This file is indexed.

/usr/include/glibmm-2.4/glibmm/nodetree.h is in libglibmm-2.4-dev 2.32.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
// -*- c++ -*-
// Generated by gtkmmproc -- DO NOT MODIFY!
#ifndef _GLIBMM_NODETREE_H
#define _GLIBMM_NODETREE_H


/* Copyright (C) 2007 glibmm development team
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free
 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */


#include <map>
#include <stack>
#include <deque>

#include <glibmm/refptr.h>
#include <glibmm/ustring.h>
#include <glibmm/error.h>
#include <glibmm/arrayhandle.h>
#include <glib.h>

namespace Glib
{

//Hand-written, instead of using _WRAP_ENUM, 
//because the C enum values don't have a prefix.

/** Specifies the type of traveral performed by methods such as NodeTree::_traverse() and NodeTree::find().
 * 
 * @ingroup glibmmEnums
 */
enum TraverseType
{
  TRAVERSE_IN_ORDER = G_IN_ORDER, /*!< Visits a node's left child first, then the node itself, then its right child. This is the one to use if you want the output sorted according to the compare function.  */
  TRAVERSE_PRE_ORDER = G_PRE_ORDER, /*!< Visits a node, then its children. */
  TRAVERSE_POST_ORDER = G_POST_ORDER, /*!< Visits the node's children, then the node itself. */
  TRAVERSE_LEVEL_ORDER = G_LEVEL_ORDER /*!< For NodeTree, it vists the root node first, then its children, then its grandchildren, and so on. Note that this is less efficient than the other orders. This is not implemented for Glib::Tree. */
};

/** N-ary Trees - trees of data with any number of branches
 * The NodeTree class and its associated functions provide an N-ary tree data structure, in which nodes in the tree can contain arbitrary data.
 * 
 * To insert a node into a tree use insert(), insert_before(), append() or prepend().
 * 
 * To create a new node and insert it into a tree use insert_data(), insert_data_before(), append_data() and prepend_data().
 * 
 * To reverse the children of a node use reverse_children().
 * 
 * To find a node use root(), find(), find_child(), index_of(), child_index(), first_child(), last_child(), nth_child(), first_sibling(), prev_sibling(), next_sibling() or last_sibling().
 * 
 * To get information about a node or tree use is_leaf(), is_root(), depth(), node_count(), child_count(), is_ancestor() or max_height().
 * 
 * To traverse a tree, calling a function for each node visited in the traversal, use traverse() or foreach().
 * 
 * To remove a node or subtree from a tree use unlink().
 *
 * @newin{2,18}
 */
template <typename T> 
class NodeTree
{
  public:
#ifndef DOXYGEN_SHOULD_SKIP_THIS
  typedef NodeTree CppObjectType;
  typedef GNode BaseObjectType;
#endif /* DOXYGEN_SHOULD_SKIP_THIS */

private:

public:
  typedef sigc::slot<bool, NodeTree<T>&> TraverseFunc;
  typedef sigc::slot<void, NodeTree<T>&> ForeachFunc;

private:
  static NodeTree<T>* wrap(GNode* node)
  {
    if (!node)
      return 0;

    return reinterpret_cast<NodeTree<T>* >(node->data);
  }

public:
  NodeTree()
  {
    clone();
  }

  explicit NodeTree(const T& the_data) :
    data_(the_data)
  {
    clone();
  }
  

  NodeTree(const NodeTree<T>& node) :
    data_(node.data())
  {
    clone(&node);
  }

  /** Removes the instance and its children from the tree,
   * freeing any memory allocated.
   */
  ~NodeTree()
  {
    if(!is_root())
      unlink();

    clear();
  }
  

  NodeTree<T>& operator=(const NodeTree<T>& node)
  {
    clear();
    clone(&node);

    data_ = node.data();

    return *this;
  }

  /// Provides access to the underlying C GObject.
  inline GNode* gobj()
  {
    return gobject_;
  }

  /// Provides access to the underlying C GObject.
  inline const GNode* gobj() const
  {
    return gobject_;
  }

  /** Inserts a NodeTree beneath the parent at the given position.
   *
   * @param position the position to place node at, with respect to its siblings 
   * If position is -1, node is inserted as the last child of parent
   * @param node the NodeTree to insert
   * @return the inserted NodeTree
   */
  NodeTree<T>& insert(int position, NodeTree<T>& node)
  {
    g_node_insert(gobj(), position, node.gobj());
    return node;
  }
  

  /** Inserts a NodeTree beneath the parent before the given sibling.
   *
   * @param sibling the sibling NodeTree to place node before.
   * @param node the NodeTree to insert
   * @return the inserted NodeTree
   */
  NodeTree<T>& insert_before(NodeTree<T>& sibling, NodeTree<T>& node)
  {
    g_node_insert_before(gobj(), sibling.gobj(), node.gobj());
    return node;
  }
  

  /** Inserts a NodeTree beneath the parent after the given sibling.
   *
   * @param sibling the sibling NodeTree to place node after.
   * @param node the NodeTree to insert
   * @return the inserted NodeTree
   */
  NodeTree<T>& insert_after(NodeTree<T>& sibling, NodeTree<T>& node)
  {
    g_node_insert_after(gobj(), sibling.gobj(), node.gobj());
    return node;
  }
  

  /** Inserts a NodeTree as the last child.
   *
   * @param node the NodeTree to append
   * @return the new NodeTree
   */
  NodeTree<T>& append(NodeTree<T>& node)
  {
    g_node_append(gobj(), node.gobj());
    return node;
  }
  

  /** Inserts a NodeTree as the first child.
   *
   * @param data the data for the NodeTree
   * @return the NodeTree
   */
  NodeTree<T>& prepend(NodeTree<T>& node)
  {
    g_node_prepend(gobj(), node.gobj());
    return node;
  }
  

  /** Inserts a new NodeTree at the given position.
   *
   * @param position the position to place the new NodeTree at. 
   * If position is -1, the new NodeTree is inserted as the last child of parent
   * @param data the data for the new NodeTree
   * @return the new NodeTree
   */
  NodeTree<T>* insert_data(int position, const T& the_data)
  {
    NodeTree<T>* node = new NodeTree<T>(the_data);
    insert(position, *node);
    return node;
  }
  

  /** Inserts a new NodeTree before the given sibling.
   *
   * @param sibling the sibling NodeTree to place node before. 
   * @param data the data for the new NodeTree
   * @return the new NodeTree
   */
  NodeTree<T>* insert_data_before(NodeTree<T>& sibling, const T& the_data)
  {
    NodeTree<T>* node = new NodeTree<T>(the_data);
    insert_before(sibling, *node);
    return node;
  }
  

  /** Inserts a new NodeTree as the last child.
   *
   * @param data the data for the new NodeTree
   * @return the new NodeTree
   */
  NodeTree<T>* append_data(const T& the_data)
  {
    NodeTree<T>* node = new NodeTree<T>(the_data);
    append(*node);
    return node;
  }
  

  /** Inserts a new NodeTree as the first child.
   *
   * @param data the data for the new NodeTree
   * @return the new NodeTree
   */
  NodeTree<T>* prepend_data(const T& the_data)
  {
    NodeTree<T>* node = new NodeTree<T>(the_data);
    prepend(*node);
    return node;
  }
  

  /** Reverses the order of the children.
   */
  void reverse_children()
  {
    g_node_reverse_children(gobj());
  }
  

  /** Returns a pointer to the root of the tree.
   *
   * @return A pointer to the root of the tree.
   */
  NodeTree<T>* get_root()
  {
    return wrap(g_node_get_root(gobj()));
  }

  const NodeTree<T>* get_root() const
  {
    return wrap(g_node_get_root(const_cast<GNode*>(gobj())));
  }
  

  /** Specifies which nodes are visited during several of the NodeTree methods,
   *  including traverse() and find().
   *
   * @ingroup glibmmEnums
   */
  enum TraverseFlags
  {
    TRAVERSE_LEAVES = G_TRAVERSE_LEAVES, /*!< Only leaf nodes should be visited. */
    TRAVERSE_NON_LEAVES = G_TRAVERSE_NON_LEAVES, /*!< Only non-leaf nodes should be visited. */
    TRAVERSE_ALL = G_TRAVERSE_ALL, /*!< All nodes should be visited. */
    TRAVERSE_MASK = G_TRAVERSE_MASK /*!< A mask of all traverse flags. */
  };

  /** Traverses a tree starting at the current node.
   * It calls the given function for each node visited. 
   * The traversal can be halted at any point by returning true from @a func.
   *
   * @param order The order in which nodes are visited.
   * @param flags Which types of children are to be visited.
   * @param max_depth The maximum depth of the traversal. 
   * Nodes below this depth will not be visited. 
   * If max_depth is -1 all nodes in the tree are visited.
   * If max_depth is 1, only the root is visited.
   * If max_depth is 2, the root and its children are visited. And so on.
   * @param func the slot to invoke for each visited child
   */
  void traverse(const TraverseFunc& func, TraverseType order = TRAVERSE_IN_ORDER, TraverseFlags flags = TRAVERSE_ALL, int max_depth = -1)
  {
    TraverseFunc func_copy = func;
    g_node_traverse(gobj(), (GTraverseType)order, (GTraverseFlags)flags, max_depth, c_callback_traverse, reinterpret_cast<gpointer>(&func_copy));
  }
  ;

  /** Calls a function for each of the children of a NodeTree.
   * Note that it doesn't descend beneath the child nodes.
   *
   * @param flags Wwhich types of children are to be visited.
   * @param func The slot to invoke for each visited node.
   */
  void foreach(const ForeachFunc& func, TraverseFlags flags = TRAVERSE_ALL)
  {
    ForeachFunc func_copy = func;
    g_node_children_foreach(gobj(), (GTraverseFlags)flags, c_callback_foreach, reinterpret_cast<gpointer>(&func_copy));
  }
  

  /** Finds the first child of a NodeTree with the given data.
   *
   * @param flags Which types of children are to be visited, one of TRAVERSE_ALL, TRAVERSE_LEAVES and TRAVERSE_NON_LEAVES.
   * @param data The data for which to search.
   * @return the found child, or 0 if the data is not found
   */
  NodeTree<T>* find_child(const T& the_data, TraverseFlags flags = TRAVERSE_ALL)
  {
    sigc::slot<void, GNode*, const T&, GNode**> real_slot = sigc::ptr_fun(on_compare_child);

    GNode* child = 0;
    typedef sigc::slot<void, GNode*> type_foreach_gnode_slot;
    type_foreach_gnode_slot bound_slot = sigc::bind(real_slot, the_data, &child);

    g_node_children_foreach(gobj(), (GTraverseFlags)flags, c_callback_foreach_compare_child, reinterpret_cast<gpointer>(&bound_slot));
    
    return wrap(child);
  }

  /** Finds the first child of a NodeTree with the given data.
   *
   * @param flags Which types of children are to be visited, one of TRAVERSE_ALL, TRAVERSE_LEAVES and TRAVERSE_NON_LEAVES.
   * @param data The data for which to search.
   * @return the found child, or 0 if the data is not found
   */
  const NodeTree<T>* find_child(const T& the_data, TraverseFlags flags = TRAVERSE_ALL) const
  {
    return const_cast<NodeTree<T>*>(this)->find_child(flags, the_data);
  }

  
  /** Finds a node in a tree.
   *
   * @param order The order in which nodes are visited: IN_ORDER, TRAVERSE_PRE_ORDER, TRAVERSE_POST_ORDER, or TRAVERSE_LEVEL_ORDER
   * @param flags Which types of children are to be visited: one of TRAVERSE_ALL, TRAVERSE_LEAVES and TRAVERSE_NON_LEAVES.
   * @param data The data for which to search.
   * @return The found node, or 0 if the data is not found.
   */
  NodeTree<T>* find(const T& the_data, TraverseType order = TRAVERSE_IN_ORDER, TraverseFlags flags = TRAVERSE_ALL)
  {
    //We use a sigc::slot for the C callback, so we can bind some extra data.
    sigc::slot<gboolean, GNode*, const T&, GNode**> real_slot = sigc::ptr_fun(on_compare_node);
    GNode* child = 0;

    typedef sigc::slot<gboolean, GNode*> type_traverse_gnode_slot;
    type_traverse_gnode_slot bound_slot = sigc::bind(real_slot, the_data, &child);

    g_node_traverse(const_cast<GNode*>(gobj()), (GTraverseType)order, (GTraverseFlags)flags, -1, c_callback_traverse_compare_node, reinterpret_cast<gpointer>(&bound_slot));

    return wrap(child);
  }

  /** Finds a node in a tree.
   *
   * @param order The order in which nodes are visited.
   * @param flags Which types of children are to be visited.
   * @param data The data for which to search.
   * @return The found node, or 0 if the data is not found.
   */
  const NodeTree<T>* find(const T& the_data, TraverseType order = TRAVERSE_IN_ORDER, TraverseFlags flags = TRAVERSE_ALL) const
  {
    return const_cast<NodeTree<T>*>(this)->find(order, flags, the_data);
  }
  

  /** Gets the position of the first child which contains the given data.
   *
   * @param data The data to find.
   * @return The index of the child which contains data, or -1 if the data is not found.
   */
  int child_index(const T& the_data) const
  {
    int n = 0;

    for(const NodeTree<T>* i = first_child();  i != 0; i = i->next_sibling())
    {
      if((i->data()) == the_data)
        return n;

      n++;
    }

    return -1;
  }
  

  /** Gets the position with respect to its siblings. 
   * child must be a child of node.
   * The first child is numbered 0, the second 1, and so on.
   *
   * @param child A child
   * @return The position of @a child with respect to its siblings.
   */
  int child_position(const NodeTree<T>& child) const
  {
    return g_node_child_position(const_cast<GNode*>(gobj()), const_cast<GNode*>(child.gobj()));
  }
  

  /** Gets the first child.
   *
   * @return The first child, or 0 if the node has no children. 
   */
  NodeTree<T>* first_child()
  {
    return wrap(g_node_first_child(gobj()));
  }

  /** Gets the first child.
   *
   * @return The first child, or 0 if the node has no children. 
   */
  const NodeTree<T>* first_child() const
  {
    return const_cast<NodeTree<T>*>(this)->first_child();
  }
  

  /** Gets the last child.
   *
   * @return The last child, or 0 if the node has no children.
   */
  NodeTree<T>* last_child()
  {
    return wrap(g_node_last_child(gobj()));
  }

  /** Gets the last child.
   *
   * @return The last child, or 0 if the node has no children.
   */
  const NodeTree<T>* last_child() const
  {
    return const_cast<NodeTree<T>*>(this)->last_child();
  }
  

  /** Gets the nth child.
   *
   * @return The nth child, or 0 if n is too large.
   */
  NodeTree<T>* nth_child(int n) 
  {
    return wrap(g_node_nth_child(gobj(), n));
  }

  /** Gets the nth child.
   *
   * @return The nth child, or 0 if n is too large.
   */
  const NodeTree<T>* nth_child(int n) const
  {
    return const_cast<NodeTree<T>*>(this)->nth_child(n);
  }
  
  
  /** Gets the first sibling
   * @return The first sibling, or 0 if the node has no siblings.
   */
  NodeTree<T>* first_sibling()
  {
    return wrap(g_node_first_sibling(gobj()));
  }

  /** Gets the first sibling
   * @return The first sibling, or 0 if the node has no siblings.
   */
  const NodeTree<T>* first_sibling() const
  {
    return const_cast<NodeTree<T>*>(this)->first_sibling();
  }
  

  /** Gets the previous sibling.
   *
   * @return The previous sibling, or 0 if the node has no siblings.
   */
  NodeTree<T>* prev_sibling()
  {
    return wrap(g_node_prev_sibling(gobj()));
  }

  /** Gets the previous sibling.
   *
   * @return The previous sibling, or 0 if the node has no siblings.
   */
  const NodeTree<T>* prev_sibling() const
  {
    return const_cast<NodeTree<T>*>(this)->prev_sibling();
  }
  

  /** Gets the next sibling
   *
   * @return The next sibling, or 0 if the node has no siblings.
   */
  NodeTree<T>* next_sibling()
  {
    return wrap(g_node_next_sibling(gobj()));
  }

  /** Gets the next sibling
   *
   * @return The next sibling, or 0 if the node has no siblings.
   */
  const NodeTree<T>* next_sibling() const
  {
    return const_cast<NodeTree<T>*>(this)->next_sibling();
  }
  

  /** Gets the last sibling.
   *
   * @return The last sibling, or 0 if the node has no siblings.
   */
  NodeTree<T>* last_sibling()
  {
    return wrap(g_node_last_sibling(gobj()));
  }

  /** Gets the last sibling.
   *
   * @return The last sibling, or 0 if the node has no siblings.
   */
  const NodeTree<T>* last_sibling() const
  {
    return const_cast<NodeTree<T>*>(this)->last_sibling();
  }
  

  /** Returns true if this is a leaf node.
   *
   * @return true if this is a leaf node.
   */
  bool is_leaf() const
  {
    return G_NODE_IS_LEAF(const_cast<GNode*>(gobj()));
  }

  /** Returns true if this is the root node.
   *
   * @return true if this is the root node.
   */
  bool is_root() const
  {
    return G_NODE_IS_ROOT(const_cast<GNode*>(gobj()));
  }

  /** Gets the depth of this node.
   * The root node has a depth of 1.
   * For the children of the root node the depth is 2. And so on.
   *
   * @return the depth of this node
   */
  guint depth() const
  {
    return g_node_depth(const_cast<GNode*>(gobj()));
  }
  

  /** Gets the number of nodes in a tree.
   *
   * @param flags Which types of children are to be counted: one of TRAVERSE_ALL, TRAVERSE_LEAVES and TRAVERSE_NON_LEAVES
   * @return The number of nodes in the tree.
   */
  guint node_count(TraverseFlags flags = TRAVERSE_ALL) const
  {
    return g_node_n_nodes(const_cast<GNode*>(gobj()), (GTraverseFlags)flags);
  }
  

  /** Gets the number children.
   *
   * @return The number of children.
   */
  guint child_count() const
  {
    return g_node_n_children(const_cast<GNode*>(gobj()));
  }
  

  /** Returns true if this is an ancestor of @a descendant.
   * This is true if this is the parent of @a descendant,
   * or if this is the grandparent of @a descendant etc.
   *
   * @param descendant A node.
   * @return true if this is an ancestor of descendant.
   */
  bool is_ancestor(const NodeTree<T>& descendant) const
  {
    return g_node_is_ancestor(const_cast<GNode*>(gobj()), const_cast<GNode*>(descendant.gobj()));
  }
  

  /** Gets the maximum height of all branches beneath this node.
   * This is the maximum distance from the node to all leaf nodes.
   * If root has no children, 1 is returned. If root has children, 2 is returned. And so on.
   *
   * @return The maximum height of all branches.
   */
  guint get_max_height() const
  {
    return g_node_max_height(const_cast<GNode*>(gobj()));
  }
  

  /** Unlinks a node from a tree, resulting in two separate trees.
   */
  void unlink()
  {
    g_node_unlink(gobj());
  }
  

#if 0 //Commented-out because people can just use the copy constructor.
  /** Recursively copies a node and it's data.
   *
   * Returns: a new node containing the copies of the data.
   */
  NodeTree<T>* copy_deep() const
  {
    //Use copy constructor instead of g_node_copy_deep to create C++ wrappers also not only the wrapped C objects.
    return new NodeTree<T>(*this);
  }
#endif
  

  /// Accessor for this node's data
  T& data()
  {
    return data_;
  }

  /// Accessor for this node's data
  const T& data() const
  {
    return data_;
  }

  /** Accessor for this node's parent.
   *
   * @return The node's parent.
   */
  const NodeTree<T>* parent() const
  {
    return wrap(gobj()->parent);
  }

  // Do not wrap this shallow copy function, because it is not useful:
  

private:

  void clear()
  {
    //Free the children (not just with g_node_destroy(), to avoid the leaking of C++ wrapper objects):
    while(NodeTree<T>* i = first_child())
      delete i;

    //Free the wrapped object (g_node_free not available)
    g_slice_free(GNode, gobject_);
    gobject_ = 0;
  }

  ///Create a new GNode, taking the contents of an existing node if one is specified.
  void clone(const NodeTree<T>* node = 0)
  {
    //Store the this pointer in the GNode so we can discover this wrapper later:
    gobject_ = g_node_new(reinterpret_cast<gpointer>(this));

    if(node)
    {
      //Prepend the copied children of @node to the constructing node.
      for(const NodeTree<T>* i = node->last_child();  i != 0; i = i->prev_sibling())
        prepend(*(new NodeTree<T>(*i)));
    }
  }

  /// Wrapper for invoking a TraverseFunc.
  static gboolean c_callback_traverse(GNode* node, gpointer slot)
  {
    const TraverseFunc* tf = reinterpret_cast<const TraverseFunc*>(slot);
    return (*tf)(*wrap(node));
  }

  /// Wrapper for invoking a ForeachFunc.
  static void c_callback_foreach(GNode* node, gpointer slot)
  {
    const ForeachFunc* ff = reinterpret_cast<const ForeachFunc*>(slot);
    (*ff)(*wrap(node));
  }

  /// Method for comparing a single child (Internal use).
  static void on_compare_child(GNode* node, const T& needle, GNode** result)
  {
    if((0 != result) && (wrap(node)->data() == needle))
    {
      *result = node;
    }
  }

  /// Wrapper for invoking a sigc::slot<void,GNode*> (Internal use).
  static void c_callback_foreach_compare_child(GNode* node, gpointer data)
  {
    const ForeachFunc* slot = reinterpret_cast<const ForeachFunc*>(data);
    (*slot)(*wrap(node));
  }

  /// Method for comparing a single node (Internal use).
  static gboolean on_compare_node(GNode* node, const T& needle, GNode** result)
  {
    if(wrap(node)->data() == needle)
    {
      *result = node;
      return TRUE;
    }
    return FALSE;
  }

  /// Wrapper for invoking a sigc::slot<gboolean,GNode*> (Internal use).
  static gboolean c_callback_traverse_compare_node(GNode* node, gpointer data)
  {
    const TraverseFunc* slot = reinterpret_cast<const TraverseFunc*>(data);
    return (*slot)(*wrap(node));
  }


  GNode* gobject_;
  T data_;


};

} // namespace Glib


#endif /* _GLIBMM_NODETREE_H */