Case: y' == P(y)*Q(x)
            r[d] = separatevars(r[d])
            r[e] = separatevars(r[e])
            # m1[coeff]*m1[x]*m1[y] + m2[coeff]*m2[x]*m2[y]*y'
            m1 = separatevars(r[d], dict=True, symbols=(x, y))
            m2 = separatevars(r[e], dict=True, symbols=(x, y))
            if m1 and m2:
                r1 = {'m1':m1, 'm2':m2, 'y':y}
                matching_hints["separable"] = r1
                matching_hints["separable_Integral"] = r1

            # First order equation with homogeneous coefficients:
            # dy/dx == F(y/x) or dy/dx == F(x/y)
            ordera = homogeneous_order(r[d], x, y)
            orderb = homogeneous_order(r[e], x, y)
            if ordera == orderb and ordera is not None:
                # u1=y/x and u2=x/y
                u1 = Dummy('u1')
                u2 = Dummy('u2')
                if simplify((r[d]+u1*r[e]).subs({x:1, y:u1})) != 0:
                    matching_hints["1st_homogeneous_coeff_subs_dep_div_indep"] = r
                    matching_hints["1st_homogeneous_coeff_subs_dep_div_indep_Integral"] = r
                if simplify((r[e]+u2*r[d]).subs({x:u2, y:1})) != 0:
                    matching_hints["1st_homogeneous_coeff_subs_indep_div_dep"] = r
                    matching_hints["1st_homogeneous_coeff_subs_indep_div_dep_Integral"] = r
                if "1st_homogeneous_coeff_subs_dep_div_indep" in matching_hints \
                and "1st_homogeneous_coeff_subs_indep_div_dep" in matching_hints:
                    matching_hints["1st_homogeneous_coeff_best"] = r

    if order == 2:
        # Liouville ODE f(x).diff(x, 2) + g(f(x))*(f(x).diff(x))**2 + h(x)*f(x).diff(x)
        # See Goldstein and Braun, "Advanced Methods for the Solution of
        # Differential Equations", pg. 98

        s = d*f(x).diff(x, 2) + e*df**2 + k*df
        r = reduced_eq.match(s)
        if r and r[d] != 0:
            y = Dummy('y')
            g = simplify(r[e]/r[d]).subs(f(x), y)
            h = simplify(r[k]/r[d])
            if h.has(f(x)) or g.has(x):
                pass
            else:
                r = {'g':g, 'h':h, 'y':y}
                matching_hints["Liouville"] = r
                matching_hints["Liouville_Integral"] = r


    if order > 0:
        # nth order linear ODE
        # a_n(x)y^(n) + ... + a_1(x)y' + a_0(x)y = F(x) = b

        r = _nth_linear_match(reduced_eq, func, order)

        # Constant coefficient case (a_i is constant for all i)
        if r and not any(r[i].has(x) for i in r if i >= 0):
            # Inhomogeneous case: F(x) is not identically 0
            if r[-1]:
                undetcoeff = _undetermined_coefficients_match(r[-1], x)
                matching_hints["nth_linear_constant_coeff_variation_of_parameters"] = r
                matching_hints["nth_linear_constant_coeff_variation_of_parameters" + \
                    "_Integral"] = r
                if undetcoeff['test']:
                    r['trialset'] = undetcoeff['trialset']
                    matching_hints["nth_linear_constant_coeff_undetermined_" + \
                        "coefficients"] = r
            # Homogeneous case: F(x) is identically 0
            else:
                matching_hints["nth_linear_constant_coeff_homogeneous"] = r


    # Order keys based on allhints.
    retlist = []
    for i in allhints:
        if i in matching_hints:
            retlist.append(i)


    if dict:
        # Dictionaries are ordered arbitrarily, so we need to make note of which
        # hint would come first for dsolve().  In Python 3, this should be replaced
        # with an ordered dictionary.
        matching_hints["default"] = None
        matching_hints["ordered_hints"] = tuple(retlist)
        for i in allhints:
            if i in matching_hints:
                matching_hints["default"] = i
                break
        return matching_hints
    else:
        return tuple(retlist)

@vectorize(0)
def odesimp(eq, func, order, hint):
    r"""
    Simplifies ODEs, including trying to solve for func and running
    constantsimp().

    It may use knowledge of the type of solution that that hint returns
    to apply additional simplifications.

    It also attempts to integrate any Integrals in the expression, if
    the hint is not an "_Integral" hint.

    This function should have no effect on expressions returned by
    dsolve(), as dsolve already calls odesimp(), but the individual hint
    functions do not call odesimp (because the dsolve() wrapper does).
    Therefore, this function is designed for mainly internal use.

    **Example**
        >>> from sympy import sin, symbols, dsolve, pprint, Function
        >>> from sympy.solvers.ode import odesimp
        >>> x , u2, C1= symbols('x,u2,C1')
        >>> f = Function('f')

        >>> eq = dsolve(x*f(x).diff(x) - f(x) - x*sin(f(x)/x), f(x),
        ... hint='1st_homogeneous_coeff_subs_indep_div_dep_Integral',
        ... simplify=False)
        >>> pprint(eq)
                      x
                     ----
                     f(x)
                       /
                      |
                      |   /      /1 \    \
                      |  -|u2*sin|--| + 1|
           /f(x)\     |   \      \u2/    /
        log|----| -   |  ----------------- d(u2) = 0
           \ C1 /     |       2    /1 \
                      |     u2 *sin|--|
                      |            \u2/
                      |
                     /

        >>  pprint(odesimp(eq, f(x), 1,
        ... hint='1st_homogeneous_coeff_subs_indep_div_dep'
        ... )) # (this is slow, so we skip)
            x
        --------- = C1
           /f(x)\
        tan|----|
           \2*x /

    """
    x = func.args[0]
    f = func.func
    C1 = Symbol('C1')

    # First, integrate if the hint allows it.
    eq = _handle_Integral(eq, func, order, hint)
    assert isinstance(eq, Equality)

    # Second, clean up the arbitrary constants.
    # Right now, nth linear hints can put as many as 2*order constants in an
    # expression.  If that number grows with another hint, the third argument
    # here should be raised accordingly, or constantsimp() rewritten to handle
    # an arbitrary number of constants.
    eq = constantsimp(eq, x, 2*order)

    # Lastly, now that we have cleaned up the expression, try solving for func.
    # When RootOf is implemented in solve(), we will want to return a RootOf
    # everytime instead of an Equality.

    # Get the f(x) on the left if possible.
    if eq.rhs == func and not eq.lhs.has(func):
        eq = [Eq(eq.rhs, eq.lhs)]

    # make sure we are working with lists of solutions in simplified form.
    if eq.lhs == func and not eq.rhs.has(func):
        # The solution is already solved
        eq = [eq]

        # special simplification of the rhs
        if hint.startswith("nth_linear_constant_coeff"):
            # Collect terms to make the solution look nice.
            # This is also necessary for constantsimp to remove unnecessary terms
            # from the particular solution from variation of parameters
            global collectterms
            assert len(eq) == 1 and eq[0].lhs == f(x)
            sol = eq[0].rhs
            sol = expand_mul(sol)
            for i, reroot, imroot in collectterms:
                sol = collect(sol, x**i*exp(reroot*x)*sin(abs(imroot)*x))
                sol = collect(sol, x**i*exp(reroot*x)*cos(imroot*x))
            for i, reroot, imroot in collectterms:
                sol = collect(sol, x**i*exp(reroot*x))
            del collectterms
            eq[0] = Eq(f(x), sol)

    else:
        # The solution is not solved, so try to solve it
        try:
            eqsol = solve(eq, func)
            if eqsol == []:
                raise NotImplementedError
        except NotImplementedError:
            eq = [eq]
        else:
            def _expand(expr):
                numer, denom = expr.as_numer_denom()

                if denom.is_Add:
                    return expr
                else:
                    return powsimp(expr.expand(), combine='exp', deep=True)

            # XXX: the rest of odesimp() expects each ``t`` to be in a
            # specific normal form: rational expression with numerator
            # expanded, but with combined exponential functions (at
            # least in this setup all tests pass).
            eq = [Eq(f(x), _expand(t)) for t in eqsol]

        # special simplification of the lhs.
        if hint.startswith("1st_homogeneous_coeff"):
            for j, eqi in enumerate(eq):
                newi = logcombine(eqi, force=True)
                if newi.lhs.is_Function and newi.lhs.func is log and newi.rhs == 0:
                    newi = Eq(newi.lhs.args[0]/C1, C1)
                eq[j] = newi

    # We cleaned up the costants before solving to help the solve engine with
    # a simpler expression, but the solved expression could have introduced
    # things like -C1, so rerun constantsimp() one last time before returning.
    for i, eqi in enumerate(eq):
        eq[i] = constant_renumber(constantsimp(eqi, x, 2*order), 'C', 1, 2*order)

    # If there is only 1 solution, return it;
    # otherwise return the list of solutions.
    if len(eq) == 1:
        eq = eq[0]

    return eq

def checkodesol(ode, func, sol, order='auto', solve_for_func=True):
    """
    Substitutes sol for func in ode and checks that the result is 0.

    This only works when func is one function, like f(x).  sol can be a
    single solution or a list of solutions.  Either way, each solution
    must be an Equality instance (e.g., Eq(f(x), C1*cos(x) +
    C2*sin(x))).  If it is a list of solutions, it will return a list of
    the checkodesol() result for each solution.

    It tries the following methods, in order, until it finds zero
    equivalence:

        1. Substitute the solution for f in the original equation.  This
           only works if the ode is solved for f.  It will attempt to solve
           it first unless solve_for_func == False
        2. Take n derivatives of the solution, where n is the order of
           ode, and check to see if that is equal to the solution.  This
           only works on exact odes.
        3. Take the 1st, 2nd, ..., nth derivatives of the solution, each
           time solving for the derivative of f of that order (this will
           always be possible because f is a linear operator).  Then back
           substitute each derivative into ode in reverse order.

    This function returns a tuple.  The first item in the tuple is True
    if the substitution results in 0, and False otherwise. The second
    item in the tuple is what the substitution results in.  It should
    always be 0 if the first item is True. Note that sometimes this
    function will False, but with an expression that is identically
    equal to 0, instead of returning True.  This is because simplify()
    cannot reduce the expression to 0.  If an expression returned by
    this function vanishes identically, then sol really is a solution to
    ode.

    If this function seems to hang, it is probably because of a hard
    simplification.

    To use this function to test, test the first item of the tuple.

    **Examples**
        >>> from sympy import Eq, Function, checkodesol, symbols
        >>> x, C1 = symbols('x,C1')
        >>> f = Function('f')
        >>> checkodesol(f(x).diff(x), f(x), Eq(f(x), C1))
        (True, 0)
        >>> assert checkodesol(f(x).diff(x), f(x), Eq(f(x), C1))[0]
        >>> assert not checkodesol(f(x).diff(x), f(x), Eq(f(x), x))[0]
        >>> checkodesol(f(x).diff(x, 2), f(x), Eq(f(x), x**2))
        (False, 2)

    """
    if type(sol) in (tuple, list, set):
        return type(sol)(map(lambda i: checkodesol(ode, func, i, order=order,
            solve_for_func=solve_for_func), sol))
    if not func.is_Function or len(func.args) != 1:
        raise ValueError("func must be a function of one variable, not " + str(func))
    x = func.args[0]
    s = True
    testnum = 0
    if not isinstance(ode, Equality):
        ode = Eq(ode, 0)
    if not isinstance(sol, Equality):
        raise ValueError("sol must be an Equality, got " + str(sol))
    if order == 'auto':
        order = ode_order(ode, func)
    if solve_for_func and not (sol.lhs == func and not sol.rhs.has(func)) and not \
        (sol.rhs == func and not sol.lhs.has(func)):
        try:
            solved = solve(sol, func)
            if solved == []:
                raise NotImplementedError
        except NotImplementedError:
            pass
        else:
            if len(solved) == 1:
                result = checkodesol(ode, func, Eq(func, solved[0]), \
                    order=order, solve_for_func=False)
            else:
                result = checkodesol(ode, func, [Eq(func, t) for t in solved],
                order=order, solve_for_func=False)

            return result

    while s:
        if testnum == 0:
            # First pass, try substituting a solved solution directly into the ode
            # This has the highest chance of succeeding.
            ode_diff = ode.lhs - ode.rhs

            if sol.lhs == func:
                s = sub_func_doit(ode_diff, func, sol.rhs)
            elif sol.rhs == func:
                s = sub_func_doit(ode_diff, func, sol.lhs)
            else:
                testnum += 1
                continue
            ss = simplify(s)
            if ss:
                # with the new numer_denom in power.py, if we do a simple
                # expansion then testnum == 0 verifies all solutions.
                s = ss.expand()
            else:
                s = 0
            testnum += 1
        elif testnum == 1:
            # Second pass. If we cannot substitute f, try seeing if the nth
            # derivative is equal, this will only work for odes that are exact,
            # by definition.
            s = simplify(trigsimp(diff(sol.lhs, x, order) - diff(sol.rhs, x, order)) - \
                trigsimp(ode.lhs) + trigsimp(ode.rhs))
#            s2 = simplify(diff(sol.lhs, x, order) - diff(sol.rhs, x, order) - \
#                ode.lhs + ode.rhs)
            testnum += 1
        elif testnum == 2:
            # Third pass. Try solving for df/dx and substituting that into the ode.
            # Thanks to Chris Smith for suggesting this method.  Many of the
            # comments below are his too.
            # The method:
            # - Take each of 1..n derivatives of the solution.
            # - Solve each nth derivative for d^(n)f/dx^(n)
            #   (the differential of that order)
            # - Back substitute into the ode in decreasing order
            #   (i.e., n, n-1, ...)
            # - Check the result for zero equivalence
            if sol.lhs == func and not sol.rhs.has(func):
                diffsols = {0:sol.rhs}
            elif sol.rhs == func and not sol.lhs.has(func):
                diffsols = {0:sol.lhs}
            else:
                diffsols = {}
            sol = sol.lhs - sol.rhs
            for i in range(1, order + 1):
                # Differentiation is a linear operator, so there should always
                # be 1 solution. Nonetheless, we test just to make sure.
                # We only need to solve once.  After that, we will automatically
                # have the solution to the differential in the order we want.
                if i == 1:
                    ds = sol.diff(x)
                    try:
                        sdf = solve(ds,func.diff(x, i))
                        if len(sdf) != 1:
                            raise NotImplementedError
                    except NotImplementedError:
                        testnum += 1
                        break
                    else:
                        diffsols[i] = sdf[0]
                else:
                    # This is what the solution says df/dx should be.
                    diffsols[i] = diffsols[i - 1].diff(x)

            # Make sure the above didn't fail.
            if testnum > 2:
                continue
            else:
                # Substitute it into ode to check for self consistency.
                lhs, rhs = ode.lhs, ode.rhs
                for i in range(order, -1, -1):
                    if i == 0 and 0 not in diffsols:
                        # We can only substitute f(x) if the solution was
                        # solved for f(x).
                        break
                    lhs = sub_func_doit(lhs, func.diff(x, i), diffsols[i])
                    rhs = sub_func_doit(rhs, func.diff(x, i), diffsols[i])
                    ode_or_bool = Eq(lhs,rhs)
                    ode_or_bool = simplify(ode_or_bool)

                    if isinstance(ode_or_bool, bool):
                        if ode_or_bool:
                            lhs = rhs = S.Zero
                    else:
                        lhs = ode_or_bool.lhs
                        rhs = ode_or_bool.rhs
                # No sense in overworking simplify--just prove the numerator goes to zero
                s = simplify(trigsimp((lhs-rhs).as_numer_denom()[0]))
                testnum += 1
        else:
            break

    if not s:
        return (True, s)
    elif s is True: # The code above never was able to change s
        raise NotImplementedError("Unable to test if " + str(sol) + \
            " is a solution to " + str(ode) + ".")
    else:
        return (False, s)


def ode_sol_simplicity(sol, func, trysolving=True):
    """
    Returns an extended integer representing how simple a solution to an
    ODE is.

    The following things are considered, in order from most simple to
    least:
    - sol is solved for func.
    - sol is not solved for func, but can be if passed to solve (e.g.,
    a solution returned by dsolve(ode, func, simplify=False)
    - If sol is not solved for func, then base the result on the length
    of sol, as computed by len(str(sol)).
    - If sol has any unevaluated Integrals, this will automatically be
    considered less simple than any of the above.

    This function returns an integer such that if solution A is simpler
    than solution B by above metric, then ode_sol_simplicity(sola, func)
    < ode_sol_simplicity(solb, func).

    Currently, the following are the numbers returned, but if the
    heuristic is ever improved, this may change.  Only the ordering is
    guaranteed.

    sol solved for func                        -2
    sol not solved for func but can be         -1
    sol is not solved or solvable for func     len(str(sol))
    sol contains an Integral                   oo

    oo here means the SymPy infinity, which should compare greater than
    any integer.

    If you already know solve() cannot solve sol, you can use
    trysolving=False to skip that step, which is the only potentially
    slow step.  For example, dsolve with the simplify=False flag should
    do this.

    If sol is a list of solutions, if the worst solution in the list
    returns oo it returns that, otherwise it returns len(str(sol)), that
    is, the length of the string representation of the whole list.

    **Examples**

    This function is designed to be passed to min as the key argument,
    such as min(listofsolutions, key=lambda i: ode_sol_simplicity(i, f(x))).

        >>> from sympy import symbols, Function, Eq, tan, cos, sqrt, Integral
        >>> from sympy.solvers.ode import ode_sol_simplicity
        >>> x, C1 = symbols('x,C1')
        >>> f = Function('f')

        >>> ode_sol_simplicity(Eq(f(x), C1*x**2), f(x))
        -2
        >>> ode_sol_simplicity(Eq(x**2 + f(x), C1), f(x))
        -1
        >>> ode_sol_simplicity(Eq(f(x), C1*Integral(2*x, x)), f(x))
        oo
        >>> # This is from dsolve(x*f(x).diff(x) - f(x) - x*sin(f(x)/x), \
        >>> # f(x), hint='1st_homogeneous_coeff_subs_indep_div_dep')
        >>> eq1 = Eq(x/tan(f(x)/(2*x)), C1)
        >>> # This is from the same ode with the
        >>> # '1st_homogeneous_coeff_subs_dep_div_indep' hint.
        >>> eq2 = Eq(x*sqrt(1 + cos(f(x)/x))/sqrt(-1 + cos(f(x)/x)), C1)
        >>> ode_sol_simplicity(eq1, f(x))
        23
        >>> min([eq1, eq2], key=lambda i: ode_sol_simplicity(i, f(x)))
        x/tan(f(x)/(2*x)) == C1

    """
    #TODO: write examples

    # See the docstring for the coercion rules.  We check easier (faster)
    # things here first, to save time.

    if iterable(sol):
        # See if there are Integrals
        for i in sol:
            if ode_sol_simplicity(i, func, trysolving=trysolving) == oo:
                return oo

        return len(str(sol))

    if sol.has(C.Integral):
        return oo

    # Next, try to solve for func.  This code will change slightly when RootOf
    # is implemented in solve().  Probably a RootOf solution should fall somewhere
    # between a normal solution and an unsolvable expression.

    # First, see if they are already solved
    if sol.lhs == func and not sol.rhs.has(func) or\
        sol.rhs == func and not sol.lhs.has(func):
            return -2
    # We are not so lucky, try solving manually
    if trysolving:
        try:
            sols = solve(sol, func)
            if sols == []:
                raise NotImplementedError
        except NotImplementedError:
            pass
        else:
            return -1

    # Finally, a naive computation based on the length of the string version
    # of the expression.  This may favor combined fractions because they
    # will not have duplicate denominators, and may slightly favor expressions
    # with fewer additions and subtractions, as those are separated by spaces
    # by the printer.

    # Additional ideas for simplicity heuristics are welcome, like maybe
    # checking if a equation has a larger domain, or if constantsimp has
    # introduced arbitrary constants numbered higher than the order of a
    # given ode that sol is a solution of.
    return len(str(sol))


@vectorize(0)
def constantsimp(expr, independentsymbol, endnumber, startnumber=1,
    symbolname='C'):
    """
    Simplifies an expression with arbitrary constants in it.

    This function is written specifically to work with dsolve(), and is
    not intended for general use.

    Simplification is done by "absorbing" the arbitrary constants in to
    other arbitrary constants, numbers, and symbols that they are not
    independent of.

    The symbols must all have the same name with numbers after it, for
    example, C1, C2, C3.  The symbolname here would be 'C', the
    startnumber would be 1, and the end number would be 3.  If the
    arbitrary constants are independent of the variable x, then the
    independent symbol would be x.  There is no need to specify the
    dependent function, such as f(x), because it already has the
    independent symbol, x, in it.

    Because terms are "absorbed" into arbitrary constants and because
    constants are renumbered after simplifying, the arbitrary constants
    in expr are not necessarily equal to the ones of the same name in
    the returned result.

    If two or more arbitrary constants are added, multiplied, or raised
    to the power of each other, they are first absorbed together into a
    single arbitrary constant.  Then the new constant is combined into
    other terms if necessary.

    Absorption is done naively.  constantsimp() does not attempt to
    expand or simplify the expression first to obtain better absorption.
    So for example, exp(C1)*exp(x) will be simplified to C1*exp(x), but
    exp(C1 + x) will be left alone.

    Use constant_renumber() to renumber constants after simplification.
    Without using that function, simplified constants may end up
    having any numbering to them.

    In rare cases, a single constant can be "simplified" into two
    constants.  Every differential equation solution should have as many
    arbitrary constants as the order of the differential equation.  The
    result here will be technically correct, but it may, for example,
    have C1 and C2 in an expression, when C1 is actually equal to C2.
    Use your discretion in such situations, and also take advantage of
    the ability to use hints in dsolve().

    **Examples**
        >>> from sympy import symbols
        >>> from sympy.solvers.ode import constantsimp
        >>> C1, C2, C3, x, y = symbols('C1,C2,C3,x,y')
        >>> constantsimp(2*C1*x, x, 3)
        C1*x
        >>> constantsimp(C1 + 2 + x + y, x, 3)
        C1 + x
        >>> constantsimp(C1*C2 + 2 + x + y + C3*x, x, 3)
        C2 + C3*x + x

    """
    # This function works recursively.  The idea is that, for Mul,
    # Add, Pow, and Function, if the class has a constant in it, then
    # we can simplify it, which we do by recursing down and
    # simplifying up.  Otherwise, we can skip that part of the
    # expression.

    constantsymbols = [Symbol(symbolname+"%d" % t) for t in range(startnumber,
    endnumber + 1)]
    constantsymbols_set = set(constantsymbols)
    x = independentsymbol

    if isinstance(expr, Equality):
        # For now, only treat the special case where one side of the equation
        # is a constant
        if expr.lhs in constantsymbols_set:
            return Eq(expr.lhs, constantsimp(expr.rhs + expr.lhs, x, endnumber,
            startnumber, symbolname) - expr.lhs)
            # this could break if expr.lhs is absorbed into another constant,
            # but for now, the only solutions that return Eq's with a constant
            # on one side are first order.  At any rate, it will still be
            # technically correct.  The expression will just have too many
            # constants in it
        elif expr.rhs in constantsymbols_set:
            return Eq(constantsimp(expr.lhs + expr.rhs, x, endnumber,
            startnumber, symbolname) - expr.rhs, expr.rhs)
        else:
            return Eq(constantsimp(expr.lhs, x, endnumber, startnumber,
                symbolname), constantsimp(expr.rhs, x, endnumber,
                startnumber, symbolname))

    if type(expr) not in (Mul, Add, Pow) and not expr.is_Function:
        # We don't know how to handle other classes
        # This also serves as the base case for the recursion
        return expr
    elif not expr.has(*constantsymbols):
        return expr
    else:
        newargs = []
        hasconst = False
        isPowExp = False
        reeval = False
        for i in expr.args:
            if i not in constantsymbols:
                newargs.append(i)
            else:
                newconst = i
                hasconst = True
                if expr.is_Pow and i == expr.exp:
                    isPowExp = True

        for i in range(len(newargs)):
            isimp = constantsimp(newargs[i], x, endnumber, startnumber,
            symbolname)
            if isimp in constantsymbols:
                reeval = True
                hasconst = True
                newconst = isimp
                if expr.is_Pow and i == 1:
                    isPowExp = True
            newargs[i] = isimp
        if hasconst:
            newargs = [i for i in newargs if i.has(x)]
            if isPowExp:
                newargs = newargs + [newconst] # Order matters in this case
            else:
                newargs = [newconst] + newargs
        if expr.is_Pow and len(newargs) == 1:
            newargs.append(S.One)
        if expr.is_Function:
            if (len(newargs) == 0 or hasconst and len(newargs) == 1):
                return newconst
            else:
                newfuncargs = [constantsimp(t, x, endnumber, startnumber,
                symbolname) for t in expr.args]
                return expr.func(*newfuncargs)
        else:
            newexpr = expr.func(*newargs)
            if reeval:
                return constantsimp(newexpr, x, endnumber, startnumber,
                symbolname)
            else:
                return newexpr

def constant_renumber(expr, symbolname, startnumber, endnumber):
    """
    Renumber arbitrary constants in expr.

    This is a simple function that goes through and renumbers any Symbol
    with a name in the form symbolname + num where num is in the range
    from startnumber to endnumber.

    Symbols are renumbered based on Basic._compare_pretty, so they
    should be numbered roughly in the order that they appear in the
    final, printed expression.  Note that this ordering is based in part
    on hashes, so it can produce different results on different
    machines.

    The structure of this function is very similar to that of
    constantsimp().

    **Example**
        >>> from sympy import symbols, Eq, pprint
        >>> from sympy.solvers.ode import constant_renumber
        >>> x, C1, C2, C3 = symbols('x,C1,C2,C3')
        >>> pprint(C2 + C1*x + C3*x**2)
                        2
        C1*x + C2 + C3*x
        >>> pprint(constant_renumber(C2 + C1*x + C3*x**2, 'C', 1, 3))
                        2
        C1 + C2*x + C3*x

    """
    if type(expr) in (set, list, tuple):
        return type(expr)(map(lambda i: constant_renumber(i, symbolname=symbolname,
            startnumber=startnumber, endnumber=endnumber), expr))
    global newstartnumber
    newstartnumber = 1

    def _constant_renumber(expr, symbolname, startnumber, endnumber):
        """
        We need to have an internal recursive function so that
        newstartnumber maintains its values throughout recursive calls.

        """
        constantsymbols = [Symbol(symbolname+"%d" % t) for t in range(startnumber,
        endnumber + 1)]
        global newstartnumber

        if isinstance(expr, Equality):
            return Eq(_constant_renumber(expr.lhs, symbolname, startnumber, endnumber),
            _constant_renumber(expr.rhs, symbolname, startnumber, endnumber))

        if type(expr) not in (Mul, Add, Pow) and not expr.is_Function and\
        not expr.has(*constantsymbols):
            # Base case, as above.  We better hope there aren't constants inside
            # of some other class, because they won't be renumbered.
            return expr
        elif expr in constantsymbols:
            # Renumbering happens here
            newconst = Symbol(symbolname + str(newstartnumber))
            newstartnumber += 1
            return newconst
        else:
            if expr.is_Function or expr.is_Pow:
                return expr.func(*[_constant_renumber(x, symbolname, startnumber,
                endnumber) for x in expr.args])
            else:
                sortedargs = list(expr.args)
                # make a mapping to send all constantsymbols to S.One and use
                # that to make sure that term ordering is not dependent on
                # the indexed value of C
                C_1 = [(ci, S.One) for ci in constantsymbols]
                sortedargs.sort(key=cmp_to_key(lambda x, y:\
                               Basic._compare_pretty(x.subs(C_1), y.subs(C_1))))
                return expr.func(*[_constant_renumber(x, symbolname, startnumber,
                endnumber) for x in sortedargs])


    return _constant_renumber(expr, symbolname, startnumber, endnumber)


def _handle_Integral(expr, func, order, hint):
    """
    Converts a solution with Integrals in it into an actual solution.

    For most hints, this simply runs expr.doit()

    """
    x = func.args[0]
    f = func.func
    if hint == "1st_exact":
        global exactvars
        x0 = exactvars['x0']
        y0 = exactvars['y0']
        y = exactvars['y']
        tmpsol = expr.lhs.doit()
        sol = 0
        assert tmpsol.is_Add
        for i in tmpsol.args:
            if x0 not in i and y0 not in i:
                sol += i
        assert sol != 0
        sol = Eq(sol.subs(y, f(x)),expr.rhs) # expr.rhs == C1
        del exactvars
    elif hint == "1st_exact_Integral":
        # FIXME: We still need to back substitute y
        # y = exactvars['y']
        # sol = expr.subs(y, f(x))
        # For now, we are going to have to return an expression with f(x) replaced
        # with y.  Substituting results in the y's in the second integral
        # becoming f(x), which prevents the integral from being evaluatable.
        # For example, Integral(cos(f(x)), (x, x0, x)).  If there were a way to
        # do inert substitution, that could maybe be used here instead.
        del exactvars
        sol = expr
    elif hint == "nth_linear_constant_coeff_homogeneous":
        sol = expr
    elif not hint.endswith("_Integral"):
        sol = expr.doit()
    else:
        sol = expr
    return sol

def ode_order(expr, func):
    """
    Returns the order of a given ODE with respect to func.

    This function is implemented recursively.

    **Examples**
        >>> from sympy import Function, ode_order
        >>> from sympy.abc import x
        >>> f, g = map(Function, ['f', 'g'])
        >>> ode_order(f(x).diff(x, 2) + f(x).diff(x)**2 +
        ... f(x).diff(x), f(x))
        2
        >>> ode_order(f(x).diff(x, 2) + g(x).diff(x, 3), f(x))
        2
        >>> ode_order(f(x).diff(x, 2) + g(x).diff(x, 3), g(x))
        3

    """
    a = Wild('a', exclude=[func])

    order = 0
    if isinstance(expr, Derivative) and expr.args[0] == func:
        order = len(expr.variables)
    else:
        for arg in expr.args:
            if isinstance(arg, Derivative) and arg.args[0] == func:
                order = max(order, len(arg.variables))
            elif expr.match(a):
                order = 0
            else :
                for arg1 in arg.args:
                    order = max(order, ode_order(arg1, func))

    return order

# FIXME: replace the general solution in the docstring with
# dsolve(equation, hint='1st_exact_Integral').  You will need to be able
# to have assumptions on P and Q that dP/dy = dQ/dx.
def ode_1st_exact(eq, func, order, match):
    r"""
    Solves 1st order exact ordinary differential equations.

    A 1st order differential equation is called exact if it is the total
    differential of a function. That is, the differential equation
    P(x, y)dx + Q(x, y)dy = 0 is exact if there is some function F(x, y)
    such that P(x, y) = dF/dx and Q(x, y) = dF/dy (d here refers to the
    partial derivative).  It can be shown that a necessary and
    sufficient condition for a first order ODE to be exact is that
    dP/dy = dQ/dx.  Then, the solution will be as given below::

        >>> from sympy import Function, Eq, Integral, symbols, pprint
        >>> x, y, t, x0, y0, C1= symbols('x,y,t,x0,y0,C1')
        >>> P, Q, F= map(Function, ['P', 'Q', 'F'])
        >>> pprint(Eq(Eq(F(x, y), Integral(P(t, y), (t, x0, x)) +
        ... Integral(Q(x0, t), (t, y0, y))), C1))
                    x                y
                    /                /
                   |                |
        F(x, y) =  |  P(t, y) dt +  |  Q(x0, t) dt = C1
                   |                |
                  /                /
                  x0               y0

    Where the first partials of P and Q exist and are continuous in a
    simply connected region.

    A note: SymPy currently has no way to represent inert substitution on
    an expression, so the hint '1st_exact_Integral' will return an integral
    with dy.  This is supposed to represent the function that you are
    solving for.

    **Example**
        >>> from sympy import Function, dsolve, cos, sin
        >>> from sympy.abc import x
        >>> f = Function('f')
        >>> dsolve(cos(f(x)) - (x*sin(f(x)) - f(x)**2)*f(x).diff(x),
        ... f(x), hint='1st_exact')
        x*cos(f(x)) + f(x)**3/3 == C1

    **References**
        - http://en.wikipedia.org/wiki/Exact_differential_equation
        - M. Tenenbaum & H. Pollard, "Ordinary Differential Equations",
          Dover 1963, pp. 73

        # indirect doctest

    """
    x = func.args[0]
    f = func.func
    r = match # d+e*diff(f(x),x)
    C1 = Symbol('C1')
    x0 = Dummy('x0')
    y0 = Dummy('y0')
    global exactvars # This is the only way to pass these dummy variables to
    # _handle_Integral
    exactvars = {'y0':y0, 'x0':x0, 'y':r['y']}
    # If we ever get a Constant class, x0 and y0 should be constants, I think
    sol = C.Integral(r[r['e']].subs(x,x0),(r['y'],y0,f(x)))+C.Integral(r[r['d']],(x,x0,x))
    return Eq(sol, C1)


def ode_1st_homogeneous_coeff_best(eq, func, order, match):
    r"""
    Returns the best solution to an ODE from the two hints
    '1st_homogeneous_coeff_subs_dep_div_indep' and
    '1st_homogeneous_coeff_subs_indep_div_dep'.

    This is as determined by ode_sol_simplicity().

    See the ode_1st_homogeneous_coeff_subs_indep_div_dep() and
    ode_1st_homogeneous_coeff_subs_dep_div_indep() docstrings for more
    information on these hints.  Note that there is no
    '1st_homogeneous_coeff_best_Integral' hint.

    **Example**
    ::
        >>> from sympy import Function, dsolve, pprint
        >>> from sympy.abc import x
        >>> f = Function('f')
        >>> pprint(dsolve(2*x*f(x) + (x**2 + f(x)**2)*f(x).diff(x), f(x),
        ... hint='1st_homogeneous_coeff_best'))
              ___________
             /     2
            /   3*x
           /   ----- + 1 *f(x) = C1
        3 /     2
        \/     f (x)

    **References**
        - http://en.wikipedia.org/wiki/Homogeneous_differential_equation
        - M. Tenenbaum & H. Pollard, "Ordinary Differential Equations",
          Dover 1963, pp. 59

        # indirect doctest

    """
    # There are two substitutions that solve the equation, u1=y/x and u2=x/y
    # They produce different integrals, so try them both and see which
    # one is easier.
    sol1 = ode_1st_homogeneous_coeff_subs_indep_div_dep(eq,
    func, order, match)
    sol2 = ode_1st_homogeneous_coeff_subs_dep_div_indep(eq,
    func, order, match)
    simplify = match.get('simplify', True)
    if simplify:
        sol1 = odesimp(sol1, func, order, "1st_homogeneous_coeff_subs_indep_div_dep")
        sol2 = odesimp(sol2, func, order, "1st_homogeneous_coeff_subs_dep_div_indep")
    return min([sol1, sol2], key=lambda x: ode_sol_simplicity(x, func,
        trysolving=not simplify))

def ode_1st_homogeneous_coeff_subs_dep_div_indep(eq, func, order, match):
    r"""
    Solves a 1st order differential equation with homogeneous coefficients
    using the substitution
    u1 = <dependent variable>/<independent variable>.

    This is a differential equation P(x, y) + Q(x, y)dy/dx = 0, that P
    and Q are homogeneous of the same order.  A function F(x, y) is
    homogeneous of order n if F(xt, yt) = t**n*F(x, y).  Equivalently,
    F(x, y) can be rewritten as G(y/x) or H(x/y).  See also the
    docstring of homogeneous_order().

    If the coefficients P and Q in the  differential equation above are
    homogeneous functions of the same order, then it can be shown that
    the substitution y = u1*x (u1 = y/x) will turn the differential
    equation into an equation separable in the variables x and u.  If
    h(u1) is the function that results from making the substitution
    u1 = f(x)/x on P(x, f(x)) and g(u2) is the function that results
    from the substitution on Q(x, f(x)) in the differential equation
    P(x, f(x)) + Q(x, f(x))*diff(f(x), x) = 0, then the general solution
    is::

        >>> from sympy import Function, dsolve, pprint
        >>> from sympy.abc import x
        >>> f, g, h = map(Function, ['f', 'g', 'h'])
        >>> genform = g(f(x)/x) + h(f(x)/x)*f(x).diff(x)
        >>> pprint(genform)
         /f(x)\    /f(x)\ d
        g|----| + h|----|*--(f(x))
         \ x  /    \ x  / dx
        >>> pprint(dsolve(genform, f(x),
        ... hint='1st_homogeneous_coeff_subs_dep_div_indep_Integral'))
                     f(x)
                     ----
                      x
                       /
                      |
                      |       -h(u1)
        log(C1*x) -   |  ---------------- d(u1) = 0
                      |  u1*h(u1) + g(u1)
                      |
                     /

    Where u1*h(u1) + g(u1) != 0 and x != 0.

    See also the docstrings of ode_1st_homogeneous_coeff_best() and
    ode_1st_homogeneous_coeff_subs_indep_div_dep().

    **Example**
    ::
        >>> from sympy import Function, dsolve
        >>> from sympy.abc import x
        >>> f = Function('f')
        >>> pprint(dsolve(2*x*f(x) + (x**2 + f(x)**2)*f(x).diff(x), f(x),
        ... hint='1st_homogeneous_coeff_subs_dep_div_indep'))
                ________________
               /           3
              /  3*f(x)   f (x)
        x*   /   ------ + -----  = C1
          3 /      x         3
          \/                x

    **References**
        - http://en.wikipedia.org/wiki/Homogeneous_differential_equation
        - M. Tenenbaum & H. Pollard, "Ordinary Differential Equations",
          Dover 1963, pp. 59

        # indirect doctest

    """
    x = func.args[0]
    f = func.func
    u1 = Dummy('u1') # u1 == f(x)/x
    r = match # d+e*diff(f(x),x)
    C1 = Symbol('C1')
    int = C.Integral((-r[r['e']]/(r[r['d']]+u1*r[r['e']])).subs({x:1, r['y']:u1}),
        (u1, None, f(x)/x))
    sol = logcombine(Eq(log(x), int + log(C1)), force=True)
    return sol

def ode_1st_homogeneous_coeff_subs_indep_div_dep(eq, func, order, match):
    r"""
    Solves a 1st order differential equation with homogeneous coefficients
    using the substitution
    u2 = <independent variable>/<dependent variable>.

    This is a differential equation P(x, y) + Q(x, y)dy/dx = 0, that P
    and Q are homogeneous of the same order.  A function F(x, y) is
    homogeneous of order n if F(xt, yt) = t**n*F(x, y).  Equivalently,
    F(x, y) can be rewritten as G(y/x) or H(x/y).  See also the
    docstring of homogeneous_order().

    If the coefficients P and Q in the  differential equation above are
    homogeneous functions of the same order, then it can be shown that
    the substitution x = u2*y (u2 = x/y) will turn the differential
    equation into an equation separable in the variables y and u2.  If
    h(u2) is the function that results from making the substitution
    u2 = x/f(x) on P(x, f(x)) and g(u2) is the function that results
    from the substitution on Q(x, f(x)) in the differential equation
    P(x, f(x)) + Q(x, f(x))*diff(f(x), x) = 0, then the general solution
    is:

    >>> from sympy import Function, dsolve, pprint
    >>> from sympy.abc import x
    >>> f, g, h = map(Function, ['f', 'g', 'h'])
    >>> genform = g(x/f(x)) + h(x/f(x))*f(x).diff(x)
    >>> pprint(genform)
     / x  \    / x  \ d
    g|----| + h|----|*--(f(x))
     \f(x)/    \f(x)/ dx
    >>> pprint(dsolve(genform, f(x),
    ... hint='1st_homogeneous_coeff_subs_indep_div_dep_Integral'))
                     x
                    ----
                    f(x)
                      /
                     |
                     |        g(u2)
    log(C1*f(x)) -   |  ----------------- d(u2) = 0
                     |  -u2*g(u2) - h(u2)
                     |
                    /

    Where u2*g(u2) + h(u2) != 0 and f(x) != 0.

    See also the docstrings of ode_1st_homogeneous_coeff_best() and
    ode_1st_homogeneous_coeff_subs_dep_div_indep().

    **Example**
        >>> from sympy import Function, pprint
        >>> from sympy.abc import x
        >>> f = Function('f')
        >>> pprint(dsolve(2*x*f(x) + (x**2 + f(x)**2)*f(x).diff(x), f(x),
        ... hint='1st_homogeneous_coeff_subs_indep_div_dep'))
              ___________
             /     2
            /   3*x
           /   ----- + 1 *f(x) = C1
        3 /     2
        \/     f (x)

    **References**
        - http://en.wikipedia.org/wiki/Homogeneous_differential_equation
        - M. Tenenbaum & H. Pollard, "Ordinary Differential Equations",
          Dover 1963, pp. 59

        # indirect doctest

    """
    x = func.args[0]
    f = func.func
    u2 = Dummy('u2') # u2 == x/f(x)
    r = match # d+e*diff(f(x),x)
    C1 = Symbol('C1')
    int = C.Integral(simplify((-r[r['d']]/(r[r['e']]+u2*r[r['d']])).subs({x:u2, r['y']:1})),
        (u2, None, x/f(x)))
    sol = logcombine(Eq(log(f(x)), int + log(C1)), force=True)
    return sol

# XXX: Should this function maybe go somewhere else?
def homogeneous_order(eq, *symbols):
    """
    Returns the order n if g is homogeneous and None if it is not
    homogeneous.

    Determines if a function is homogeneous and if so of what order.
    A function f(x,y,...) is homogeneous of order n if
    f(t*x,t*y,t*...) == t**n*f(x,y,...).

    If the function is of two variables, F(x, y), then f being
    homogeneous of any order is equivalent to being able to rewrite
    F(x, y) as G(x/y) or H(y/x).  This fact is used to solve 1st order
    ordinary differential equations whose coefficients are homogeneous
    of the same order (see the docstrings of
    ode.ode_1st_homogeneous_coeff_subs_indep_div_dep() and
    ode.ode_1st_homogeneous_coeff_subs_indep_div_dep()

    Symbols can be functions, but every argument of the function must be
    a symbol, and the arguments of the function that appear in the
    expression must match those given in the list of symbols.  If a
    declared function appears with different arguments than given in the
    list of symbols, None is returned.

    **Examples**
        >>> from sympy import Function, homogeneous_order, sqrt
        >>> from sympy.abc import x, y
        >>> f = Function('f')
        >>> homogeneous_order(f(x), f(x)) == None
        True
        >>> homogeneous_order(f(x,y), f(y, x), x, y) == None
        True
        >>> homogeneous_order(f(x), f(x), x)
        1
        >>> homogeneous_order(x**2*f(x)/sqrt(x**2+f(x)**2), x, f(x))
        2
        >>> homogeneous_order(x**2+f(x), x, f(x)) == None
        True

    """
    if eq.has(log):
        eq = logcombine(eq, force=True)
    return _homogeneous_order(eq, *symbols)

def _homogeneous_order(eq, *symbols):
    """
    The real work for homogeneous_order.

    This runs as a separate function call so that logcombine doesn't
    endlessly put back together what homogeneous_order is trying to take
    apart.
    """
    if not symbols:
        raise ValueError("homogeneous_order: no symbols were given.")

    n = set()

    # Replace all functions with dummy variables

    for i in symbols:
        if i.is_Function:
            if not all([j in symbols for j in i.args]):
                return None
            else:
                dummyvar = numbered_symbols(prefix='d', cls=Dummy).next()
                eq = eq.subs(i, dummyvar)
                symbols = list(symbols)
                symbols.remove(i)
                symbols.append(dummyvar)
                symbols = tuple(symbols)

    # The following are not supported
    if eq.has(Order, Derivative):
        return None

    # These are all constants
    if type(eq) in (int, float) or eq.is_Number or eq.is_Integer or \
    eq.is_Rational or eq.is_NumberSymbol or eq.is_Float:
        return sympify(0)

    # Break the equation into additive parts
    if eq.is_Add:
        s = set()
        for i in eq.args:
            s.add(_homogeneous_order(i, *symbols))
        if len(s) != 1:
            return None
        else:
            n = s

    if eq.is_Pow:
        if not eq.exp.is_number:
            return None
        o = _homogeneous_order(eq.base, *symbols)
        if o == None:
            return None
        else:
            n.add(sympify(o*eq.exp))

    t = Dummy('t', positive=True) # It is sufficient that t > 0
    r = Wild('r', exclude=[t])
    a = Wild('a', exclude=[t])
    eqs = eq.subs(dict(zip(symbols,(t*i for i in symbols))))

    if eqs.is_Mul:
        if t not in eqs:
            n.add(sympify(0))
        else:
            m = eqs.match(r*t**a)
            if m:
                n.add(sympify(m[a]))
            else:
                s = 0
                for i in eq.args:
                    o = _homogeneous_order(i, *symbols)
                    if o == None:
                        return None
                    else:
                        s += o
                n.add(sympify(s))

    if eq.is_Function:
        if eq.func is log:
            # The only possibility to pull a t out of a function is a power in
            # a logarithm.  This is very likely due to calling of logcombine().
            args = Mul.make_args(eq.args[0])
            if all(i.is_Pow for i in args):
                base = 1
                expos = set()
                for pow in args:
                    if sign(pow.exp).is_negative:
                        s = -1
                    else:
                        s = 1
                    expos.add(s*pow.exp)
                    base *= pow.base**s
                if len(expos) != 1:
                    return None
                else:
                    return _homogeneous_order(expos.pop()*log(base), *symbols)
            else:
                if _homogeneous_order(eq.args[0], *symbols) == 0:
                    return sympify(0)
                else:
                    return None
        else:
            if _homogeneous_order(eq.args[0], *symbols) == 0:
                return sympify(0)
            else:
                return None

    if len(n) != 1 or n == None:
        return None
    else:
        return n.pop()

    return None



def ode_1st_linear(eq, func, order, match):
    r"""
    Solves 1st order linear differential equations.

    These are differential equations of the form dy/dx _ P(x)*y = Q(x).
    These kinds of differential equations can be solved in a general
    way.  The integrating factor exp(Integral(P(x), x)) will turn the
    equation into a separable equation.  The general solution is::

        >>> from sympy import Function, dsolve, Eq, pprint, diff, sin
        >>> from sympy.abc import x
        >>> f, P, Q = map(Function, ['f', 'P', 'Q'])
        >>> genform = Eq(f(x).diff(x) + P(x)*f(x), Q(x))
        >>> pprint(genform)
                    d
        P(x)*f(x) + --(f(x)) = Q(x)
                    dx
        >>> pprint(dsolve(genform, f(x), hint='1st_linear_Integral'))
               /       /                   \
               |      |                    |
               |      |         /          |     /
               |      |        |           |    |
               |      |        | P(x) dx   |  - | P(x) dx
               |      |        |           |    |
               |      |       /            |   /
        f(x) = |C1 +  | Q(x)*e           dx|*e
               |      |                    |
               \     /                     /


    **Example**
        >>> f = Function('f')
        >>> pprint(dsolve(Eq(x*diff(f(x), x) - f(x), x**2*sin(x)),
        ... f(x), '1st_linear'))
        f(x) = x*(C1 - cos(x))

    **References**
        - http://en.wikipedia.org/wiki/Linear_differential_equation#First_order_equation
        - M. Tenenbaum & H. Pollard, "Ordinary Differential Equations",
          Dover 1963, pp. 92

        # indirect doctest

    """
    x = func.args[0]
    f = func.func
    r = match # a*diff(f(x),x) + b*f(x) + c
    C1 = Symbol('C1')
    t = exp(C.Integral(r[r['b']]/r[r['a']], x))
    tt = C.Integral(t*(-r[r['c']]/r[r['a']]), x)
    return Eq(f(x),(tt + C1)/t)

def ode_Bernoulli(eq, func, order, match):
    r"""
    Solves Bernoulli differential equations.

    These are equations of the form dy/dx + P(x)*y = Q(x)*y**n, n != 1.
    The substitution w = 1/y**(1-n) will transform an equation of this
    form into one that is linear (see the docstring of
    ode_1st_linear()).  The general solution is::

        >>> from sympy import Function, dsolve, Eq, pprint
        >>> from sympy.abc import x, n
        >>> f, P, Q = map(Function, ['f', 'P', 'Q'])
        >>> genform = Eq(f(x).diff(x) + P(x)*f(x), Q(x)*f(x)**n)
        >>> pprint(genform)
                    d                n
        P(x)*f(x) + --(f(x)) = Q(x)*f (x)
                    dx
        >>> pprint(dsolve(genform, f(x), hint='Bernoulli_Integral')) #doctest: +SKIP
                                                                                       1
                                                                                      ----
                                                                                     1 - n
               //                /                            \                     \
               ||               |                             |                     |
               ||               |                  /          |             /       |
               ||               |                 |           |            |        |
               ||               |        (1 - n)* | P(x) dx   |  (-1 + n)* | P(x) dx|
               ||               |                 |           |            |        |
               ||               |                /            |           /         |
        f(x) = ||C1 + (-1 + n)* | -Q(x)*e                   dx|*e                   |
               ||               |                             |                     |
               \\               /                            /                     /


    Note that when n = 1, then the equation is separable (see the
    docstring of ode_separable()).

    >>> pprint(dsolve(Eq(f(x).diff(x) + P(x)*f(x), Q(x)*f(x)), f(x),
    ... hint='separable_Integral'))
     f(x)
       /
      |                /
      |  1            |
      |  - dy = C1 +  | (-P(x) + Q(x)) dx
      |  y            |
      |              /
     /


    **Example**
        >>> from sympy import Function, dsolve, Eq, pprint, log
        >>> from sympy.abc import x
        >>> f = Function('f')

        >>> pprint(dsolve(Eq(x*f(x).diff(x) + f(x), log(x)*f(x)**2),
        ... f(x), hint='Bernoulli'))
                        1
        f(x) = -------------------
                 /     log(x)   1\
               x*|C1 + ------ + -|
                 \       x      x/

    **References**
        - http://en.wikipedia.org/wiki/Bernoulli_differential_equation
        - M. Tenenbaum & H. Pollard, "Ordinary Differential Equations",
          Dover 1963, pp. 95

        # indirect doctest

    """
    x = func.args[0]
    f = func.func
    r = match # a*diff(f(x),x) + b*f(x) + c*f(x)**n, n != 1
    C1 = Symbol('C1')
    t = exp((1-r[r['n']])*C.Integral(r[r['b']]/r[r['a']],x))
    tt = (r[r['n']]-1)*C.Integral(t*r[r['c']]/r[r['a']],x)
    return Eq(f(x),((tt + C1)/t)**(1/(1-r[r['n']])))

def ode_Riccati_special_minus2(eq, func, order, match):
    r"""
    The general Riccati equation has the form dy/dx = f(x)*y**2 + g(x)*y + h(x).
    While it does not have a general solution [1], the "special" form,
    dy/dx = a*y**2 - b*x**c, does have solutions in many cases [2]. This routine
    returns a solution for a*dy/dx = b*y**2 + c*y/x + d/x**2 that is obtained by
    using a suitable change of variables to reduce it to the special form and is
    valid when neither a nor b are zero and either c or d is zero.

    >>> from sympy.abc import x, y, a, b, c, d
    >>> from sympy.solvers.ode import dsolve, checkodesol
    >>> from sympy import pprint, Function
    >>> f = Function('f')
    >>> y = f(x)
    >>> genform = a*y.diff(x) - (b*y**2 + c*y/x + d/x**2)
    >>> sol = dsolve(genform, y)
    >>> pprint(sol)
             /                                 /        __________________      \\
            |           __________________    |       /                2        ||
            |          /                2     |     \/  4*b*d - (a + c)  *log(x)||
           -|a + c - \/  4*b*d - (a + c)  *tan|C1 + ----------------------------||
            \                                 \                 2*a             //
    f(x) = -----------------------------------------------------------------------
                                            2*b*x

    >>> checkodesol(genform, y, sol, order=1)[0]
    True

    References:
    [1] http://www.maplesoft.com/support/help/Maple/view.aspx?path=odeadvisor/Riccati
    [2] http://eqworld.ipmnet.ru/en/solutions/ode/ode0106.pdf -
        http://eqworld.ipmnet.ru/en/solutions/ode/ode0123.pdf
    """

    x = func.args[0]
    f = func.func
    r = match # a2*diff(f(x),x) + b2*f(x) + c2*f(x)/x + d2/x**2
    a2, b2, c2, d2 = [r[r[s]] for s in 'a2 b2 c2 d2'.split()]
    C1 = Symbol('C1')
    mu = sqrt(4*d2*b2 - (a2 - c2)**2)
    return Eq(f(x), (a2 - c2 - mu*tan(mu/(2*a2)*log(x)+C1))/(2*b2*x))

def ode_Liouville(eq, func, order, match):
    r"""
    Solves 2nd order Liouville differential equations.

    The general form of a Liouville ODE is
    d^2y/dx^2 + g(y)*(dy/dx)**2 + h(x)*dy/dx.  The general solution is::
        >>> from sympy import Function, dsolve, Eq, pprint, diff
        >>> from sympy.abc import x
        >>> f, g, h = map(Function, ['f', 'g', 'h'])
        >>> genform = Eq(diff(f(x),x,x) + g(f(x))*diff(f(x),x)**2 +
        ... h(x)*diff(f(x),x), 0)
        >>> pprint(genform)
                        2                    2
                d                d          d
        g(f(x))*--(f(x))  + h(x)*--(f(x)) + ---(f(x)) = 0
                dx               dx           2
                                            dx
        >>> pprint(dsolve(genform, f(x), hint='Liouville_Integral'))
                                          f(x)
                  /                     /
                 |                     |
                 |     /               |     /
                 |    |                |    |
                 |  - | h(x) dx        |    | g(y) dy
                 |    |                |    |
                 |   /                 |   /
        C1 + C2* | e            dx +   |  e           dy = 0
                 |                     |
                /                     /

    **Example**
    ::
        >>> from sympy import Function, dsolve, Eq, pprint
        >>> from sympy.abc import x
        >>> f = Function('f')
        >>> pprint(dsolve(diff(f(x), x, x) + diff(f(x), x)**2/f(x) +
        ... diff(f(x), x)/x, f(x), hint='Liouville'))
                   ___   ________________           ___   ________________
        [f(x) = -\/ 2 *\/ C1 + C2*log(x) , f(x) = \/ 2 *\/ C1 + C2*log(x) ]


    **References**
        - Goldstein and Braun, "Advanced Methods for the Solution of
          Differential Equations", pp. 98
        - http://www.maplesoft.com/support/help/Maple/view.aspx?path=odeadvisor/Liouville

        # indirect doctest

    """
    # Liouville ODE f(x).diff(x, 2) + g(f(x))*(f(x).diff(x, 2))**2 + h(x)*f(x).diff(x)
    # See Goldstein and Braun, "Advanced Methods for the Solution of
    # Differential Equations", pg. 98, as well as
    # http://www.maplesoft.com/support/help/view.aspx?path=odeadvisor/Liouville
    x = func.args[0]
    f = func.func
    r = match # f(x).diff(x, 2) + g*f(x).diff(x)**2 + h*f(x).diff(x)
    y = r['y']
    C1 = Symbol('C1')
    C2 = Symbol('C2')
    int = C.Integral(exp(C.Integral(r['g'], y)), (y, None, f(x)))
    sol = Eq(int + C1*C.Integral(exp(-C.Integral(r['h'], x)), x) + C2, 0)
    return sol


def _nth_linear_match(eq, func, order):
    """
    Matches a differential equation to the linear form:

    a_n(x)y^(n) + ... + a_1(x)y' + a_0(x)y + B(x) = 0

    Returns a dict of order:coeff terms, where order is the order of the
    derivative on each term, and coeff is the coefficient of that
    derivative.  The key -1 holds the function B(x). Returns None if
    the ode is not linear.  This function assumes that func has already
    been checked to be good.

    **Examples**
        >>> from sympy import Function, cos, sin
        >>> from sympy.abc import x
        >>> from sympy.solvers.ode import _nth_linear_match
        >>> f = Function('f')
        >>> _nth_linear_match(f(x).diff(x, 3) + 2*f(x).diff(x) +
        ... x*f(x).diff(x, 2) + cos(x)*f(x).diff(x) + x - f(x) -
        ... sin(x), f(x), 3)
        {-1: x - sin(x), 0: -1, 1: cos(x) + 2, 2: x, 3: 1}
        >>> _nth_linear_match(f(x).diff(x, 3) + 2*f(x).diff(x) +
        ... x*f(x).diff(x, 2) + cos(x)*f(x).diff(x) + x - f(x) -
        ... sin(f(x)), f(x), 3) == None
        True

    """
    x = func.args[0]
    one_x = set([x])
    terms = dict([(i, S.Zero) for i in range(-1, order+1)])
    for i in Add.make_args(eq):
        if not i.has(func):
            terms[-1] += i
        else:
            c, f = i.as_independent(func)
            if not ((isinstance(f, Derivative) and set(f.variables) == one_x) or\
                    f == func):
                return None
            else:
                terms[len(f.args[1:])] += c
    return terms

def ode_nth_linear_constant_coeff_homogeneous(eq, func, order, match, returns='sol'):
    """
    Solves an nth order linear homogeneous differential equation with
    constant coefficients.

    This is an equation of the form a_n*f(x)^(n) + a_(n-1)*f(x)^(n-1) +
    ... + a1*f'(x) + a0*f(x) = 0

    These equations can be solved in a general manner, by taking the
    roots of the characteristic equation a_n*m**n + a_(n-1)*m**(n-1) +
    ... + a1*m + a0 = 0.  The solution will then be the sum of
    Cn*x**i*exp(r*x) terms, for each  where Cn is an arbitrary constant,
    r is a root of the characteristic equation and i is is one of each
    from 0 to the multiplicity of the root - 1 (for example, a root 3 of
    multiplicity 2 would create the terms C1*exp(3*x) + C2*x*exp(3*x)).
    The exponential is usually expanded for complex roots using Euler's
    equation exp(I*x) = cos(x) + I*sin(x).  Complex roots always come in
    conjugate pars in polynomials with real coefficients, so the two
    roots will be represented (after simplifying the constants) as
    exp(a*x)*(C1*cos(b*x) + C2*sin(b*x)).

    If SymPy cannot find exact roots to the characteristic equation, a
    RootOf instance will be return in its stead.

    >>> from sympy import Function, dsolve, Eq
    >>> from sympy.abc import x
    >>> f = Function('f')
    >>> dsolve(f(x).diff(x, 5) + 10*f(x).diff(x) - 2*f(x), f(x),
    ... hint='nth_linear_constant_coeff_homogeneous')
    ... # doctest: +NORMALIZE_WHITESPACE
    f(x) == C1*exp(x*RootOf(_x**5 + 10*_x - 2, 0)) + \
    C2*exp(x*RootOf(_x**5 + 10*_x - 2, 1)) + \
    C3*exp(x*RootOf(_x**5 + 10*_x - 2, 2)) + \
    C4*exp(x*RootOf(_x**5 + 10*_x - 2, 3)) + \
    C5*exp(x*RootOf(_x**5 + 10*_x - 2, 4))

    Note that because this method does not involve integration, there is
    no 'nth_linear_constant_coeff_homogeneous_Integral' hint.

    The following is for internal use:

    - returns = 'sol' returns the solution to the ODE.
    - returns = 'list' returns a list of linearly independent
      solutions, for use with non homogeneous solution methods like
      variation of parameters and undetermined coefficients.  Note that,
      though the solutions should be linearly independent, this function
      does not explicitly check that.  You can do "assert
      simplify(wronskian(sollist)) != 0" to check for linear independence.
      Also, "assert len(sollist) == order" will need to pass.
    - returns = 'both', return a dictionary {'sol':solution to ODE,
      'list': list of linearly independent solutions}.

    **Example**
        >>> from sympy import Function, dsolve, pprint
        >>> from sympy.abc import x
        >>> f = Function('f')
        >>> pprint(dsolve(f(x).diff(x, 4) + 2*f(x).diff(x, 3) -
        ... 2*f(x).diff(x, 2) - 6*f(x).diff(x) + 5*f(x), f(x),
        ... hint='nth_linear_constant_coeff_homogeneous'))
                            x                            -2*x
        f(x) = (C1 + C2*x)*e  + (C3*cos(x) + C4*sin(x))*e


    **References**
        - http://en.wikipedia.org/wiki/Linear_differential_equation
            section: Nonhomogeneous_equation_with_constant_coefficients
        - M. Tenenbaum & H. Pollard, "Ordinary Differential Equations",
          Dover 1963, pp. 211

        # indirect doctest

    """
    x = func.args[0]
    f = func.func
    r = match

    # A generator of constants
    constants = numbered_symbols(prefix='C', cls=Symbol, start=1)

    # First, set up characteristic equation.
    chareq, symbol = S.Zero, Dummy('x')

    for i in r.keys():
        if type(i) == str or i < 0:
            pass
        else:
            chareq += r[i]*symbol**i

    chareq = Poly(chareq, symbol)
    chareqroots = [ RootOf(chareq, k) for k in xrange(chareq.degree()) ]

    # Create a dict root: multiplicity or charroots
    charroots = {}
    for root in chareqroots:
        if root in charroots:
            charroots[root] += 1
        else:
            charroots[root] = 1
    gsol = S(0)
    # We need keep track of terms so we can run collect() at the end.
    # This is necessary for constantsimp to work properly.
    global collectterms
    collectterms = []
    for root, multiplicity in charroots.items():
        for i in range(multiplicity):
            if isinstance(root, RootOf):
                gsol += exp(root*x)*constants.next()
                assert multiplicity == 1
                collectterms = [(0, root, 0)] + collectterms
            else:
                reroot = re(root)
                imroot = im(root)
                gsol += x**i*exp(reroot*x)*(constants.next()*sin(abs(imroot)*x) \
                + constants.next()*cos(imroot*x))
                # This ordering is important
                collectterms = [(i, reroot, imroot)] + collectterms
    if returns == 'sol':
        return Eq(f(x), gsol)
    elif returns in ('list' 'both'):
        # Create a list of (hopefully) linearly independent solutions
        gensols = []
        # Keep track of when to use sin or cos for nonzero imroot
        for i, reroot, imroot in collectterms:
            if imroot == 0:
                gensols.append(x**i*exp(reroot*x))
            else:
                if x**i*exp(reroot*x)*sin(abs(imroot)*x) in gensols:
                    gensols.append(x**i*exp(reroot*x)*cos(imroot*x))
                else:
                    gensols.append(x**i*exp(reroot*x)*sin(abs(imroot)*x))
        if returns == 'list':
            return gensols
        else:
            return {'sol':Eq(f(x), gsol), 'list':gensols}
    else:
        raise ValueError('Unknown value for key "returns".')

def ode_nth_linear_constant_coeff_undetermined_coefficients(eq, func, order, match):
    r"""
    Solves an nth order linear differential equation with constant
    coefficients using the method of undetermined coefficients.

    This method works on differential equations of the form a_n*f(x)^(n)
    + a_(n-1)*f(x)^(n-1) + ... + a1*f'(x) + a0*f(x) = P(x), where P(x)
    is a function that has a finite number of linearly independent
    derivatives.

    Functions that fit this requirement are finite sums functions of the
    form a*x**i*exp(b*x)*sin(c*x + d) or a*x**i*exp(b*x)*cos(c*x + d),
    where i is a non-negative integer and a, b, c, and d are constants.
    For example any polynomial in x, functions like x**2*exp(2*x),
    x*sin(x), and exp(x)*cos(x) can all be used.  Products of sin's and
    cos's have a finite number of derivatives, because they can be
    expanded into sin(a*x) and cos(b*x) terms.  However, SymPy currently
    cannot do that expansion, so you will need to manually rewrite the
    expression in terms of the above to use this method.  So, for example,
    you will need to manually convert sin(x)**2 into (1 + cos(2*x))/2 to
    properly apply the method of undetermined coefficients on it.

    This method works by creating a trial function from the expression
    and all of its linear independent derivatives and substituting them
    into the original ODE.  The coefficients for each term will be a
    system of linear equations, which are be solved for and substituted,
    giving the solution.  If any of the trial functions are linearly
    dependent on the solution to the homogeneous equation, they are
    multiplied by sufficient x to make them linearly independent.

    **Example**
        >>> from sympy import Function, dsolve, pprint, exp, cos
        >>> from sympy.abc import x
        >>> f = Function('f')
        >>> pprint(dsolve(f(x).diff(x, 2) + 2*f(x).diff(x) + f(x) -
        ... 4*exp(-x)*x**2 + cos(2*x), f(x),
        ... hint='nth_linear_constant_coeff_undetermined_coefficients'))
               /             4\
               |            x |  -x   4*sin(2*x)   3*cos(2*x)
        f(x) = |C1 + C2*x + --|*e   - ---------- + ----------
               \            3 /           25           25

    **References**
        - http://en.wikipedia.org/wiki/Method_of_undetermined_coefficients
        - M. Tenenbaum & H. Pollard, "Ordinary Differential Equations",
          Dover 1963, pp. 221

        # indirect doctest

    """
    gensol = ode_nth_linear_constant_coeff_homogeneous(eq, func, order, match,
        returns='both')
    match.update(gensol)
    return _solve_undetermined_coefficients(eq, func, order, match)

def _solve_undetermined_coefficients(eq, func, order, match):
    """
    Helper function for the method of undetermined coefficients.

    See the ode_nth_linear_constant_coeff_undetermined_coefficients()
    docstring for more information on this method.

    match should be a dictionary that has the following keys:
    'list' - A list of solutions to the homogeneous equation, such as
         the list returned by
         ode_nth_linear_constant_coeff_homogeneous(returns='list')
    'sol' - The general solution, such as the solution returned by
        ode_nth_linear_constant_coeff_homogeneous(returns='sol')
    'trialset' - The set of trial functions as returned by
        _undetermined_coefficients_match()['trialset']

    """
    x = func.args[0]
    f = func.func
    r = match
    coeffs = numbered_symbols('a', cls=Dummy)
    coefflist = []
    gensols = r['list']
    gsol = r['sol']
    trialset = r['trialset']
    notneedset = set([])
    newtrialset = set([])
    global collectterms
    if len(gensols) != order:
        raise NotImplementedError("Cannot find " + str(order) + \
        " solutions to the homogeneous equation nessesary to apply " + \
        "undetermined coefficients to " + str(eq) + " (number of terms != order)")
    usedsin = set([])
    mult = 0 # The multiplicity of the root
    getmult = True
    for i, reroot, imroot in collectterms:
        if getmult:
            mult = i + 1
            getmult = False
        if i == 0:
            getmult = True
        if imroot:
            # Alternate between sin and cos
            if (i, reroot) in usedsin:
                check = x**i*exp(reroot*x)*cos(imroot*x)
            else:
                check = x**i*exp(reroot*x)*sin(abs(imroot)*x)
                usedsin.add((i, reroot))
        else:
            check = x**i*exp(reroot*x)

        if check in trialset:
            # If an element of the trial function is already part of the homogeneous
            # solution, we need to multiply by sufficient x to make it linearly
            # independent.  We also don't need to bother checking for the coefficients
            # on those elements, since we already know it will be 0.
            while True:
                if check*x**mult in trialset:
                    mult += 1
                else:
                    break
            trialset.add(check*x**mult)
            notneedset.add(check)

    newtrialset = trialset - notneedset

    trialfunc = 0
    for i in newtrialset:
        c = coeffs.next()
        coefflist.append(c)
        trialfunc += c*i

    eqs = sub_func_doit(eq, f(x), trialfunc)

    coeffsdict = dict(zip(trialset, [0]*(len(trialset) + 1)))

    eqs = expand_mul(eqs)

    for i in Add.make_args(eqs):
        s = separatevars(i, dict=True, symbols=[x])
        coeffsdict[s[x]] += s['coeff']

    coeffvals = solve(coeffsdict.values(), coefflist)

    if not coeffvals:
        raise NotImplementedError("Could not solve " + str(eq) + " using the " + \
            " method of undetermined coefficients (unable to solve for coefficients).")

    psol = trialfunc.subs(coeffvals)

    return Eq(f(x), gsol.rhs + psol)

def _undetermined_coefficients_match(expr, x):
    """
    Returns a trial function match if undetermined coefficients can be
    applied to expr, and None otherwise.

    A trial expression can be found for an expression for use with the
    method of undetermined coefficients if the expression is an
    additive/multiplicative combination of constants, polynomials in x
    (the independent variable of expr), sin(a*x + b), cos(a*x + b), and
    exp(a*x) terms (in other words, it has a finite number of linearly
    independent derivatives).

    Note that you may still need to multiply each term returned here by
    sufficient x to make it linearly independent with the solutions to
    the homogeneous equation.

    This is intended for internal use by undetermined_coefficients
    hints.

    SymPy currently has no way to convert sin(x)**n*cos(y)**m into a sum
    of only sin(a*x) and cos(b*x) terms, so these are not implemented.
    So, for example, you will need to manually convert sin(x)**2 into
    (1 + cos(2*x))/2 to properly apply the method of undetermined
    coefficients on it.

    **Example**
        >>> from sympy import log, exp
        >>> from sympy.solvers.ode import _undetermined_coefficients_match
        >>> from sympy.abc import x
        >>> _undetermined_coefficients_match(9*x*exp(x) + exp(-x), x)
        {'test': True, 'trialset': set([x*exp(x), exp(-x), exp(x)])}
        >>> _undetermined_coefficients_match(log(x), x)
        {'test': False}

    """
    from sympy import S
    a = Wild('a', exclude=[x])
    b = Wild('b', exclude=[x])
    expr = powsimp(expr, combine='exp') # exp(x)*exp(2*x + 1) => exp(3*x + 1)
    retdict = {}
    def _test_term(expr, x):
        """
        Test if expr fits the proper form for undetermined coefficients.
        """
        if expr.is_Add:
            return all([_test_term(i, x) for i in expr.args])
        elif expr.is_Mul:
            if expr.has(sin, cos):
                foundtrig = False
                # Make sure that there is only one trig function in the args.
                # See the docstring.
                for i in expr.args:
                    if i.has(sin, cos):
                        if foundtrig:
                            return False
                        else:
                            foundtrig = True
            return all([_test_term(i, x) for i in expr.args])
        elif expr.is_Function:
            if expr.func in (sin, cos, exp):
                if expr.args[0].match(a*x + b):
                    return True
                else:
                    return False
            else:
                return False
        elif expr.is_Pow and expr.base.is_Symbol and expr.exp.is_Integer and \
            expr.exp >= 0:
            return True
        elif expr.is_Pow and expr.base.is_number:
            if expr.exp.match(a*x + b):
                return True
            else:
                return False
        elif expr.is_Symbol or expr.is_Number:
            return True
        else:
            return False

    def _get_trial_set(expr, x, exprs=set([])):
        """
        Returns a set of trial terms for undetermined coefficients.

        The idea behind undetermined coefficients is that the terms
        expression repeat themselves after a finite number of
        derivatives, except for the coefficients (they are linearly
        dependent).  So if we collect these, we should have the terms of
        our trial function.
        """
        def _remove_coefficient(expr, x):
            """
            Returns the expression without a coefficient.

            Similar to expr.as_independent(x)[1], except it only works
            multiplicatively.
            """
            # I was using the below match, but it doesn't always put all of the
            # coefficient in c.  c.f. 2**x*6*exp(x)*log(2)
            # The below code is probably cleaner anyway.
#            c = Wild('c', exclude=[x])
#            t = Wild('t')
#            r = expr.match(c*t)
            term = S.One
            if expr.is_Mul:
                for i in expr.args:
                    if i.has(x):
                        term *= i
            elif expr.has(x):
                term = expr
            return term

        expr = expand_mul(expr)
        if expr.is_Add:
            for term in expr.args:
                if _remove_coefficient(term, x) in exprs:
                    pass
                else:
                    exprs.add(_remove_coefficient(term, x))
                    exprs = exprs.union(_get_trial_set(term, x, exprs))
        else:
            term = _remove_coefficient(expr, x)
            tmpset = exprs.union(set([term]))
            oldset = set([])
            while tmpset != oldset:
                # If you get stuck in this loop, then _test_term is probably broken
                oldset = tmpset.copy()
                expr = expr.diff(x)
                term = _remove_coefficient(expr, x)
                if term.is_Add:
                    tmpset = tmpset.union(_get_trial_set(term, x, tmpset))
                else:
                    tmpset.add(term)
            exprs = tmpset
        return exprs



    retdict['test'] = _test_term(expr, x)
    if retdict['test']:
        # Try to generate a list of trial solutions that will have the undetermined
        # coefficients.  Note that if any of these are not linearly independent
        # with any of the solutions to the homogeneous equation, then they will
        # need to be multiplied by sufficient x to make them so.  This function
        # DOES NOT do that (it doesn't even look at the homogeneous equation).
        retdict['trialset'] = _get_trial_set(expr, x)

    return retdict

def ode_nth_linear_constant_coeff_variation_of_parameters(eq, func, order, match):
    r"""
    Solves an nth order linear differential equation with constant
    coefficients using the method of undetermined coefficients.

    This method works on any differential equations of the form
    f(x)^(n) + a_(n-1)*f(x)^(n-1) + ... + a1*f'(x) + a0*f(x) = P(x).

    This method works by assuming that the particular solution takes the
    form Sum(c_i(x)*y_i(x), (x, 1, n)), where y_i is the ith solution to
    the homogeneous equation.  The solution is then solved using
    Wronskian's and Cramer's Rule.  The particular solution is given by
    Sum(Integral(W_i(x)/W(x), x)*y_i(x), (x, 1, n)), where W(x) is the
    Wronskian of the fundamental system (the system of n linearly
    independent solutions to the homogeneous equation), and W_i(x) is
    the Wronskian of the fundamental system with the ith column replaced
    with [0, 0, ..., 0, P(x)].

    This method is general enough to solve any nth order inhomogeneous
    linear differential equation with constant coefficients, but
    sometimes SymPy cannot simplify the Wronskian well enough to
    integrate it.  If this method hangs, try using the
    'nth_linear_constant_coeff_variation_of_parameters_Integral' hint
    and simplifying the integrals manually.  Also, prefer using
    'nth_linear_constant_coeff_undetermined_coefficients' when it
    applies, because it doesn't use integration, making it faster and
    more reliable.

    Warning, using simplify=False with
    'nth_linear_constant_coeff_variation_of_parameters' in dsolve()
    may cause it to hang, because it will not attempt to simplify
    the Wronskian before integrating.  It is recommended that you only
    use simplify=False with
    'nth_linear_constant_coeff_variation_of_parameters_Integral' for
    this method, especially if the solution to the homogeneous
    equation has trigonometric functions in it.

    **Example**
        >>> from sympy import Function, dsolve, pprint, exp, log
        >>> from sympy.abc import x
        >>> f = Function('f')
        >>> pprint(dsolve(f(x).diff(x, 3) - 3*f(x).diff(x, 2) +
        ... 3*f(x).diff(x) - f(x) - exp(x)*log(x), f(x),
        ... hint='nth_linear_constant_coeff_variation_of_parameters'))
               /                2    3 /log(x)   11\\  x
        f(x) = |C1 + C2*x + C3*x  + x *|------ - --||*e
               \                       \  6      36//

    **References**
        - http://en.wikipedia.org/wiki/Variation_of_parameters
        - http://planetmath.org/encyclopedia/VariationOfParameters.html
        - M. Tenenbaum & H. Pollard, "Ordinary Differential Equations",
          Dover 1963, pp. 233

        # indirect doctest

    """
    gensol = ode_nth_linear_constant_coeff_homogeneous(eq, func, order, match,
        returns='both')
    match.update(gensol)
    return _solve_variation_of_parameters(eq, func, order, match)

def _solve_variation_of_parameters(eq, func, order, match):
    """
    Helper function for the method of variation of parameters.

    See the ode_nth_linear_constant_coeff_variation_of_parameters()
    docstring for more information on this method.

    match should be a dictionary that has the following keys:
    'list' - A list of solutions to the homogeneous equation, such as
         the list returned by
         ode_nth_linear_constant_coeff_homogeneous(returns='list')
    'sol' - The general solution, such as the solution returned by
        ode_nth_linear_constant_coeff_homogeneous(returns='sol')


    """
    x = func.args[0]
    f = func.func
    r = match
    psol = 0
    gensols = r['list']
    gsol = r['sol']
    wr = wronskian(gensols, x)

    if r.get('simplify', True):
        wr = simplify(wr) # We need much better simplification for some ODEs.
                          # See issue 1563, for example.

        # To reduce commonly occuring sin(x)**2 + cos(x)**2 to 1
        wr = trigsimp(wr, deep=True, recursive=True)
    if not wr:
        # The wronskian will be 0 iff the solutions are not linearly independent.
        raise NotImplementedError("Cannot find " + str(order) + \
        " solutions to the homogeneous equation nessesary to apply " + \
        "variation of parameters to " + str(eq) + " (Wronskian == 0)")
    if len(gensols) != order:
        raise NotImplementedError("Cannot find " + str(order) + \
        " solutions to the homogeneous equation nessesary to apply " + \
        "variation of parameters to " + str(eq) + " (number of terms != order)")
    negoneterm = (-1)**(order)
    for i in gensols:
        psol += negoneterm*C.Integral(wronskian(filter(lambda x: x != i, \
        gensols), x)*r[-1]/wr, x)*i/r[order]
        negoneterm *= -1

    if r.get('simplify', True):
        psol = simplify(psol)
        psol = trigsimp(psol, deep=True)
    return Eq(f(x), gsol.rhs + psol)

def ode_separable(eq, func, order, match):
    r"""
    Solves separable 1st order differential equations.

    This is any differential equation that can be written as
    P(y)*dy/dx = Q(x). The solution can then just be found by
    rearranging terms and integrating:
    Integral(P(y), y) = Integral(Q(x), x). This hint uses separatevars()
    as its back end, so if a separable equation is not caught by this
    solver, it is most likely the fault of that function. separatevars()
    is smart enough to do most expansion and factoring necessary to
    convert a separable equation F(x, y) into the proper form P(x)*Q(y).
    The general solution is::

        >>> from sympy import Function, dsolve, Eq, pprint
        >>> from sympy.abc import x
        >>> a, b, c, d, f = map(Function, ['a', 'b', 'c', 'd', 'f'])
        >>> genform = Eq(a(x)*b(f(x))*f(x).diff(x), c(x)*d(f(x)))
        >>> pprint(genform)
                     d
        a(x)*b(f(x))*--(f(x)) = c(x)*d(f(x))
                     dx
        >>> pprint(dsolve(genform, f(x), hint='separable_Integral'))
             f(x)
           /                  /
          |                  |
          |  b(y)            | c(x)
          |  ---- dy = C1 +  | ---- dx
          |  d(y)            | a(x)
          |                  |
         /                  /

    **Example**
    ::
        >>> from sympy import Function, dsolve, Eq
        >>> from sympy.abc import x
        >>> f = Function('f')
        >>> pprint(dsolve(Eq(f(x)*f(x).diff(x) + x, 3*x*f(x)**2), f(x),
        ... hint='separable'))
           /   2       \         2
        log\3*f (x) - 1/        x
        ---------------- = C1 + --
               6                2


    **Reference**
        - M. Tenenbaum & H. Pollard, "Ordinary Differential Equations",
          Dover 1963, pp. 52

        # indirect doctest

    """
    x = func.args[0]
    f = func.func
    C1 = Symbol('C1')
    r = match # {'m1':m1, 'm2':m2, 'y':y}
    return Eq(C.Integral(r['m2']['coeff']*r['m2'][r['y']]/r['m1'][r['y']],
        (r['y'], None, f(x))), C.Integral(-r['m1']['coeff']*r['m1'][x]/
        r['m2'][x], x)+C1)