/usr/include/boost/random/gamma_distribution.hpp is in libboost1.49-dev 1.49.0-3.2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 | /* boost random/gamma_distribution.hpp header file
*
* Copyright Jens Maurer 2002
* Copyright Steven Watanabe 2010
* Distributed under the Boost Software License, Version 1.0. (See
* accompanying file LICENSE_1_0.txt or copy at
* http://www.boost.org/LICENSE_1_0.txt)
*
* See http://www.boost.org for most recent version including documentation.
*
* $Id: gamma_distribution.hpp 71018 2011-04-05 21:27:52Z steven_watanabe $
*
*/
#ifndef BOOST_RANDOM_GAMMA_DISTRIBUTION_HPP
#define BOOST_RANDOM_GAMMA_DISTRIBUTION_HPP
#include <boost/config/no_tr1/cmath.hpp>
#include <istream>
#include <iosfwd>
#include <boost/assert.hpp>
#include <boost/limits.hpp>
#include <boost/static_assert.hpp>
#include <boost/random/detail/config.hpp>
#include <boost/random/exponential_distribution.hpp>
namespace boost {
namespace random {
// The algorithm is taken from Knuth
/**
* The gamma distribution is a continuous distribution with two
* parameters alpha and beta. It produces values > 0.
*
* It has
* \f$\displaystyle p(x) = x^{\alpha-1}\frac{e^{-x/\beta}}{\beta^\alpha\Gamma(\alpha)}\f$.
*/
template<class RealType = double>
class gamma_distribution
{
public:
typedef RealType input_type;
typedef RealType result_type;
class param_type
{
public:
typedef gamma_distribution distribution_type;
/**
* Constructs a @c param_type object from the "alpha" and "beta"
* parameters.
*
* Requires: alpha > 0 && beta > 0
*/
param_type(const RealType& alpha_arg = RealType(1.0),
const RealType& beta_arg = RealType(1.0))
: _alpha(alpha_arg), _beta(beta_arg)
{
}
/** Returns the "alpha" parameter of the distribution. */
RealType alpha() const { return _alpha; }
/** Returns the "beta" parameter of the distribution. */
RealType beta() const { return _beta; }
#ifndef BOOST_RANDOM_NO_STREAM_OPERATORS
/** Writes the parameters to a @c std::ostream. */
template<class CharT, class Traits>
friend std::basic_ostream<CharT, Traits>&
operator<<(std::basic_ostream<CharT, Traits>& os,
const param_type& parm)
{
os << parm._alpha << ' ' << parm._beta;
return os;
}
/** Reads the parameters from a @c std::istream. */
template<class CharT, class Traits>
friend std::basic_istream<CharT, Traits>&
operator>>(std::basic_istream<CharT, Traits>& is, param_type& parm)
{
is >> parm._alpha >> std::ws >> parm._beta;
return is;
}
#endif
/** Returns true if the two sets of parameters are the same. */
friend bool operator==(const param_type& lhs, const param_type& rhs)
{
return lhs._alpha == rhs._alpha && lhs._beta == rhs._beta;
}
/** Returns true if the two sets fo parameters are different. */
friend bool operator!=(const param_type& lhs, const param_type& rhs)
{
return !(lhs == rhs);
}
private:
RealType _alpha;
RealType _beta;
};
#ifndef BOOST_NO_LIMITS_COMPILE_TIME_CONSTANTS
BOOST_STATIC_ASSERT(!std::numeric_limits<RealType>::is_integer);
#endif
/**
* Creates a new gamma_distribution with parameters "alpha" and "beta".
*
* Requires: alpha > 0 && beta > 0
*/
explicit gamma_distribution(const result_type& alpha_arg = result_type(1.0),
const result_type& beta_arg = result_type(1.0))
: _exp(result_type(1)), _alpha(alpha_arg), _beta(beta_arg)
{
BOOST_ASSERT(_alpha > result_type(0));
BOOST_ASSERT(_beta > result_type(0));
init();
}
/** Constructs a @c gamma_distribution from its parameters. */
explicit gamma_distribution(const param_type& parm)
: _exp(result_type(1)), _alpha(parm.alpha()), _beta(parm.beta())
{
init();
}
// compiler-generated copy ctor and assignment operator are fine
/** Returns the "alpha" paramter of the distribution. */
RealType alpha() const { return _alpha; }
/** Returns the "beta" parameter of the distribution. */
RealType beta() const { return _beta; }
/** Returns the smallest value that the distribution can produce. */
RealType min BOOST_PREVENT_MACRO_SUBSTITUTION () const { return 0; }
/* Returns the largest value that the distribution can produce. */
RealType max BOOST_PREVENT_MACRO_SUBSTITUTION () const
{ return (std::numeric_limits<RealType>::infinity)(); }
/** Returns the parameters of the distribution. */
param_type param() const { return param_type(_alpha, _beta); }
/** Sets the parameters of the distribution. */
void param(const param_type& parm)
{
_alpha = parm.alpha();
_beta = parm.beta();
init();
}
/**
* Effects: Subsequent uses of the distribution do not depend
* on values produced by any engine prior to invoking reset.
*/
void reset() { _exp.reset(); }
/**
* Returns a random variate distributed according to
* the gamma distribution.
*/
template<class Engine>
result_type operator()(Engine& eng)
{
#ifndef BOOST_NO_STDC_NAMESPACE
// allow for Koenig lookup
using std::tan; using std::sqrt; using std::exp; using std::log;
using std::pow;
#endif
if(_alpha == result_type(1)) {
return _exp(eng) * _beta;
} else if(_alpha > result_type(1)) {
// Can we have a boost::mathconst please?
const result_type pi = result_type(3.14159265358979323846);
for(;;) {
result_type y = tan(pi * uniform_01<RealType>()(eng));
result_type x = sqrt(result_type(2)*_alpha-result_type(1))*y
+ _alpha-result_type(1);
if(x <= result_type(0))
continue;
if(uniform_01<RealType>()(eng) >
(result_type(1)+y*y) * exp((_alpha-result_type(1))
*log(x/(_alpha-result_type(1)))
- sqrt(result_type(2)*_alpha
-result_type(1))*y))
continue;
return x * _beta;
}
} else /* alpha < 1.0 */ {
for(;;) {
result_type u = uniform_01<RealType>()(eng);
result_type y = _exp(eng);
result_type x, q;
if(u < _p) {
x = exp(-y/_alpha);
q = _p*exp(-x);
} else {
x = result_type(1)+y;
q = _p + (result_type(1)-_p) * pow(x,_alpha-result_type(1));
}
if(u >= q)
continue;
return x * _beta;
}
}
}
template<class URNG>
RealType operator()(URNG& urng, const param_type& parm) const
{
return gamma_distribution(parm)(urng);
}
#ifndef BOOST_RANDOM_NO_STREAM_OPERATORS
/** Writes a @c gamma_distribution to a @c std::ostream. */
template<class CharT, class Traits>
friend std::basic_ostream<CharT,Traits>&
operator<<(std::basic_ostream<CharT,Traits>& os,
const gamma_distribution& gd)
{
os << gd.param();
return os;
}
/** Reads a @c gamma_distribution from a @c std::istream. */
template<class CharT, class Traits>
friend std::basic_istream<CharT,Traits>&
operator>>(std::basic_istream<CharT,Traits>& is, gamma_distribution& gd)
{
gd.read(is);
return is;
}
#endif
/**
* Returns true if the two distributions will produce identical
* sequences of random variates given equal generators.
*/
friend bool operator==(const gamma_distribution& lhs,
const gamma_distribution& rhs)
{
return lhs._alpha == rhs._alpha
&& lhs._beta == rhs._beta
&& lhs._exp == rhs._exp;
}
/**
* Returns true if the two distributions can produce different
* sequences of random variates, given equal generators.
*/
friend bool operator!=(const gamma_distribution& lhs,
const gamma_distribution& rhs)
{
return !(lhs == rhs);
}
private:
/// \cond hide_private_members
template<class CharT, class Traits>
void read(std::basic_istream<CharT, Traits>& is)
{
param_type parm;
if(is >> parm) {
param(parm);
}
}
void init()
{
#ifndef BOOST_NO_STDC_NAMESPACE
// allow for Koenig lookup
using std::exp;
#endif
_p = exp(result_type(1)) / (_alpha + exp(result_type(1)));
}
/// \endcond
exponential_distribution<RealType> _exp;
result_type _alpha;
result_type _beta;
// some data precomputed from the parameters
result_type _p;
};
} // namespace random
using random::gamma_distribution;
} // namespace boost
#endif // BOOST_RANDOM_GAMMA_DISTRIBUTION_HPP
|