This file is indexed.

/usr/share/xcrysden/Tcl/kLabels.tcl is in xcrysden-data 1.5.53-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
#############################################################################
# Author:                                                                   #
# ------                                                                    #
#  Anton Kokalj                                  Email: Tone.Kokalj@ijs.si  #
#  Department of Physical and Organic Chemistry  Phone: x 386 1 477 3523    #
#  Jozef Stefan Institute                          Fax: x 386 1 477 3811    #
#  Jamova 39, SI-1000 Ljubljana                                             #
#  SLOVENIA                                                                 #
#                                                                           #
# Source: $XCRYSDEN_TOPDIR/Tcl/kLabels.tcl                                  #     
# ------                                                                    #
# Copyright (c) 2005 by Anton Kokalj                                        #
#                                                                           #
# The labelling of k-labels is based on the idea and lookup table of Peter Blaha.
# --------------------------------------------------------------------------
# Peter BLAHA, Inst.f.Techn.Elektrochemie, TU Vienna, A-1060 Vienna
# Phone: +43-1-58801-5187             FAX: +43-1-5868937
# Email: pblaha@email.tuwien.ac.at    WWW: http://www.tuwien.ac.at/theochem/
# --------------------------------------------------------------------------
#############################################################################


#
# This proc determines the Bravais lattice type on the basis of XSF's
# igroup and primitive and convetional lattice vectors. The following
# lattices are currently supported for k-point labelling:
# 
# P-cubic, F-cubic, I-cubic
# hexagonal
# P-tetragonal, I-tetragonal
# P-orthorhombic
# 
# The proc returns one among above string or the "not-supported" string.
#
proc igroup2BravaisLattice {igroup} {
    global kLabels
  
    # dummy defs, so that these vars exists
    set vec(0,0)   0.0
    set vec_len(0) 0.0
    set dot(0,0)   0.0    
    
    switch -- $igroup {
	1 {
	    # P-lattice, possibilities: cubic, tetragonal, orthorhombic
	    getLatticeVec_ primvec vec vec_len dot

	    # check if lattice is orthogonal
	    if { [IsEqual 1e-6 0.0 $dot(0,1) $dot(0,2) $dot(1,2)] } {

		# check the lengths of lattice vectors
		if { [IsEqual 1e-6 $vec_len(0) $vec_len(1) $vec_len(2)] } {
		    set lattice "P-cubic"
		} elseif { [IsEqual 1e-6 $vec_len(0) $vec_len(1)] } {
		    set lattice "P-tetragonal"
		} else {
		    set lattice "not-supported"
		}
	    } else {
		set lattice "not-supported"
	    }
	}
	2 { set lattice "not-supported" }
	3 { set lattice "not-supported" }
	4 { set lattice "not-supported" }
	5 { set lattice "F-cubic" }
	6 {
	    # I-lattice, possibilities: cubic, tetragonal
	    # made a similar check as for P-lattice, but with conventional vectors 
	    getLatticeVec_ convvec vec vec_len dot

	    # check if lattice is orthogonal
	    if { [IsEqual 1e-6 0.0 $dot(0,1) $dot(0,2) $dot(1,2)] } {

		# check the lengths of lattice vectors
		if { [IsEqual 1e-6 $vec_len(0) $vec_len(1) $vec_len(2)] } {
		    set lattice "I-cubic"
		} elseif { [IsEqual 1e-6 $vec_len(0) $vec_len(1)] } {
		    set lattice "I-tetragonal"
		} else {
		    xcDebug -stderr "*** igroup2BravaisLattice: impossible Bravais lattice (I); check code"
		    set lattice "not-supported"
		}
	    } else {
		set lattice "not-supported"
	    }	    
	}
	7 { set lattice "not-supported" }
	8 { set lattice "hexagonal" }
	9 { set lattice "not-supported" }
	default { set lattice "not-supported" }
    }
    return $lattice
}

#
# Private proc used by igroup2BravaisLattice, to get the attributes
# of primitive or conventional.
#
proc getLatticeVec_ {type vec_ vec_len_ dot_} {
    global sInfo
    upvar $vec_     vec
    upvar $vec_len_ vec_len
    upvar $dot_     dot
        
    #xcDebug -stderr "tk: SINFO(primvec) == $sInfo(primvec)"
    #xcDebug -stderr "tk: SINFO(convvec) == $sInfo(convvec)"

    # get the primitive lattice vectors and its lengths
    for {set i 0} {$i < 3} {incr i} {
	for {set j 0} {$j < 3} {incr j} {
	    set ind [expr $i*3 + $j] 
	    set vec($i,$j) [lindex $sInfo($type) $ind]
	}
	set vec_len($i) [expr sqrt($vec($i,0)*$vec($i,0) + $vec($i,1)*$vec($i,1) + $vec($i,2)*$vec($i,2))]
	#xcDebug -stderr "tk: VEC_LEN($i) == $vec_len($i)"
    }
    set dot(0,1) [expr $vec(0,0)*$vec(1,0)  +  $vec(0,1)*$vec(1,1)  +  $vec(0,2)*$vec(1,2)]
    set dot(0,2) [expr $vec(0,0)*$vec(2,0)  +  $vec(0,1)*$vec(2,1)  +  $vec(0,2)*$vec(2,2)]
    set dot(1,2) [expr $vec(1,0)*$vec(2,0)  +  $vec(1,1)*$vec(2,1)  +  $vec(1,2)*$vec(2,2)]		   		 
    #xcDebug -stderr "tk: $type DOT:: $dot(0,1) $dot(0,2) $dot(1,2)"
}


#
# This proc tries to return the label of selected k-point based on
# table-lookup.
#
proc getKLabel {latticeType kx ky kz} {
    global  kLabels
    
    if { $latticeType == "not-supported" } { 
	return "" 
    }
    if { ! [info exists  kLabels($latticeType)] } { 
	return "" 
    }
    
    foreach {kxx kyy kzz label} $kLabels($latticeType) {
	#xcDebug -stderr "tk: PREDIFINED: $kxx $kyy $kzz  <--- SELECTED: $kx $ky $kz"

	if { [IsEqual 1e-5 $kx $kxx]  &&  [IsEqual 1e-5 $ky $kyy]  &&  [IsEqual 1e-5 $kz $kzz] } {
	    #xcDebug -stderr "tk: LABEL == $label"
	    return $label
	}
    }
    
    return ""
}


proc kLabels_Note {} {
    global Bz periodic kLabels

    #        WARNING: since labeling of the k-points is a new feature, read carefully 
    #                 below warnings:

    set msg {
	NEW FEATURE: automatic labeling of the k-points
	-----------------------------------------------

	1. For a few "supported" Bravais lattices several k-points will be 
           labeled automatically 
           (Ref: http://www.cryst.ehu.es/cryst/get_kvec.html)

	2. The information within the XSF file are sometimes insufficient
	   to determine the Bravais lattice type. The labelling of the k-points 
           will be hopefully correct only if correct Bravais lattice type was 
           determined

	*** CHECK THIS DATA:
	
        - the guessed BRAVAIS LATTICE TYPE : $Bz(lattice_type)
	 ((the XSF's group number is $periodic(igroup)))
    }
    set Msg [subst -nocommands $msg]

    set t [xcDisplayVarText $Msg "Automatic labeling of k-points"]

    tkwait window $t

    #if { ! [info exists kLabels(warning_window)] } {
    #	set t [xcDisplayVarText $Msg "Automatic labeling of k-points"]
    #} elseif { ! [winfo exists $kLabels(warning_window)] } {
    #	set kLabels(warning_window) [xcDisplayVarText $Msg "Automatic labeling of k-points"]
    #}
}

#
# this proc loads the k-label's lookup table
#
proc load_kLabels {} {
    global kLabels

    # not supported lattices
    set kLabels(not-supported) {}

    # lattice type: P cubic (eg. SG 221 Pm-3m)
    set kLabels(P-cubic) {
	0.0 0.0 0.0     GAMMA
	0.5 0.5 0.5     R
	-.5 0.5 0.5     R
	0.5 -.5 0.5     R
	0.5 0.5 -.5     R
	0.5 -.5 -.5     R
	-.5 -.5 0.5     R
	-.5 0.5 -.5     R
	-.5 -.5 -.5     R
	0.5 0.0 0.0     X
	0.0 0.5 0.0     X
	0.0 0.0 0.5     X
	-.5 0.0 0.0     X
	0.0 -.5 0.0     X
	0.0 0.0 -.5     X
	0.5 0.5 0.0     M
	-.5 0.5 0.0     M
	0.5 -.5 0.0     M
	-.5 -.5 0.0     M
	0.5 0.0 0.5     M
	-.5 0.0 0.5     M
	0.5 0.0 -.5     M
	-.5 0.0 -.5     M
	0.0 0.5 0.5     M
	0.0 -.5 0.5     M
	0.0 0.5 -.5     M
	0.0 -.5 -.5     M
    }

    # lattice type: F cubic (eg. SG 225 Fm-3m)
    set kLabels(F-cubic) {
	0.0 0.0 0.0     GAMMA
	0.5 0.5 0.5     L   
	-0.5 -0.5 -0.5  L   
	0.5 0.0 0.0     L   
	0.0 0.5 0.0     L   
	0.0 0.0 0.5     L   
	-.5 0.0 0.0     L   
	0.0 -.5 0.0     L   
	0.0 0.0 -.5     L   
	0.5 0.5 0.0     X   
	0.5 0.0 0.5     X   
	0.0 0.5 0.5     X   
	-0.5 -0.5 0.0     X   
	-0.5 0.0 -0.5     X   
	0.0 -0.5 -0.5     X   
	0.25000  0.50000  0.75000      W
	-0.25000  0.25000  0.50000      W
	-0.25000  0.50000  0.25000      W
	0.25000  0.75000  0.50000      W
	-0.50000  0.25000 -0.25000      W
	-0.75000 -0.25000 -0.50000      W
	-0.50000 -0.25000 -0.75000      W
	-0.25000  0.25000 -0.50000      W
	-0.25000 -0.50000 -0.75000      W
	-0.25000 -0.75000 -0.50000      W
	0.25000 -0.50000 -0.25000      W
	0.25000 -0.25000 -0.50000      W
	0.50000 -0.25000  0.25000      W
	0.25000 -0.25000  0.50000      W
	0.50000  0.25000  0.75000      W
	0.75000  0.25000  0.50000      W
	0.75000  0.50000  0.25000      W
	0.50000  0.75000  0.25000      W
	0.25000  0.50000 -0.25000      W
	0.50000  0.25000 -0.25000      W
	-0.50000 -0.75000 -0.25000      W
	-0.25000 -0.50000  0.25000      W
	-0.50000 -0.25000  0.25000      W
	-0.75000 -0.50000 -0.25000      W
	0.75000  0.37500  0.37500      K
	0.37500  0.00000 -0.37500      K
	0.37500 -0.37500  0.00000      K
	-0.37500 -0.75000 -0.37500      K
	0.00000 -0.37500  0.37500      K
	-0.75000 -0.37500 -0.37500      K
	-0.37500 -0.37500 -0.75000      K
	0.00000  0.37500 -0.37500      K
	-0.37500  0.37500  0.00000      K
	0.37500  0.75000  0.37500      K
	0.37500  0.37500  0.75000      K
	-0.37500  0.00000  0.37500      K
    }


    # lattice type: I cubic (eg. SG 230 Ia-3d) (I == body-centered)
    set kLabels(I-cubic) {
	0.0 0.0 0.0     GAMMA
	.5 .5 -.5        H  
	.5 -.5 .5        H  
	-.5 .5 .5        H  
	-.5 -.5 .5       H  
	.5 -.5 -.5       H  
	-.5 .5 -.5       H  
	-0.25000  0.75000 -0.25000  P
	-0.75000  0.25000  0.25000  P
	-0.25000 -0.25000 -0.25000  P
	-0.25000 -0.25000  0.75000  P
	0.25000 -0.75000  0.25000  P
	0.75000 -0.25000 -0.25000  P
	0.25000  0.25000  0.25000  P
	0.25000  0.25000 -0.75000  P
	0.5 0.0 0.0      N
	0.0 0.5 0.0      N
	0.0 0.0 0.5      N
	-.5 0.0 0.0      N
	0.0 -.5 0.0      N
	0.0 0.0 -.5      N
	0.50000  0.00000 -0.50000  N
	0.00000  0.50000 -0.50000  N
	-0.50000  0.50000  0.00000  N
	-0.50000  0.00000  0.50000  N
	0.00000 -0.50000  0.50000  N
	0.50000 -0.50000  0.00000  N
    }



    # Hexagonal lattice  (eg. 194  P63/mMc)
    set kLabels(hexagonal) {
	0.0 0.0 0.0     GAMMA
	0.0 0.0 0.5   A  
	0.0 0.0 -.5   A  
	0.5 0.0 0.0   M  
	-.5 0.0 0.0   M  
	0.0 0.5 0.0   M  
	0.0 -.5 0.0   M  
	0.5 -.5 0.0   M  
	-.5 0.5 0.0   M  
	0.5 0.0 0.5   L  
	-.5 0.0 0.5   L  
	0.0 0.5 0.5   L  
	0.0 -.5 0.5   L  
	0.5 -.5 0.5   L  
	-.5 0.5 0.5   L  
	0.5 0.0 -.5   L  
	-.5 0.0 -.5   L  
	0.0 0.5 -.5   L  
	0.0 -.5 -.5   L  
	0.5 -.5 -.5   L  
	-.5 0.5 -.5   L  
	0.333333 0.333333 0.0  K
	-.333333 -.333333 0.0  K
	0.333333 -.666667 0.0  K
	0.666667 -.333333 0.0  K
	-.333333 0.666667 0.0  K
	-.666667 0.333333 0.0  K
	0.333333 0.333333 0.5  H
	-.333333 -.333333 0.5  H
	0.333333 -.666667 0.5  H
	0.666667 -.333333 0.5  H
	-.333333 0.666667 0.5  H
	-.666667 0.333333 0.5  H
	0.333333 0.333333 -.5  H
	-.333333 -.333333 -.5  H
	0.333333 -.666667 -.5  H
	0.666667 -.333333 -.5  H
	-.333333 0.666667 -.5  H
	-.666667 0.333333 -.5  H
    }


    # P tetragonal   (123   P4/mmm)  Coordinates require a=b  ne c ! (not guaranteed)
    set kLabels(P-tetragonal) {
	0.0 0.0 0.0     GAMMA
	0.0 0.0 0.5  Z
	0.0 0.0 -.5  Z
	0.5 0.0 0.0  X
	0.0 0.5 0.0  X
	-.5 0.0 0.0  X
	0.0 -.5 0.0  X
	0.5 0.5 0.0  M
	-.5 0.5 0.0  M
	0.5 -.5 0.0  M
	-.5 -.5 0.0  M
	0.5 0.0 0.5  R
	0.0 0.5 0.5  R
	-.5 0.0 0.5  R
	0.0 -.5 0.5  R
	0.5 0.0 -.5  R
	0.0 0.5 -.5  R
	-.5 0.0 -.5  R
	0.0 -.5 -.5  R
	0.5 0.5 0.5  A
	-.5 0.5 0.5  A
	0.5 -.5 0.5  A
	-.5 -.5 0.5  A
	0.5 0.5 -.5  A
	-.5 0.5 -.5  A
	0.5 -.5 -.5  A
	-.5 -.5 -.5  A
    }


    # I-tetragonal,  (c is "tetragonal")  (139 I4/mmm)  (I == body-centered)
    set kLabels(I-tetragonal) {
	0.0 0.0 0.0     GAMMA
	0.0 0.0 0.5  X
	0.0 0.0 -.5  X
	0.5 -.5 0.0  X
	-.5 0.5 0.0  X
	0.5 0.0 0.0  N
	0.0 0.5 0.0  N
	-.5 0.0 0.0  N
	0.0 -.5 0.0  N
	0.5 0.0 -.5  N
	0.0 0.5 -.5  N
	-.5 0.0 0.5  N
	0.0 -.5 0.5  N
	0.25 0.25 0.25  P
	-.25 0.75 -.25  P
	0.75 -.25 -.25  P
	0.25 0.25 -.75  P
	-.25 -.25 -.25  P
	0.25 -.75 0.25  P
	-.75 0.25 0.25  P
	-.25 -.25 0.75  P
	-.5 0.5 -.5  M  
	-.5 0.5 0.5  M  
	0.5 -.5 0.5  M  
	0.5 -.5 -.5  M  
	0.5 0.5 -.5  Z  
	-.5 -.5 0.5  Z  
    }
    # Note: for above M and Z points "acessibility depends on c/a"



    # P orthorhombic  (47  Pmmm)
    set kLabels(P-orthorhombic) {
	0.0 0.0 0.0     GAMMA
	0.0 0.0 0.5  Z
	0.0 0.0 -.5  Z
	0.5 0.0 0.0  X
	0.0 0.5 0.0  Y
	-.5 0.0 0.0  X
	0.0 -.5 0.0  Y
	0.5 0.5 0.0  S
	-.5 0.5 0.0  S
	0.5 -.5 0.0  S
	-.5 -.5 0.0  S
	0.5 0.0 0.5  U
	0.0 0.5 0.5  T
	-.5 0.0 0.5  U
	0.0 -.5 0.5  T
	0.5 0.0 -.5  U
	0.0 0.5 -.5  T
	-.5 0.0 -.5  U
	0.0 -.5 -.5  T
	0.5 0.5 0.5  R
	-.5 0.5 0.5  R
	0.5 -.5 0.5  R
	-.5 -.5 0.5  R
	0.5 0.5 -.5  R
	-.5 0.5 -.5  R
	0.5 -.5 -.5  R
	-.5 -.5 -.5  R
    }

    # additional comments (PB):
    # --------------------------
    # Trigonal (Rhombohedral) case (2 cases, a,c)
    # 
    # B orthorhombic case (2 cases, depending on a,b,c)
    # 
    # F orthorhombic cases (3 different cases, depending on a,b,c)
    # 
    # C orthorhombic lattice (CXY, and a<>b,  CXZ, CYZ, ...)
    # 
    # C monoclinic lattice (with monoclinic angle gamma, depends on a,b,c and gamma)
    # 
    # P monoclinic lattice (with monoclinic angle gamma, depends on a,b, and gamma)
    # 
    # triclinic
}