/usr/share/pyshared/sympy/solvers/polysys.py is in python-sympy 0.7.1.rc1-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 | """Solvers of systems of polynomial equations. """
from sympy.polys import Poly, groebner, roots
from sympy.polys.polytools import parallel_poly_from_expr
from sympy.polys.polyerrors import ComputationFailed, PolificationFailed
from sympy.utilities import postfixes
from sympy.simplify import rcollect
from sympy.core import S
class SolveFailed(Exception):
"""Raised when solver's conditions weren't met. """
def solve_poly_system(seq, *gens, **args):
"""
Solve a system of polynomial equations.
Example
=======
>>> from sympy import solve_poly_system
>>> from sympy.abc import x, y
>>> solve_poly_system([x*y - 2*y, 2*y**2 - x**2], x, y)
[(0, 0), (2, -2**(1/2)), (2, 2**(1/2))]
"""
try:
polys, opt = parallel_poly_from_expr(seq, *gens, **args)
except PolificationFailed, exc:
raise ComputationFailed('solve_poly_system', len(seq), exc)
if len(polys) == len(opt.gens) == 2:
f, g = polys
a, b = f.degree_list()
c, d = g.degree_list()
if a <= 2 and b <= 2 and c <= 2 and d <= 2:
try:
return solve_biquadratic(f, g, opt)
except SolveFailed:
pass
return solve_generic(polys, opt)
def solve_biquadratic(f, g, opt):
"""Solve a system of two bivariate quadratic polynomial equations. """
G = groebner([f, g])
if len(G) == 1 and G[0].is_ground:
return None
if len(G) != 2:
raise SolveFailed
p, q = G
x, y = opt.gens
p = Poly(p, x, expand=False)
q = q.ltrim(-1)
p_roots = [ rcollect(expr, y) for expr in roots(p).keys() ]
q_roots = roots(q).keys()
solutions = []
for q_root in q_roots:
for p_root in p_roots:
solution = (p_root.subs(y, q_root), q_root)
solutions.append(solution)
return sorted(solutions)
def solve_generic(polys, opt):
"""
Solve a generic system of polynomial equations.
Returns all possible solutions over C[x_1, x_2, ..., x_m] of a
set F = { f_1, f_2, ..., f_n } of polynomial equations, using
Groebner basis approach. For now only zero-dimensional systems
are supported, which means F can have at most a finite number
of solutions.
The algorithm works by the fact that, supposing G is the basis
of F with respect to an elimination order (here lexicographic
order is used), G and F generate the same ideal, they have the
same set of solutions. By the elimination property, if G is a
reduced, zero-dimensional Groebner basis, then there exists an
univariate polynomial in G (in its last variable). This can be
solved by computing its roots. Substituting all computed roots
for the last (eliminated) variable in other elements of G, new
polynomial system is generated. Applying the above procedure
recursively, a finite number of solutions can be found.
The ability of finding all solutions by this procedure depends
on the root finding algorithms. If no solutions were found, it
means only that roots() failed, but the system is solvable. To
overcome this difficulty use numerical algorithms instead.
References
==========
.. [Buchberger01] B. Buchberger, Groebner Bases: A Short
Introduction for Systems Theorists, In: R. Moreno-Diaz,
B. Buchberger, J.L. Freire, Proceedings of EUROCAST'01,
February, 2001
.. [Cox97] D. Cox, J. Little, D. O'Shea, Ideals, Varieties
and Algorithms, Springer, Second Edition, 1997, pp. 112
"""
def is_univariate(f):
"""Returns True if 'f' is univariate in its last variable. """
for monom in f.monoms():
if any(m > 0 for m in monom[:-1]):
return False
return True
def subs_root(f, gen, zero):
"""Replace generator with a root so that the result is nice. """
p = f.as_expr({gen: zero})
if f.degree(gen) >= 2:
p = p.expand(deep=False)
return p
def solve_reduced_system(system, gens, entry=False):
"""Recursively solves reduced polynomial systems. """
if len(system) == len(gens) == 1:
zeros = roots(system[0], gens[-1]).keys()
return [ (zero,) for zero in zeros ]
basis = groebner(system, gens, polys=True)
if len(basis) == 1 and basis[0].is_ground:
if not entry:
return []
else:
return None
univariate = filter(is_univariate, basis)
if len(univariate) == 1:
f = univariate.pop()
else:
raise NotImplementedError("only zero-dimensional systems supported (finite number of solutions)")
gens = f.gens
gen = gens[-1]
zeros = roots(f.ltrim(gen)).keys()
if not zeros:
return []
if len(basis) == 1:
return [ (zero,) for zero in zeros ]
solutions = []
for zero in zeros:
new_system = []
new_gens = gens[:-1]
for b in basis[:-1]:
eq = subs_root(b, gen, zero)
if eq is not S.Zero:
new_system.append(eq)
for solution in solve_reduced_system(new_system, new_gens):
solutions.append(solution + (zero,))
return solutions
result = solve_reduced_system(polys, opt.gens, entry=True)
if result is not None:
return sorted(result)
else:
return None
def solve_triangulated(polys, *gens, **args):
"""
Solve a polynomial system using Gianni-Kalkbrenner algorithm.
The algorithm proceeds by computing one Groebner basis in the ground
domain and then by iteratively computing polynomial factorizations in
appropriately constructed algebraic extensions of the ground domain.
Example
=======
>>> from sympy.solvers.polysys import solve_triangulated
>>> from sympy.abc import x, y, z
>>> F = [x**2 + y + z - 1, x + y**2 + z - 1, x + y + z**2 - 1]
>>> solve_triangulated(F, x, y, z)
[(0, 0, 1), (0, 1, 0), (1, 0, 0)]
References
==========
.. [Gianni89] Patrizia Gianni, Teo Mora, Algebraic Solution of System of
Polynomial Equations using Groebner Bases, AAECC-5 on Applied Algebra,
Algebraic Algorithms and Error-Correcting Codes, LNCS 356 247--257, 1989
"""
G = groebner(polys, gens, polys=True)
G = list(reversed(G))
domain = args.get('domain')
if domain is not None:
for i, g in enumerate(G):
G[i] = g.set_domain(domain)
f, G = G[0].ltrim(-1), G[1:]
dom = f.get_domain()
zeros = f.ground_roots()
solutions = set([])
for zero in zeros:
solutions.add(((zero,), dom))
var_seq = reversed(gens[:-1])
vars_seq = postfixes(gens[1:])
for var, vars in zip(var_seq, vars_seq):
_solutions = set([])
for values, dom in solutions:
H, mapping = [], zip(vars, values)
for g in G:
_vars = (var,) + vars
if g.has_only_gens(*_vars) and g.degree(var) != 0:
h = g.ltrim(var).eval(mapping)
if g.degree(var) == h.degree():
H.append(h)
p = min(H, key=lambda h: h.degree())
zeros = p.ground_roots()
for zero in zeros:
if not zero.is_Rational:
dom_zero = dom.algebraic_field(zero)
else:
dom_zero = dom
_solutions.add(((zero,) + values, dom_zero))
solutions = _solutions
solutions = list(solutions)
for i, (solution, _) in enumerate(solutions):
solutions[i] = solution
return sorted(solutions)
|