/usr/share/pyshared/webhelpers/containers.py is in python-webhelpers 1.3-4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 | """Container objects, and helpers for lists and dicts.
This would have been called this "collections" except that Python 2 can't
import a top-level module that's the same name as a module in the current
package.
"""
import sys
from webhelpers.misc import NotGiven
try:
from collections import defaultdict
except ImportError: # Python < 2.5
class defaultdict(dict):
"""Backport of Python 2.5's ``defaultdict``.
From the Python Cookbook. Written by Jason Kirtland.
http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/523034
"""
def __init__(self, default_factory=None, *a, **kw):
if (default_factory is not None and
not hasattr(default_factory, '__call__')):
raise TypeError('first argument must be callable')
dict.__init__(self, *a, **kw)
self.default_factory = default_factory
def __getitem__(self, key):
try:
return dict.__getitem__(self, key)
except KeyError:
return self.__missing__(key)
def __missing__(self, key):
if self.default_factory is None:
raise KeyError(key)
self[key] = value = self.default_factory()
return value
def __reduce__(self):
if self.default_factory is None:
args = tuple()
else:
args = self.default_factory,
return type(self), args, None, None, self.items()
def copy(self):
return self.__copy__()
def __copy__(self):
return type(self)(self.default_factory, self)
def __deepcopy__(self, memo):
import copy
return type(self)(self.default_factory,
copy.deepcopy(self.items()))
def __repr__(self):
return 'defaultdict(%s, %s)' % (self.default_factory,
dict.__repr__(self))
class DumbObject(object):
"""A container for arbitrary attributes.
Usage::
>>> do = DumbObject(a=1, b=2)
>>> do.b
2
Alternatives to this class include ``collections.namedtuple`` in Python
2.6, and ``formencode.declarative.Declarative`` in Ian Bicking's FormEncode
package. Both alternatives offer more features, but ``DumbObject``
shines in its simplicity and lack of dependencies.
"""
def __init__(self, **kw):
self.__dict__.update(kw)
class Counter(object):
"""I count the number of occurrences of each value registered with me.
Call the instance to register a value. The result is available as the
``.result`` attribute. Example::
>>> counter = Counter()
>>> counter("foo")
>>> counter("bar")
>>> counter("foo")
>>> sorted(counter.result.items())
[('bar', 1), ('foo', 2)]
>> counter.result
{'foo': 2, 'bar': 1}
To see the most frequently-occurring items in order::
>>> counter.get_popular(1)
[(2, 'foo')]
>>> counter.get_popular()
[(2, 'foo'), (1, 'bar')]
Or if you prefer the list in item order::
>>> counter.get_sorted_items()
[('bar', 1), ('foo', 2)]
"""
def __init__(self):
self.result = defaultdict(int)
self.total = 0 # Number of times instance has been called.
def __call__(self, item):
"""Register an item with the counter."""
self.result[item] += 1
self.total += 1
def get_popular(self, max_items=None):
"""Return the results as as a list of ``(count, item)`` pairs, with the
most frequently occurring items first.
If ``max_items`` is provided, return no more than that many items.
"""
data = [(x[1], x[0]) for x in self.result.iteritems()]
data.sort(key=lambda x: (sys.maxint - x[0], x[1]))
if max_items:
return data[:max_items]
else:
return data
def get_sorted_items(self):
"""Return the result as a list of ``(item, count)`` pairs sorted by item.
"""
data = self.result.items()
data.sort()
return data
def correlate(class_, iterable):
"""Build a Counter from an iterable in one step.
This is the same as adding each item individually.
::
>>> counter = Counter.correlate(["A", "B", "A"])
>>> counter.result["A"]
2
>>> counter.result["B"]
1
"""
counter = class_()
for elm in iterable:
counter(elm)
return counter
correlate = classmethod(correlate)
class Accumulator(object):
"""Accumulate a dict of all values for each key.
Call the instance to register a value. The result is available as the
``.result`` attribute. Example::
>>> bowling_scores = Accumulator()
>>> bowling_scores("Fred", 0)
>>> bowling_scores("Barney", 10)
>>> bowling_scores("Fred", 1)
>>> bowling_scores("Barney", 9)
>>> sorted(bowling_scores.result.items())
[('Barney', [10, 9]), ('Fred', [0, 1])]
>> bowling_scores.result
{'Fred': [0, 1], 'Barney': [10, 9]}
The values are stored in the order they're registered.
Alternatives to this class include ``paste.util. multidict.MultiDict``
in Ian Bicking's Paste package.
"""
def __init__(self):
self.result = defaultdict(list)
def __call__(self, key, value):
"""Register a key-value pair."""
self.result[key].append(value)
def correlate(class_, iterable, key):
"""Create an Accumulator based on several related values.
``key`` is a function to calculate the key for each item, akin to
``list.sort(key=)``.
This is the same as adding each item individually.
"""
accumulator = class_()
for v in iterable:
k = key(v)
accumulator(k, v)
return accumulator
correlate = classmethod(correlate)
class UniqueAccumulator(object):
"""Accumulate a dict of unique values for each key.
The values are stored in an unordered set.
Call the instance to register a value. The result is available as the
``.result`` attribute.
"""
def __init__(self):
self.result = defaultdict(set)
def __call__(self, key, value):
"""Register a key-value pair."""
self.result[key].add(value)
def unique(it):
"""Return a list of unique elements in the iterable, preserving the order.
Usage::
>>> unique([None, "spam", 2, "spam", "A", "spam", "spam", "eggs", "spam"])
[None, 'spam', 2, 'A', 'eggs']
"""
seen = set()
ret = []
for elm in it:
if elm not in seen:
ret.append(elm)
seen.add(elm)
return ret
def only_some_keys(dic, keys):
"""Return a copy of the dict with only the specified keys present.
``dic`` may be any mapping. The return value is always a Python dict.
::
>> only_some_keys({"A": 1, "B": 2, "C": 3}, ["A", "C"])
>>> sorted(only_some_keys({"A": 1, "B": 2, "C": 3}, ["A", "C"]).items())
[('A', 1), ('C', 3)]
"""
ret = {}
for key in keys:
ret[key] = dic[key] # Raises KeyError.
return ret
def except_keys(dic, keys):
"""Return a copy of the dict without the specified keys.
::
>>> except_keys({"A": 1, "B": 2, "C": 3}, ["A", "C"])
{'B': 2}
"""
ret = dic.copy()
for key in keys:
try:
del ret[key]
except KeyError:
pass
return ret
def extract_keys(dic, keys):
"""Return two copies of the dict. The first has only the keys specified.
The second has all the *other* keys from the original dict.
::
>> extract_keys({"From": "F", "To": "T", "Received", R"}, ["To", "From"])
({"From": "F", "To": "T"}, {"Received": "R"})
>>> regular, extra = extract_keys({"From": "F", "To": "T", "Received": "R"}, ["To", "From"])
>>> sorted(regular.keys())
['From', 'To']
>>> sorted(extra.keys())
['Received']
"""
for k in keys:
if k not in dic:
raise KeyError("key %r is not in original mapping" % k)
r1 = {}
r2 = {}
for k, v in dic.items():
if k in keys:
r1[k] = v
else:
r2[k] = v
return r1, r2
def ordered_items(dic, key_order, other_keys=True, default=NotGiven):
"""Like ``dict.iteritems()`` but with a specified key order.
Arguments:
* ``dic`` is any mapping.
* ``key_order`` is a list of keys. Items will be yielded in this order.
* ``other_keys`` is a boolean.
* ``default`` is a value returned if the key is not in the dict.
This yields the items listed in ``key_order``. If a key does not exist
in the dict, yield the default value if specified, otherwise skip the
missing key. Afterwards, if ``other_keys`` is true, yield the remaining
items in an arbitrary order.
Usage::
>>> dic = {"To": "you", "From": "me", "Date": "2008/1/4", "Subject": "X"}
>>> dic["received"] = "..."
>>> order = ["From", "To", "Subject"]
>>> list(ordered_items(dic, order, False))
[('From', 'me'), ('To', 'you'), ('Subject', 'X')]
"""
d = dict(dic)
for key in key_order:
if key in d:
yield key, d.pop(key)
elif default is not NotGiven:
yield key, default
if other_keys:
for key, value in d.iteritems():
yield key, value
def get_many(d, required=None, optional=None, one_of=None):
"""Extract values from a dict for unpacking into simple variables.
``d`` is a dict.
``required`` is a list of keys that must be in the dict. The corresponding
values will be the first elements in the return list. Raise KeyError if any
of the keys are missing.
``optional`` is a list of optional keys. The corresponding values will be
appended to the return list, substituting None for missing keys.
``one_of`` is a list of alternative keys. Take the first key that exists
and append its value to the list. Raise KeyError if none of the keys exist.
This argument will append exactly one value if specified, or will do
nothing if not specified.
Example::
uid, action, limit, offset = get_many(request.params,
required=['uid', 'action'], optional=['limit', 'offset'])
Contributed by Shazow.
"""
r = []
if required:
for k in required:
r.append(d[k])
if optional:
for k in optional:
r.append(d.get(k))
if one_of:
for k in one_of:
if k in d:
r.append(d[k])
break
else:
raise KeyError("none of these keys found: %s" % one_of)
return r
def del_quiet(dic, keys):
"""Delete several keys from a dict, ignoring those that don't exist.
This modifies the dict in place.
::
>>> d ={"A": 1, "B": 2, "C": 3}
>>> del_quiet(d, ["A", "C"])
>>> d
{'B': 2}
"""
for key in keys:
try:
del dic[key]
except KeyError:
pass
def correlate_dicts(dicts, key):
"""Correlate several dicts under one superdict.
If you have several dicts each with a 'name' key, this
puts them in a container dict keyed by name.
::
>>> d1 = {"name": "Fred", "age": 41}
>>> d2 = {"name": "Barney", "age": 31}
>>> flintstones = correlate_dicts([d1, d2], "name")
>>> sorted(flintstones.keys())
['Barney', 'Fred']
>>> flintstones["Fred"]["age"]
41
If you're having trouble spelling this method correctly, remember:
"relate" has one 'l'. The 'r' is doubled because it occurs after a prefix.
Thus "correlate".
"""
ret = {}
i = 0
for d in dicts:
try:
my_key = d[key]
except KeyError:
msg = "'dicts' element %d contains no key '%s'"
tup = i, key
raise KeyError(msg % tup)
ret[my_key] = d
i += 1
return ret
def correlate_objects(objects, attr):
"""Correlate several objects under one dict.
If you have several objects each with a 'name' attribute, this
puts them in a dict keyed by name.
::
>>> class Flintstone(DumbObject):
... pass
...
>>> fred = Flintstone(name="Fred", age=41)
>>> barney = Flintstone(name="Barney", age=31)
>>> flintstones = correlate_objects([fred, barney], "name")
>>> sorted(flintstones.keys())
['Barney', 'Fred']
>>> flintstones["Barney"].age
31
If you're having trouble spelling this method correctly, remember:
"relate" has one 'l'. The 'r' is doubled because it occurs after a prefix.
Thus "correlate".
"""
ret = {}
i = 0
for obj in objects:
try:
my_key = getattr(obj, attr)
except AttributeError:
msg = "'%s' object at 'objects[%d]' contains no attribute '%s'"
tup = type(obj).__name__, i, attr
raise AttributeError(msg % tup)
ret[my_key] = obj
i += 1
return ret
def distribute(lis, columns, direction, fill=None):
"""Distribute a list into a N-column table (list of lists).
``lis`` is a list of values to distribute.
``columns`` is an int greater than 1, specifying the number of columns in
the table.
``direction`` is a string beginning with "H" (horizontal) or "V"
(vertical), case insensitive. This affects how values are distributed in
the table, as described below.
``fill`` is a value that will be placed in any remaining cells if the data
runs out before the last row or column is completed. This must be an
immutable value such as ``None`` , ``""``, 0, " ", etc. If you
use a mutable value like ``[]`` and later change any cell containing the
fill value, all other cells containing the fill value will also be changed.
The return value is a list of lists, where each sublist represents a row in
the table.
``table[0]`` is the first row.
``table[0][0]`` is the first column in the first row.
``table[0][1]`` is the second column in the first row.
This can be displayed in an HTML table via the following Mako template:
.. code-block:: html+mako
<table>
% for row in table:
<tr>
% for cell in row:
<td>${cell}</td>
% endfor cell
</tr>
% endfor row
</table>
In a horizontal table, each row is filled before going on to the next row.
This is the same as dividing the list into chunks::
>>> distribute([1, 2, 3, 4, 5, 6, 7, 8], 3, "H")
[[1, 2, 3], [4, 5, 6], [7, 8, None]]
In a vertical table, the first element of each sublist is filled before
going on to the second element. This is useful for displaying an
alphabetical list in columns, or when the entire column will be placed in
a single <td> with a <br /> between each element::
>>> food = ["apple", "banana", "carrot", "daikon", "egg", "fish", "gelato", "honey"]
>>> table = distribute(food, 3, "V", "")
>>> table
[['apple', 'daikon', 'gelato'], ['banana', 'egg', 'honey'], ['carrot', 'fish', '']]
>>> for row in table:
... for item in row:
... print "%-9s" % item,
... print "." # To show where the line ends.
...
apple daikon gelato .
banana egg honey .
carrot fish .
Alternatives to this function include a NumPy matrix of objects.
"""
if columns < 1:
raise ValueError("arg 'columns' must be >= 1")
dir = direction[0].upper()
if dir == "H": # Horizontal table (row-wise)
table = []
for i in range(0, len(lis), columns):
row = lis[i:i+columns]
row_len = len(row)
if row_len < columns:
extra = [fill] * (columns - row_len)
row.extend(extra)
table.append(row)
return table
elif dir == "V": # Vertical table (column-wise)
total = len(lis)
rows, remainder = divmod(total, columns)
if remainder:
rows += 1
table = [[fill] * columns for x in range(rows)]
#print table
for i, elm in enumerate(lis):
col, row = divmod(i, rows)
#print "i=%d, row=%d, col=%d, element=%r" % (i, row, col, elm)
table[row][col] = elm
return table
else:
raise ValueError("arg ``direction`` must start with 'H' or 'V'")
def transpose(array):
"""Turn a list of lists sideways, making columns into rows and vice-versa.
``array`` must be rectangular; i.e., all elements must be the same
length. Otherwise the behavior is undefined: you may get ``IndexError``
or missing items.
Examples::
>>> transpose([["A", "B", "C"], ["D", "E", "F"]])
[['A', 'D'], ['B', 'E'], ['C', 'F']]
>>> transpose([["A", "B"], ["C", "D"], ["E", "F"]])
[['A', 'C', 'E'], ['B', 'D', 'F']]
>>> transpose([])
[]
Here's a pictoral view of the first example::
A B C => A D
D E F B E
C F
This can be used to turn an HTML table into a group of div columns. An HTML
table is row major: it consists of several <tr> rows, each containing
several <td> cells. But a <div> layout consists of only one row, each
containing an entire subarray. The <div>s have style "float:left", which
makes them appear horizontally. The items within each <div> are placed in
their own <div>'s or separated by <br />, which makes them appear
vertically. The point is that an HTML table is row major (``array[0]`` is
the first row), while a group of div columns is column major (``array[0]``
is the first column). ``transpose()`` can be used to switch between the
two.
"""
if not array:
return []
ret = []
for c in range(len(array[0])):
col = [row[c] for row in array]
ret.append(col)
return ret
if __name__ == "__main__":
import doctest
doctest.testmod()
|