/usr/include/boost/random/weibull_distribution.hpp is in libboost1.49-dev 1.49.0-3.2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 | /* boost random/weibull_distribution.hpp header file
*
* Copyright Steven Watanabe 2010
* Distributed under the Boost Software License, Version 1.0. (See
* accompanying file LICENSE_1_0.txt or copy at
* http://www.boost.org/LICENSE_1_0.txt)
*
* See http://www.boost.org for most recent version including documentation.
*
* $Id: weibull_distribution.hpp 71018 2011-04-05 21:27:52Z steven_watanabe $
*/
#ifndef BOOST_RANDOM_WEIBULL_DISTRIBUTION_HPP
#define BOOST_RANDOM_WEIBULL_DISTRIBUTION_HPP
#include <boost/config/no_tr1/cmath.hpp>
#include <iosfwd>
#include <istream>
#include <boost/config.hpp>
#include <boost/limits.hpp>
#include <boost/random/detail/operators.hpp>
#include <boost/random/uniform_01.hpp>
namespace boost {
namespace random {
/**
* The Weibull distribution is a real valued distribution with two
* parameters a and b, producing values >= 0.
*
* It has \f$\displaystyle p(x) = \frac{a}{b}\left(\frac{x}{b}\right)^{a-1}e^{-\left(\frac{x}{b}\right)^a}\f$.
*/
template<class RealType = double>
class weibull_distribution {
public:
typedef RealType result_type;
typedef RealType input_type;
class param_type {
public:
typedef weibull_distribution distribution_type;
/**
* Constructs a @c param_type from the "a" and "b" parameters
* of the distribution.
*
* Requires: a > 0 && b > 0
*/
explicit param_type(RealType a_arg = 1.0, RealType b_arg = 1.0)
: _a(a_arg), _b(b_arg)
{}
/** Returns the "a" parameter of the distribtuion. */
RealType a() const { return _a; }
/** Returns the "b" parameter of the distribution. */
RealType b() const { return _b; }
/** Writes a @c param_type to a @c std::ostream. */
BOOST_RANDOM_DETAIL_OSTREAM_OPERATOR(os, param_type, parm)
{ os << parm._a << ' ' << parm._b; return os; }
/** Reads a @c param_type from a @c std::istream. */
BOOST_RANDOM_DETAIL_ISTREAM_OPERATOR(is, param_type, parm)
{ is >> parm._a >> std::ws >> parm._b; return is; }
/** Returns true if the two sets of parameters are the same. */
BOOST_RANDOM_DETAIL_EQUALITY_OPERATOR(param_type, lhs, rhs)
{ return lhs._a == rhs._a && lhs._b == rhs._b; }
/** Returns true if the two sets of parameters are the different. */
BOOST_RANDOM_DETAIL_INEQUALITY_OPERATOR(param_type)
private:
RealType _a;
RealType _b;
};
/**
* Constructs a @c weibull_distribution from its "a" and "b" parameters.
*
* Requires: a > 0 && b > 0
*/
explicit weibull_distribution(RealType a_arg = 1.0, RealType b_arg = 1.0)
: _a(a_arg), _b(b_arg)
{}
/** Constructs a @c weibull_distribution from its parameters. */
explicit weibull_distribution(const param_type& parm)
: _a(parm.a()), _b(parm.b())
{}
/**
* Returns a random variate distributed according to the
* @c weibull_distribution.
*/
template<class URNG>
RealType operator()(URNG& urng) const
{
using std::pow;
using std::log;
return _b*pow(-log(1 - uniform_01<RealType>()(urng)), 1/_a);
}
/**
* Returns a random variate distributed accordint to the Weibull
* distribution with parameters specified by @c param.
*/
template<class URNG>
RealType operator()(URNG& urng, const param_type& parm) const
{
return weibull_distribution(parm)(urng);
}
/** Returns the "a" parameter of the distribution. */
RealType a() const { return _a; }
/** Returns the "b" parameter of the distribution. */
RealType b() const { return _b; }
/** Returns the smallest value that the distribution can produce. */
RealType min BOOST_PREVENT_MACRO_SUBSTITUTION () const { return 0; }
/** Returns the largest value that the distribution can produce. */
RealType max BOOST_PREVENT_MACRO_SUBSTITUTION () const
{ return std::numeric_limits<RealType>::infinity(); }
/** Returns the parameters of the distribution. */
param_type param() const { return param_type(_a, _b); }
/** Sets the parameters of the distribution. */
void param(const param_type& parm)
{
_a = parm.a();
_b = parm.b();
}
/**
* Effects: Subsequent uses of the distribution do not depend
* on values produced by any engine prior to invoking reset.
*/
void reset() { }
/** Writes a @c weibull_distribution to a @c std::ostream. */
BOOST_RANDOM_DETAIL_OSTREAM_OPERATOR(os, weibull_distribution, wd)
{
os << wd.param();
return os;
}
/** Reads a @c weibull_distribution from a @c std::istream. */
BOOST_RANDOM_DETAIL_ISTREAM_OPERATOR(is, weibull_distribution, wd)
{
param_type parm;
if(is >> parm) {
wd.param(parm);
}
return is;
}
/**
* Returns true if the two instances of @c weibull_distribution will
* return identical sequences of values given equal generators.
*/
BOOST_RANDOM_DETAIL_EQUALITY_OPERATOR(weibull_distribution, lhs, rhs)
{ return lhs._a == rhs._a && lhs._b == rhs._b; }
/**
* Returns true if the two instances of @c weibull_distribution will
* return different sequences of values given equal generators.
*/
BOOST_RANDOM_DETAIL_INEQUALITY_OPERATOR(weibull_distribution)
private:
RealType _a;
RealType _b;
};
} // namespace random
} // namespace boost
#endif // BOOST_RANDOM_WEIBULL_DISTRIBUTION_HPP
|