This file is indexed.

/usr/share/pyshared/sympy/utilities/iterables.py is in python-sympy 0.7.1.rc1-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
from sympy.core import Basic, C
from sympy.core.compatibility import is_sequence, iterable #logically, they belong here

import random

def flatten(iterable, levels=None, cls=None):
    """
    Recursively denest iterable containers.

    >>> from sympy.utilities.iterables import flatten

    >>> flatten([1, 2, 3])
    [1, 2, 3]
    >>> flatten([1, 2, [3]])
    [1, 2, 3]
    >>> flatten([1, [2, 3], [4, 5]])
    [1, 2, 3, 4, 5]
    >>> flatten([1.0, 2, (1, None)])
    [1.0, 2, 1, None]

    If you want to denest only a specified number of levels of
    nested containers, then set ``levels`` flag to the desired
    number of levels::

    >>> ls = [[(-2, -1), (1, 2)], [(0, 0)]]

    >>> flatten(ls, levels=1)
    [(-2, -1), (1, 2), (0, 0)]

    If cls argument is specified, it will only flatten instances of that
    class, for example:

    >>> from sympy.core import Basic
    >>> class MyOp(Basic):
    ...     pass
    ...
    >>> flatten([MyOp(1, MyOp(2, 3))], cls=MyOp)
    [1, 2, 3]

    adapted from http://kogs-www.informatik.uni-hamburg.de/~meine/python_tricks
    """
    if levels is not None:
        if not levels:
            return iterable
        elif levels > 0:
            levels -= 1
        else:
            raise ValueError("expected non-negative number of levels, got %s" % levels)

    if cls is None:
        reducible = lambda x: hasattr(x, "__iter__") and not isinstance(x, basestring)
    else:
        reducible = lambda x: isinstance(x, cls)

    result = []

    for el in iterable:
        if reducible(el):
            if hasattr(el, 'args'):
                el = el.args
            result.extend(flatten(el, levels=levels, cls=cls))
        else:
            result.append(el)

    return result

def group(container, multiple=True):
    """
    Splits a container into a list of lists of equal, adjacent elements.

    >>> from sympy.utilities.iterables import group

    >>> group([1, 1, 1, 2, 2, 3])
    [[1, 1, 1], [2, 2], [3]]

    >>> group([1, 1, 1, 2, 2, 3], multiple=False)
    [(1, 3), (2, 2), (3, 1)]

    """
    if not container:
        return []

    current, groups = [container[0]], []

    for elem in container[1:]:
        if elem == current[-1]:
            current.append(elem)
        else:
            groups.append(current)
            current = [elem]

    groups.append(current)

    if multiple:
        return groups

    for i, current in enumerate(groups):
        groups[i] = (current[0], len(current))

    return groups

def postorder_traversal(node):
    """
    Do a postorder traversal of a tree.

    This generator recursively yields nodes that it has visited in a postorder
    fashion. That is, it descends through the tree depth-first to yield all of
    a node's children's postorder traversal before yielding the node itself.

    Parameters
    ----------
    node : sympy expression
        The expression to traverse.

    Yields
    ------
    subtree : sympy expression
        All of the subtrees in the tree.

    Examples
    --------
    >>> from sympy import symbols
    >>> from sympy.utilities.iterables import postorder_traversal
    >>> from sympy.abc import x, y, z
    >>> set(postorder_traversal((x+y)*z)) == set([z, y, x, x + y, z*(x + y)])
    True

    """
    if isinstance(node, Basic):
        for arg in node.args:
            for subtree in postorder_traversal(arg):
                yield subtree
    elif iterable(node):
        for item in node:
            for subtree in postorder_traversal(item):
                yield subtree
    yield node

class preorder_traversal(object):
    """
    Do a pre-order traversal of a tree.

    This iterator recursively yields nodes that it has visited in a pre-order
    fashion. That is, it yields the current node then descends through the tree
    breadth-first to yield all of a node's children's pre-order traversal.

    Parameters
    ----------
    node : sympy expression
        The expression to traverse.

    Yields
    ------
    subtree : sympy expression
        All of the subtrees in the tree.

    Examples
    --------
    >>> from sympy import symbols
    >>> from sympy.utilities.iterables import preorder_traversal
    >>> from sympy.abc import x, y, z
    >>> set(preorder_traversal((x+y)*z)) == set([z, x + y, z*(x + y), x, y])
    True

    """
    def __init__(self, node):
        self._skip_flag = False
        self._pt = self._preorder_traversal(node)

    def _preorder_traversal(self, node):
        yield node
        if self._skip_flag:
            self._skip_flag = False
            return
        if isinstance(node, Basic):
            for arg in node.args:
                for subtree in self._preorder_traversal(arg):
                    yield subtree
        elif iterable(node):
            for item in node:
                for subtree in self._preorder_traversal(item):
                    yield subtree

    def skip(self):
        """
        Skip yielding current node's (last yielded node's) subtrees.

        Examples
        --------
        >>> from sympy import symbols
        >>> from sympy.utilities.iterables import preorder_traversal
        >>> from sympy.abc import x, y, z
        >>> pt = preorder_traversal((x+y*z)*z)
        >>> for i in pt:
        ...     print i
        ...     if i == x+y*z:
        ...             pt.skip()
        z*(x + y*z)
        z
        x + y*z
        """
        self._skip_flag = True

    def next(self):
        return self._pt.next()

    def __iter__(self):
        return self

def interactive_traversal(expr):
    """Traverse a tree asking a user which branch to choose. """
    from sympy.printing import pprint

    RED, BRED = '\033[0;31m', '\033[1;31m'
    GREEN, BGREEN = '\033[0;32m', '\033[1;32m'
    YELLOW, BYELLOW = '\033[0;33m', '\033[1;33m'
    BLUE, BBLUE = '\033[0;34m', '\033[1;34m'
    MAGENTA, BMAGENTA = '\033[0;35m', '\033[1;35m'
    CYAN, BCYAN = '\033[0;36m', '\033[1;36m'
    END = '\033[0m'

    def cprint(*args):
        print "".join(map(str, args)) + END

    def _interactive_traversal(expr, stage):
        if stage > 0:
            print

        cprint("Current expression (stage ", BYELLOW, stage, END, "):")
        print BCYAN
        pprint(expr)
        print END

        if isinstance(expr, Basic):
            if expr.is_Add:
                args = expr.as_ordered_terms()
            elif expr.is_Mul:
                args = expr.as_ordered_factors()
            else:
                args = expr.args
        elif hasattr(expr, "__iter__"):
            args = list(expr)
        else:
            return expr

        n_args = len(args)

        if not n_args:
            return expr

        for i, arg in enumerate(args):
            cprint(GREEN, "[", BGREEN, i, GREEN, "] ", BLUE, type(arg), END)
            pprint(arg)
            print

        if n_args == 1:
            choices = '0'
        else:
            choices = '0-%d' % (n_args-1)

        try:
            choice = raw_input("Your choice [%s,f,l,r,d,?]: " % choices)
        except EOFError:
            result = expr
            print
        else:
            if choice == '?':
                cprint(RED, "%s - select subexpression with the given index" % choices)
                cprint(RED, "f - select the first subexpression")
                cprint(RED, "l - select the last subexpression")
                cprint(RED, "r - select a random subexpression")
                cprint(RED, "d - done\n")

                result = _interactive_traversal(expr, stage)
            elif choice in ['d', '']:
                result = expr
            elif choice == 'f':
                result = _interactive_traversal(args[0], stage+1)
            elif choice == 'l':
                result = _interactive_traversal(args[-1], stage+1)
            elif choice == 'r':
                result = _interactive_traversal(random.choice(args), stage+1)
            else:
                try:
                    choice = int(choice)
                except ValueError:
                    cprint(BRED, "Choice must be a number in %s range\n" % choices)
                    result = _interactive_traversal(expr, stage)
                else:
                    if choice < 0 or choice >= n_args:
                        cprint(BRED, "Choice must be in %s range\n" % choices)
                        result = _interactive_traversal(expr, stage)
                    else:
                        result = _interactive_traversal(args[choice], stage+1)

        return result

    return _interactive_traversal(expr, 0)

def cartes(*seqs):
    """Return Cartesian product (combinations) of items from iterable
    sequences, seqs, as a generator.

    Examples::
    >>> from sympy import Add, Mul
    >>> from sympy.abc import x, y
    >>> from sympy.utilities.iterables import cartes
    >>> do=list(cartes([Mul, Add], [x, y], [2]))
    >>> for di in do:
    ...     print di[0](*di[1:])
    ...
    2*x
    2*y
    x + 2
    y + 2
    >>>

    >>> list(cartes([1, 2], [3, 4, 5]))
    [[1, 3], [1, 4], [1, 5], [2, 3], [2, 4], [2, 5]]
    """

    if not seqs:
        yield []
    else:
        for item in seqs[0]:
            for subitem in cartes(*seqs[1:]):
                yield [item] + subitem

def variations(seq, n, repetition=False):
    """Returns a generator of the variations (size n) of the list `seq` (size N).
    `repetition` controls whether items in seq can appear more than once;

    Examples:

    variations(seq, n) will return N! / (N - n)! permutations without
    repetition of seq's elements:
        >>> from sympy.utilities.iterables import variations
        >>> list(variations([1, 2], 2))
        [[1, 2], [2, 1]]

    variations(seq, n, True) will return the N**n permutations obtained
    by allowing repetition of elements:
        >>> list(variations([1, 2], 2, repetition=True))
        [[1, 1], [1, 2], [2, 1], [2, 2]]

    If you ask for more items than are in the set you get the empty set unless
    you allow repetitions:
        >>> list(variations([0, 1], 3, repetition=False))
        []
        >>> list(variations([0, 1], 3, repetition=True))[:4]
        [[0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1]]


    Reference:
        http://code.activestate.com/recipes/190465/
    """

    if n == 0:
        yield []
    else:
        if not repetition:
            for i in xrange(len(seq)):
                for cc in variations(seq[:i] + seq[i + 1:], n - 1, False):
                    yield [seq[i]] + cc
        else:
            for i in xrange(len(seq)):
                for cc in variations(seq, n - 1, True):
                    yield [seq[i]] + cc

def subsets(seq, k=None, repetition=False):
    """Generates all k-subsets (combinations) from an n-element set, seq.

       A k-subset of an n-element set is any subset of length exactly k. The
       number of k-subsets of an n-element set is given by binomial(n, k),
       whereas there are 2**n subsets all together. If k is None then all
       2**n subsets will be returned from shortest to longest.

       Examples:
           >>> from sympy.utilities.iterables import subsets

       subsets(seq, k) will return the n!/k!/(n - k)! k-subsets (combinations)
       without repetition, i.e. once an item has been removed, it can no
       longer be "taken":
           >>> list(subsets([1, 2], 2))
           [[1, 2]]
           >>> list(subsets([1, 2]))
           [[], [1], [2], [1, 2]]
           >>> list(subsets([1, 2, 3], 2))
           [[1, 2], [1, 3], [2, 3]]


       subsets(seq, k, repetition=True) will return the (n - 1 + k)!/k!/(n - 1)!
       combinations *with* repetition:
           >>> list(subsets([1, 2], 2, repetition=True))
           [[1, 1], [1, 2], [2, 2]]

       If you ask for more items than are in the set you get the empty set unless
       you allow repetitions:
           >>> list(subsets([0, 1], 3, repetition=False))
           []
           >>> list(subsets([0, 1], 3, repetition=True))
           [[0, 0, 0], [0, 0, 1], [0, 1, 1], [1, 1, 1]]
       """

    if type(seq) is not list:
        seq = list(seq)
    if k == 0:
        yield []
    elif k is None:
        yield []
        for k in range(1, len(seq) + 1):
            for s in subsets(seq, k, repetition=repetition):
                yield list(s)
    else:
        if not repetition:
            for i in xrange(len(seq)):
                for cc in subsets(seq[i + 1:], k - 1, False):
                    yield [seq[i]] + cc
        else:
            nmax = len(seq) - 1
            indices = [0] * k
            yield seq[:1] * k
            while 1:
                indices[-1] += 1
                if indices[-1] > nmax:
                    #find first digit that can be incremented
                    for j in range(-2, -k - 1, -1):
                        if indices[j] < nmax:
                            indices[j:] = [indices[j] + 1] * -j
                            break # increment and copy to the right
                    else:
                        break # we didn't for-break so we are done
                yield [seq[li] for li in indices]

def numbered_symbols(prefix='x', cls=None, start=0, *args, **assumptions):
    """
    Generate an infinite stream of Symbols consisting of a prefix and
    increasing subscripts.

    Parameters
    ----------
    prefix : str, optional
        The prefix to use. By default, this function will generate symbols of
        the form "x0", "x1", etc.

    cls : class, optional
        The class to use. By default, it uses Symbol, but you can also use Wild.

    start : int, optional
        The start number.  By default, it is 0.

    Yields
    ------
    sym : Symbol
        The subscripted symbols.
    """
    if cls is None:
        if 'dummy' in assumptions and assumptions.pop('dummy'):
            import warnings
            warnings.warn("\nuse cls=Dummy to create dummy symbols",
                          DeprecationWarning)
            cls = C.Dummy
        else:
            cls = C.Symbol

    while True:
        name = '%s%s' % (prefix, start)
        yield cls(name, *args, **assumptions)
        start += 1

def capture(func):
    """Return the printed output of func().

    `func` should be an argumentless function that produces output with
    print statements.

    >>> from sympy.utilities.iterables import capture
    >>> def foo():
    ...     print 'hello world!'
    ...
    >>> 'hello' in capture(foo) # foo, not foo()
    True
    """
    import StringIO
    import sys

    stdout = sys.stdout
    sys.stdout = file = StringIO.StringIO()
    func()
    sys.stdout = stdout
    return file.getvalue()

def sift(expr, keyfunc):
    """Sift the arguments of expr into a dictionary according to keyfunc.

    INPUT: expr may be an expression or iterable; if it is an expr then
    it is converted to a list of expr's args or [expr] if there are no args.

    OUTPUT: each element in expr is stored in a list keyed to the value
    of keyfunc for the element.

    EXAMPLES:

    >>> from sympy.utilities import sift
    >>> from sympy.abc import x, y
    >>> from sympy import sqrt, exp

    >>> sift(range(5), lambda x: x%2)
    {0: [0, 2, 4], 1: [1, 3]}

    It is possible that some keys are not present, in which case you should
    used dict's .get() method:

    >>> sift(x+y, lambda x: x.is_commutative)
    {True: [y, x]}
    >>> _.get(False, [])
    []

    Sometimes you won't know how many keys you will get:
    >>> sift(sqrt(x) + x**2 + exp(x) + (y**x)**2,
    ... lambda x: x.as_base_exp()[0])
    {E: [exp(x)], x: [x**(1/2), x**2], y: [y**(2*x)]}
    >>> _.keys()
    [E, x, y]

    """
    d = {}
    if hasattr(expr, 'args'):
        expr = expr.args or [expr]
    for e in expr:
        d.setdefault(keyfunc(e), []).append(e)
    return d

def take(iter, n):
    """Return ``n`` items from ``iter`` iterator. """
    return [ value for _, value in zip(xrange(n), iter) ]

def dict_merge(*dicts):
    """Merge dictionaries into a single dictionary. """
    merged = {}

    for dict in dicts:
        merged.update(dict)

    return merged

def prefixes(seq):
    """
    Generate all prefixes of a sequence.

    Example
    =======

    >>> from sympy.utilities.iterables import prefixes

    >>> list(prefixes([1,2,3,4]))
    [[1], [1, 2], [1, 2, 3], [1, 2, 3, 4]]

    """
    n = len(seq)

    for i in xrange(n):
        yield seq[:i+1]

def postfixes(seq):
    """
    Generate all postfixes of a sequence.

    Example
    =======

    >>> from sympy.utilities.iterables import postfixes

    >>> list(postfixes([1,2,3,4]))
    [[4], [3, 4], [2, 3, 4], [1, 2, 3, 4]]

    """
    n = len(seq)

    for i in xrange(n):
        yield seq[n-i-1:]

def topological_sort(graph, key=None):
    r"""
    Topological sort of graph's vertices.

    **Parameters**

    ``graph`` : ``tuple[list, list[tuple[T, T]]``
        A tuple consisting of a list of vertices and a list of edges of
        a graph to be sorted topologically.

    ``key`` : ``callable[T]`` (optional)
        Ordering key for vertices on the same level. By default the natural
        (e.g. lexicographic) ordering is used (in this case the base type
        must implement ordering relations).

    **Examples**

    Consider a graph::

        +---+     +---+     +---+
        | 7 |\    | 5 |     | 3 |
        +---+ \   +---+     +---+
          |   _\___/ ____   _/ |
          |  /  \___/    \ /   |
          V  V           V V   |
         +----+         +---+  |
         | 11 |         | 8 |  |
         +----+         +---+  |
          | | \____   ___/ _   |
          | \      \ /    / \  |
          V  \     V V   /  V  V
        +---+ \   +---+ |  +----+
        | 2 |  |  | 9 | |  | 10 |
        +---+  |  +---+ |  +----+
               \________/

    where vertices are integers. This graph can be encoded using
    elementary Python's data structures as follows::

        >>> V = [2, 3, 5, 7, 8, 9, 10, 11]
        >>> E = [(7, 11), (7, 8), (5, 11), (3, 8), (3, 10),
        ...      (11, 2), (11, 9), (11, 10), (8, 9)]

    To compute a topological sort for graph ``(V, E)`` issue::

        >>> from sympy.utilities.iterables import topological_sort

        >>> topological_sort((V, E))
        [3, 5, 7, 8, 11, 2, 9, 10]

    If specific tie breaking approach is needed, use ``key`` parameter::

        >>> topological_sort((V, E), key=lambda v: -v)
        [7, 5, 11, 3, 10, 8, 9, 2]

    Only acyclic graphs can be sorted. If the input graph has a cycle,
    then :py:exc:`ValueError` will be raised::

        >>> topological_sort((V, E + [(10, 7)]))
        Traceback (most recent call last):
        ...
        ValueError: cycle detected

    .. seealso:: http://en.wikipedia.org/wiki/Topological_sorting

    """
    V, E = graph

    L = []
    S = set(V)
    E = list(E)

    for v, u in E:
        S.discard(u)

    if key is None:
        key = lambda value: value

    S = sorted(S, key=key, reverse=True)

    while S:
        node = S.pop()
        L.append(node)

        for u, v in list(E):
            if u == node:
                E.remove((u, v))

                for _u, _v in E:
                    if v == _v:
                        break
                else:
                    kv = key(v)

                    for i, s in enumerate(S):
                        ks = key(s)

                        if kv > ks:
                            S.insert(i, v)
                            break
                    else:
                        S.append(v)

    if E:
        raise ValueError("cycle detected")
    else:
        return L

def rotate_left(x, y):
    """
    Left rotates a list x by the number of steps specified
    in y.

    Examples:
    >>> from sympy.utilities.iterables import rotate_left
    >>> a = [0, 1, 2]
    >>> rotate_left(a, 1)
    [1, 2, 0]
    """
    if len(x) == 0:
        return x
    y = y % len(x)
    return x[y:] + x[:y]

def rotate_right(x, y):
    """
    Left rotates a list x by the number of steps specified
    in y.

    Examples:
    >>> from sympy.utilities.iterables import rotate_right
    >>> a = [0, 1, 2]
    >>> rotate_right(a, 1)
    [2, 0, 1]
    """
    if len(x) == 0:
        return x
    y = len(x) - y % len(x)
    return x[y:] + x[:y]

def multiset_partitions(multiset, m):
    """
    This is the algorithm for generating multiset partitions
    as described by Knuth in TAOCP Vol 4.

    Given a multiset, this algorithm visits all of its
    m-partitions, that is, all partitions having exactly size m
    using auxiliary arrays as described in the book.

    Examples:
    >>> from sympy.utilities.iterables import multiset_partitions
    >>> list(multiset_partitions([1,2,3,4], 2))
    [[[1, 2, 3], [4]], [[1, 3], [2, 4]], [[1], [2, 3, 4]], [[1, 2], \
    [3, 4]], [[1, 2, 4], [3]], [[1, 4], [2, 3]], [[1, 3, 4], [2]]]
    >>> list(multiset_partitions([1,2,3,4], 1))
    [[[1, 2, 3, 4]]]
    >>> list(multiset_partitions([1,2,3,4], 4))
    [[[1], [2], [3], [4]]]
    """
    cache = {}

    def visit(n, a):
        ps = [[] for i in xrange(m)]
        for j in xrange(n):
            ps[a[j + 1]].append(multiset[j])
        canonical = tuple(tuple(j) for j in ps)
        if not canonical in cache:
            cache[canonical] = 1
            return ps

    def f(m_arr, n_arr, sigma, n, a):
        if m_arr <= 2:
            v = visit(n, a)
            if not v is None:
                yield v
        else:
            for v in f(m_arr - 1, n_arr - 1, (m_arr + sigma) % 2, n, a):
                yield v
        if n_arr == m_arr + 1:
            a[m_arr] = m_arr - 1
            v = visit(n, a)
            if not v is None:
                yield v
            while a[n_arr] > 0:
                a[n_arr] = a[n_arr] - 1
                v = visit(n, a)
                if not v is None:
                    yield v
        elif n_arr > m_arr + 1:
            if (m_arr + sigma) % 2 == 1:
                a[n_arr - 1] = m_arr - 1
            else:
                a[m_arr] = m_arr - 1
            func = [f, b][(a[n_arr] + sigma) % 2]
            for v in func(m_arr, n_arr - 1, 0, n, a):
                if v is not None:
                    yield v
            while a[n_arr] > 0:
                a[n_arr] = a[n_arr] - 1
                func = [f, b][(a[n_arr] + sigma) % 2]
                for v in func(m_arr, n_arr - 1, 0, n, a):
                    if v is not None:
                        yield v

    def b(m_arr, n_arr, sigma, n, a):
        if n_arr == m_arr + 1:
            v = visit(n, a)
            if not v is None:
                yield v
            while a[n_arr] < m_arr - 1:
                a[n_arr] = a[n_arr] + 1
                v = visit(n, a)
                if not v is None:
                    yield v
            a[m_arr] = 0
            v = visit(n, a)
            if not v is None:
                yield v
        elif n_arr > m_arr + 1:
            func = [f, b][(a[n_arr] + sigma) % 2]
            for v in func(m_arr, n_arr - 1, 0, n, a):
                if v is not None:
                    yield v
            while a[n_arr] < m_arr - 1:
                a[n_arr] = a[n_arr] + 1
                func = [f, b][(a[n_arr] + sigma) % 2]
                for v in func(m_arr, n_arr - 1, 0, n, a):
                    if v is not None:
                        yield v
            if (m_arr + sigma) % 2 == 1:
                a[n_arr - 1] = 0
            else:
                a[m_arr] = 0
        if m_arr <= 2:
            v = visit(n, a)
            if not v is None:
                yield v
        else:
            for v in b(m_arr - 1, n_arr - 1, (m_arr + sigma) % 2, n, a):
                if v is not None:
                    yield v

    n = len(multiset)
    a = [0] * (n + 1)
    for j in xrange(1, m + 1):
        a[n - m + j] = j - 1
    return f(m, n, 0, n, a)

def partitions(n, m=None, k=None):
    """Generate all partitions of integer n (>= 0).

    'm' limits the number of parts in the partition, e.g. if m=2 then
        partitions will contain no more than 2 numbers, while
    'k' limits the numbers which may appear in the partition, e.g. k=2 will
        return partitions with no element greater than 2.

    Each partition is represented as a dictionary, mapping an integer
    to the number of copies of that integer in the partition.  For example,
    the first partition of 4 returned is {4: 1}: a single 4.

    >>> from sympy.utilities.iterables import partitions

    Maximum key (number in partition) limited with k (in this case, 2):

    >>> for p in partitions(6, k=2):
    ...     print p
    {2: 3}
    {1: 2, 2: 2}
    {1: 4, 2: 1}
    {1: 6}

    Maximum number of parts in partion limited with m (in this case, 2):

    >>> for p in partitions(6, m=2):
    ...     print p
    ...
    {6: 1}
    {1: 1, 5: 1}
    {2: 1, 4: 1}
    {3: 2}

    Note that the _same_ dictionary object is returned each time.
    This is for speed:  generating each partition goes quickly,
    taking constant time independent of n.

    >>> [p for p in partitions(6, k=2)]
    [{1: 6}, {1: 6}, {1: 6}, {1: 6}]

    If you want to build a list of the returned dictionaries then
    make a copy of them:

    >>> [p.copy() for p in partitions(6, k=2)]
    [{2: 3}, {1: 2, 2: 2}, {1: 4, 2: 1}, {1: 6}]

    Reference:
        modified from Tim Peter's version to allow for k and m values:
        code.activestate.com/recipes/218332-generator-for-integer-partitions/
    """

    if n < 0:
        raise ValueError("n must be >= 0")
    m = min(m or n, n)
    if m < 1:
        raise ValueError("maximum numbers in partition, m, must be > 0")
    k = min(k or n, n)
    if k < 1:
        raise ValueError("maximum value in partition, k, must be > 0")

    if m*k < n:
        return

    q, r = divmod(n, k)
    ms = {k: q}
    keys = [k]  # ms.keys(), from largest to smallest
    if r:
        ms[r] = 1
        keys.append(r)
    room = m - q - bool(r)
    yield ms

    while keys != [1]:
        # Reuse any 1's.
        if keys[-1] == 1:
            del keys[-1]
            reuse = ms.pop(1)
            room += reuse
        else:
            reuse = 0

        while 1:
            # Let i be the smallest key larger than 1.  Reuse one
            # instance of i.
            i = keys[-1]
            newcount = ms[i] = ms[i] - 1
            reuse += i
            if newcount == 0:
                del keys[-1], ms[i]
            room += 1


            # Break the remainder into pieces of size i-1.
            i -= 1
            q, r = divmod(reuse, i)
            need = q + bool(r)
            if need > room:
                if not keys:
                    return
                continue

            ms[i] = q
            keys.append(i)
            if r:
                ms[r] = 1
                keys.append(r)
            break
        room -= need
        yield ms

def binary_partitions(n):
    """
    Generates the binary partition of n.

    A binary partition consists only of numbers that are
    powers of two. Each step reduces a 2**(k+1) to 2**k and
    2**k. Thus 16 is converted to 8 and 8.

    Reference: TAOCP 4, section 7.2.1.5, problem 64

    Examples:
    >>> from sympy.utilities.iterables import binary_partitions
    >>> for i in binary_partitions(5):
    ...     print i
    ...
    [4, 1]
    [2, 2, 1]
    [2, 1, 1, 1]
    [1, 1, 1, 1, 1]
    """
    from math import ceil, log
    pow = int(2**(ceil(log(n, 2))))
    sum = 0
    partition = []
    while pow:
        if sum + pow <= n:
            partition.append(pow)
            sum += pow
        pow >>= 1

    last_num = len(partition) - 1 - (n & 1)
    while last_num >= 0:
        yield partition
        if partition[last_num] == 2:
            partition[last_num] = 1
            partition.append(1)
            last_num -= 1
            continue
        partition.append(1)
        partition[last_num] >>= 1
        x = partition[last_num + 1] = partition[last_num]
        last_num += 1
        while x > 1:
            if x <= len(partition) - last_num - 1:
                del partition[-x + 1:]
                last_num += 1
                partition[last_num] = x
            else:
                x >>= 1
    yield [1]*n

def uniq(seq):
    '''
    Remove repeated elements from an iterable, preserving order of first
    appearance.

    Returns a sequence of the same type of the input, or a list if the input
    was not a sequence.

    Examples:
    --------
    >>> from sympy.utilities.iterables import uniq
    >>> uniq([1,4,1,5,4,2,1,2])
    [1, 4, 5, 2]
    >>> uniq((1,4,1,5,4,2,1,2))
    (1, 4, 5, 2)
    >>> uniq(x for x in (1,4,1,5,4,2,1,2))
    [1, 4, 5, 2]

    '''
    from sympy.core.function import Tuple
    seen = set()
    result = (s for s in seq if not (s in seen or seen.add(s)))
    if not hasattr(seq, '__getitem__'):
        return list(result)
    if isinstance(seq, Tuple):
        return Tuple(*tuple(result))
    return type(seq)(result)

def generate_bell(n):
    """
    Generates the bell permutations.

    In a Bell permutation, each cycle is a decreasing
    sequence of integers.

    Reference:
    [1] Generating involutions, derangements, and relatives by ECO
        Vincent Vajnovszki, DMTCS vol 1 issue 12, 2010

    Examples:
    >>> from sympy.utilities.iterables import generate_bell
    >>> list(generate_bell(3))
    [(0, 1, 2), (0, 2, 1), (1, 0, 2), (2, 0, 1), (2, 1, 0)]
    """
    P = [i for i in xrange(n)]
    T = [0]
    cache = set()
    def gen(P, T, t):
        if t == (n - 1):
            cache.add(tuple(P))
        else:
            for i in T:
                P[i], P[t+1] = P[t+1], P[i]
                if tuple(P) not in cache:
                    cache.add(tuple(P))
                    gen(P, T, t + 1)
                P[i], P[t+1] = P[t+1], P[i]
            T.append(t + 1)
            cache.add(tuple(P))
            gen(P, T, t + 1)
            T.remove(t + 1)
    gen(P, T, 0)
    return sorted(cache)

def generate_involutions(n):
    """
    Generates involutions.

    An involution is a permutation that when multiplied
    by itself equals the identity permutation. In this
    implementation the involutions are generated using
    Fixed Points.

    Alternatively, an involution can be considered as
    a permutation that does not contain any cycles with
    a length that is greater than two.

    Reference:
    http://mathworld.wolfram.com/PermutationInvolution.html

    Examples:
    >>> from sympy.utilities.iterables import \
    generate_involutions
    >>> generate_involutions(3)
    [(0, 1, 2), (0, 2, 1), (1, 0, 2), (2, 1, 0)]
    >>> len(generate_involutions(4))
    10
    """
    P = range(n) # the items of the permutation
    F = [0] # the fixed points {is this right??}
    cache = set()
    def gen(P, F, t):
        if t == n:
            cache.add(tuple(P))
        else:
            for j in xrange(len(F)):
                P[j], P[t] = P[t], P[j]
                if tuple(P) not in cache:
                    cache.add(tuple(P))
                    Fj = F.pop(j)
                    gen(P, F, t + 1)
                    F.insert(j, Fj)
                P[j], P[t] = P[t], P[j]
            t += 1
            F.append(t)
            cache.add(tuple(P))
            gen(P, F, t)
            F.pop()
    gen(P, F, 1)
    return sorted(cache)

def generate_derangements(perm):
    """
    Routine to generate derangements.

    TODO: This will be rewritten to use the
    ECO operator approach once the permutations
    branch is in master.

    Examples:
    >>> from sympy.utilities.iterables import generate_derangements
    >>> list(generate_derangements([0,1,2]))
    [[1, 2, 0], [2, 0, 1]]
    >>> list(generate_derangements([0,1,2,3]))
    [[1, 0, 3, 2], [1, 2, 3, 0], [1, 3, 0, 2], [2, 0, 3, 1], \
    [2, 3, 0, 1], [2, 3, 1, 0], [3, 0, 1, 2], [3, 2, 0, 1], \
    [3, 2, 1, 0]]
    >>> list(generate_derangements([0,1,1]))
    []
    """
    indices = range(len(perm))
    p = variations(indices, len(indices))
    for rv in \
            uniq(tuple(perm[i] for i in idx) \
                 for idx in p if all(perm[k] != \
                                     perm[idx[k]] for k in xrange(len(perm)))):
        yield list(rv)

def unrestricted_necklace(n, k):
    """
    A routine to generate unrestriced necklaces.

    Here n is the length of the necklace and k - 1
    is the maximum permissible element in the
    generated necklaces.

    Reference:
    http://mathworld.wolfram.com/Necklace.html

    Examples:
    >>> from sympy.utilities.iterables import unrestricted_necklace
    >>> [i[:] for i in unrestricted_necklace(3, 2)]
    [[0, 0, 0], [0, 1, 1]]
    >>> [i[:] for i in unrestricted_necklace(4, 4)]
    [[0, 0, 0, 0], [0, 0, 1, 0], [0, 0, 2, 0], [0, 0, 3, 0], \
    [0, 1, 1, 1], [0, 1, 2, 1], [0, 1, 3, 1], [0, 2, 2, 2], \
    [0, 2, 3, 2], [0, 3, 3, 3]]
    """
    a = [0] * n
    def gen(t, p):
        if (t > n - 1):
            if (n % p == 0):
                yield a
        else:
            a[t] = a[t - p]
            for necklace in gen(t + 1, p):
                yield necklace
            for j in xrange(a[t - p] + 1, k):
                a[t] = j
                for necklace in gen(t + 1, t):
                    yield necklace
    return gen(1, 1)

def generate_oriented_forest(n):
    """
    This algorithm generates oriented forests.

    An oriented graph is a directed graph having no symmetric pair of directed
    edges. A forest is an acyclic graph, i.e., it has no cycles. A forest can
    also be described as a disjoint union of trees, which are graphs in which
    any two vertices are connected by exactly one simple path.

    Reference:
    [1] T. Beyer and S.M. Hedetniemi: constant time generation of \
        rooted trees, SIAM J. Computing Vol. 9, No. 4, November 1980
    [2] http://stackoverflow.com/questions/1633833/
        oriented-forest-taocp-algorithm-in-python

    Examples:
    >>> from sympy.utilities.iterables import generate_oriented_forest
    >>> list(generate_oriented_forest(4))
    [[0, 1, 2, 3], [0, 1, 2, 2], [0, 1, 2, 1], [0, 1, 2, 0], \
    [0, 1, 1, 1], [0, 1, 1, 0], [0, 1, 0, 1], [0, 1, 0, 0], [0, 0, 0, 0]]
    """
    P = range(-1, n)
    while True:
        yield P[1:]
        if P[n] > 0:
            P[n] = P[P[n]]
        else:
            for p in xrange(n - 1, 0, -1):
                if P[p] != 0:
                    target = P[p] - 1
                    for q in xrange(p - 1, 0, -1):
                        if P[q] == target:
                            break
                    offset = p - q
                    for i in xrange(p, n + 1):
                        P[i] = P[i - offset]
                    break
            else:
                break