This file is indexed.

/usr/include/boost/random/gamma_distribution.hpp is in libboost1.49-dev 1.49.0-3.2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
/* boost random/gamma_distribution.hpp header file
 *
 * Copyright Jens Maurer 2002
 * Copyright Steven Watanabe 2010
 * Distributed under the Boost Software License, Version 1.0. (See
 * accompanying file LICENSE_1_0.txt or copy at
 * http://www.boost.org/LICENSE_1_0.txt)
 *
 * See http://www.boost.org for most recent version including documentation.
 *
 * $Id: gamma_distribution.hpp 71018 2011-04-05 21:27:52Z steven_watanabe $
 *
 */

#ifndef BOOST_RANDOM_GAMMA_DISTRIBUTION_HPP
#define BOOST_RANDOM_GAMMA_DISTRIBUTION_HPP

#include <boost/config/no_tr1/cmath.hpp>
#include <istream>
#include <iosfwd>
#include <boost/assert.hpp>
#include <boost/limits.hpp>
#include <boost/static_assert.hpp>
#include <boost/random/detail/config.hpp>
#include <boost/random/exponential_distribution.hpp>

namespace boost {
namespace random {

// The algorithm is taken from Knuth

/**
 * The gamma distribution is a continuous distribution with two
 * parameters alpha and beta.  It produces values > 0.
 *
 * It has
 * \f$\displaystyle p(x) = x^{\alpha-1}\frac{e^{-x/\beta}}{\beta^\alpha\Gamma(\alpha)}\f$.
 */
template<class RealType = double>
class gamma_distribution
{
public:
    typedef RealType input_type;
    typedef RealType result_type;

    class param_type
    {
    public:
        typedef gamma_distribution distribution_type;

        /**
         * Constructs a @c param_type object from the "alpha" and "beta"
         * parameters.
         *
         * Requires: alpha > 0 && beta > 0
         */
        param_type(const RealType& alpha_arg = RealType(1.0),
                   const RealType& beta_arg = RealType(1.0))
          : _alpha(alpha_arg), _beta(beta_arg)
        {
        }

        /** Returns the "alpha" parameter of the distribution. */
        RealType alpha() const { return _alpha; }
        /** Returns the "beta" parameter of the distribution. */
        RealType beta() const { return _beta; }

#ifndef BOOST_RANDOM_NO_STREAM_OPERATORS
        /** Writes the parameters to a @c std::ostream. */
        template<class CharT, class Traits>
        friend std::basic_ostream<CharT, Traits>&
        operator<<(std::basic_ostream<CharT, Traits>& os,
                   const param_type& parm)
        {
            os << parm._alpha << ' ' << parm._beta;
            return os;
        }
        
        /** Reads the parameters from a @c std::istream. */
        template<class CharT, class Traits>
        friend std::basic_istream<CharT, Traits>&
        operator>>(std::basic_istream<CharT, Traits>& is, param_type& parm)
        {
            is >> parm._alpha >> std::ws >> parm._beta;
            return is;
        }
#endif

        /** Returns true if the two sets of parameters are the same. */
        friend bool operator==(const param_type& lhs, const param_type& rhs)
        {
            return lhs._alpha == rhs._alpha && lhs._beta == rhs._beta;
        }
        /** Returns true if the two sets fo parameters are different. */
        friend bool operator!=(const param_type& lhs, const param_type& rhs)
        {
            return !(lhs == rhs);
        }
    private:
        RealType _alpha;
        RealType _beta;
    };

#ifndef BOOST_NO_LIMITS_COMPILE_TIME_CONSTANTS
    BOOST_STATIC_ASSERT(!std::numeric_limits<RealType>::is_integer);
#endif

    /**
     * Creates a new gamma_distribution with parameters "alpha" and "beta".
     *
     * Requires: alpha > 0 && beta > 0
     */
    explicit gamma_distribution(const result_type& alpha_arg = result_type(1.0),
                                const result_type& beta_arg = result_type(1.0))
      : _exp(result_type(1)), _alpha(alpha_arg), _beta(beta_arg)
    {
        BOOST_ASSERT(_alpha > result_type(0));
        BOOST_ASSERT(_beta > result_type(0));
        init();
    }

    /** Constructs a @c gamma_distribution from its parameters. */
    explicit gamma_distribution(const param_type& parm)
      : _exp(result_type(1)), _alpha(parm.alpha()), _beta(parm.beta())
    {
        init();
    }

    // compiler-generated copy ctor and assignment operator are fine

    /** Returns the "alpha" paramter of the distribution. */
    RealType alpha() const { return _alpha; }
    /** Returns the "beta" parameter of the distribution. */
    RealType beta() const { return _beta; }
    /** Returns the smallest value that the distribution can produce. */
    RealType min BOOST_PREVENT_MACRO_SUBSTITUTION () const { return 0; }
    /* Returns the largest value that the distribution can produce. */
    RealType max BOOST_PREVENT_MACRO_SUBSTITUTION () const
    { return (std::numeric_limits<RealType>::infinity)(); }

    /** Returns the parameters of the distribution. */
    param_type param() const { return param_type(_alpha, _beta); }
    /** Sets the parameters of the distribution. */
    void param(const param_type& parm)
    {
        _alpha = parm.alpha();
        _beta = parm.beta();
        init();
    }
    
    /**
     * Effects: Subsequent uses of the distribution do not depend
     * on values produced by any engine prior to invoking reset.
     */
    void reset() { _exp.reset(); }

    /**
     * Returns a random variate distributed according to
     * the gamma distribution.
     */
    template<class Engine>
    result_type operator()(Engine& eng)
    {
#ifndef BOOST_NO_STDC_NAMESPACE
        // allow for Koenig lookup
        using std::tan; using std::sqrt; using std::exp; using std::log;
        using std::pow;
#endif
        if(_alpha == result_type(1)) {
            return _exp(eng) * _beta;
        } else if(_alpha > result_type(1)) {
            // Can we have a boost::mathconst please?
            const result_type pi = result_type(3.14159265358979323846);
            for(;;) {
                result_type y = tan(pi * uniform_01<RealType>()(eng));
                result_type x = sqrt(result_type(2)*_alpha-result_type(1))*y
                    + _alpha-result_type(1);
                if(x <= result_type(0))
                    continue;
                if(uniform_01<RealType>()(eng) >
                    (result_type(1)+y*y) * exp((_alpha-result_type(1))
                                               *log(x/(_alpha-result_type(1)))
                                               - sqrt(result_type(2)*_alpha
                                                      -result_type(1))*y))
                    continue;
                return x * _beta;
            }
        } else /* alpha < 1.0 */ {
            for(;;) {
                result_type u = uniform_01<RealType>()(eng);
                result_type y = _exp(eng);
                result_type x, q;
                if(u < _p) {
                    x = exp(-y/_alpha);
                    q = _p*exp(-x);
                } else {
                    x = result_type(1)+y;
                    q = _p + (result_type(1)-_p) * pow(x,_alpha-result_type(1));
                }
                if(u >= q)
                    continue;
                return x * _beta;
            }
        }
    }

    template<class URNG>
    RealType operator()(URNG& urng, const param_type& parm) const
    {
        return gamma_distribution(parm)(urng);
    }

#ifndef BOOST_RANDOM_NO_STREAM_OPERATORS
    /** Writes a @c gamma_distribution to a @c std::ostream. */
    template<class CharT, class Traits>
    friend std::basic_ostream<CharT,Traits>&
    operator<<(std::basic_ostream<CharT,Traits>& os,
               const gamma_distribution& gd)
    {
        os << gd.param();
        return os;
    }
    
    /** Reads a @c gamma_distribution from a @c std::istream. */
    template<class CharT, class Traits>
    friend std::basic_istream<CharT,Traits>&
    operator>>(std::basic_istream<CharT,Traits>& is, gamma_distribution& gd)
    {
        gd.read(is);
        return is;
    }
#endif

    /**
     * Returns true if the two distributions will produce identical
     * sequences of random variates given equal generators.
     */
    friend bool operator==(const gamma_distribution& lhs,
                           const gamma_distribution& rhs)
    {
        return lhs._alpha == rhs._alpha
            && lhs._beta == rhs._beta
            && lhs._exp == rhs._exp;
    }

    /**
     * Returns true if the two distributions can produce different
     * sequences of random variates, given equal generators.
     */
    friend bool operator!=(const gamma_distribution& lhs,
                           const gamma_distribution& rhs)
    {
        return !(lhs == rhs);
    }

private:
    /// \cond hide_private_members

    template<class CharT, class Traits>
    void read(std::basic_istream<CharT, Traits>& is)
    {
        param_type parm;
        if(is >> parm) {
            param(parm);
        }
    }

    void init()
    {
#ifndef BOOST_NO_STDC_NAMESPACE
        // allow for Koenig lookup
        using std::exp;
#endif
        _p = exp(result_type(1)) / (_alpha + exp(result_type(1)));
    }
    /// \endcond

    exponential_distribution<RealType> _exp;
    result_type _alpha;
    result_type _beta;
    // some data precomputed from the parameters
    result_type _p;
};


} // namespace random

using random::gamma_distribution;

} // namespace boost

#endif // BOOST_RANDOM_GAMMA_DISTRIBUTION_HPP