This file is indexed.

/usr/include/InsightToolkit/Common/itkPeriodicBoundaryCondition.txx is in libinsighttoolkit3-dev 3.20.1+git20120521-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
/*=========================================================================

  Program:   Insight Segmentation & Registration Toolkit
  Module:    itkPeriodicBoundaryCondition.txx
  Language:  C++
  Date:      $Date$
  Version:   $Revision$

  Copyright (c) Insight Software Consortium. All rights reserved.
  See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even 
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR 
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/
#ifndef __itkPeriodicBoundaryCondition_txx
#define __itkPeriodicBoundaryCondition_txx
#include "itkConstNeighborhoodIterator.h"
#include "itkPeriodicBoundaryCondition.h"
namespace itk
{
template<class TImage>
typename PeriodicBoundaryCondition<TImage>::PixelType
PeriodicBoundaryCondition<TImage>
::operator()(const OffsetType& point_index, const OffsetType& boundary_offset,
             const NeighborhoodType *data) const
{
  typedef typename OffsetType::OffsetValueType OffsetValueType;
  const ConstNeighborhoodIterator<TImage> * iterator
    = dynamic_cast<const ConstNeighborhoodIterator<TImage> *>(data);
  typename TImage::PixelType *ptr;
  int linear_index = 0;
  unsigned int i;
  
  // Find the pointer of the closest boundary pixel

  // Return the value of the pixel at the closest boundary point.
  for (i = 0; i < ImageDimension; ++i)
    {
    linear_index += (point_index[i] + boundary_offset[i]) * data->GetStride(i);
    }
  ptr = data->operator[](linear_index);
  
  // Wrap the pointer around the image in the necessary dimensions.  If we have
  // reached this point, we can assume that we are on the edge of the BUFFERED
  // region of the image.  Boundary conditions are only invoked if touching the
  // actual memory boundary.

  // These are the step sizes for increments in each dimension of the image.
  const typename TImage::OffsetValueType * offset_table
    = iterator->GetImagePointer()->GetOffsetTable();
    
  
  for (i = 0; i < ImageDimension; ++i)
    {
    if (boundary_offset[i] != 0)
      { // If the neighborhood overlaps on the low edge, then wrap from the
      // high edge of the image.
      if (point_index[i] < static_cast<OffsetValueType>(iterator->GetRadius(i)))
        {
        ptr += iterator->GetImagePointer()->GetBufferedRegion().GetSize()[i] *
          offset_table[i] - boundary_offset[i] * offset_table[i];
        }
      else // wrap from the low side of the image
        {
        ptr -= iterator->GetImagePointer()->GetBufferedRegion().GetSize()[i] *
          offset_table[i] + boundary_offset[i] * offset_table[i];
        }
      }
    }
  
  return *ptr;
}

template<class TImage>
typename PeriodicBoundaryCondition<TImage>::PixelType
PeriodicBoundaryCondition<TImage>
::operator()(const OffsetType& point_index, const OffsetType& boundary_offset,
             const NeighborhoodType *data,
             const NeighborhoodAccessorFunctorType &neighborhoodAccessorFunctor) const
{
  typedef typename OffsetType::OffsetValueType OffsetValueType;
  const ConstNeighborhoodIterator<TImage> * iterator
    = dynamic_cast<const ConstNeighborhoodIterator<TImage> *>(data);
  typename TImage::PixelType *ptr;
  int linear_index = 0;
  unsigned int i;
  
  // Find the pointer of the closest boundary pixel
  //  std::cout << "Boundary offset = " << boundary_offset << std::endl;
  // std::cout << "point index = " << point_index << std::endl;


  // Return the value of the pixel at the closest boundary point.
  for (i = 0; i < ImageDimension; ++i)
    {
    linear_index += (point_index[i] + boundary_offset[i]) * data->GetStride(i);
    }
  ptr = data->operator[](linear_index);
  
  // Wrap the pointer around the image in the necessary dimensions.  If we have
  // reached this point, we can assume that we are on the edge of the BUFFERED
  // region of the image.  Boundary conditions are only invoked if touching the
  // actual memory boundary.

  // These are the step sizes for increments in each dimension of the image.
  const typename TImage::OffsetValueType * offset_table
    = iterator->GetImagePointer()->GetOffsetTable();
    
  
  for (i = 0; i < ImageDimension; ++i)
    {
    if (boundary_offset[i] != 0)
      { // If the neighborhood overlaps on the low edge, then wrap from the
      // high edge of the image.
      if (point_index[i] < static_cast<OffsetValueType>(iterator->GetRadius(i)))
        {
        ptr += iterator->GetImagePointer()->GetBufferedRegion().GetSize()[i] *
          offset_table[i] - boundary_offset[i] * offset_table[i];
        }
      else // wrap from the low side of the image
        {
        ptr -= iterator->GetImagePointer()->GetBufferedRegion().GetSize()[i] *
          offset_table[i] + boundary_offset[i] * offset_table[i];
        }
      }
    }
  
  return neighborhoodAccessorFunctor.Get(ptr);
}
} // end namespace itk

#endif