/usr/include/InsightToolkit/Numerics/itkRegularStepGradientDescentBaseOptimizer.h is in libinsighttoolkit3-dev 3.20.1+git20120521-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 | /*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: itkRegularStepGradientDescentBaseOptimizer.h
Language: C++
Date: $Date$
Version: $Revision$
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#ifndef __itkRegularStepGradientDescentBaseOptimizer_h
#define __itkRegularStepGradientDescentBaseOptimizer_h
#include "itkSingleValuedNonLinearOptimizer.h"
namespace itk
{
/** \class RegularStepGradientDescentBaseOptimizer
* \brief Implement a gradient descent optimizer
*
* \ingroup Numerics Optimizers
*/
class ITK_EXPORT RegularStepGradientDescentBaseOptimizer :
public SingleValuedNonLinearOptimizer
{
public:
/** Standard "Self" typedef. */
typedef RegularStepGradientDescentBaseOptimizer Self;
typedef SingleValuedNonLinearOptimizer Superclass;
typedef SmartPointer<Self> Pointer;
typedef SmartPointer<const Self> ConstPointer;
/** Method for creation through the object factory. */
itkNewMacro(Self);
/** Run-time type information (and related methods). */
itkTypeMacro( RegularStepGradientDescentBaseOptimizer,
SingleValuedNonLinearOptimizer );
/** Codes of stopping conditions. */
typedef enum {
GradientMagnitudeTolerance = 1,
StepTooSmall = 2,
ImageNotAvailable = 3,
CostFunctionError = 4,
MaximumNumberOfIterations = 5,
Unknown = 6
} StopConditionType;
/** Specify whether to minimize or maximize the cost function. */
itkSetMacro( Maximize, bool );
itkGetConstReferenceMacro( Maximize, bool );
itkBooleanMacro( Maximize );
bool GetMinimize( ) const
{ return !m_Maximize; }
void SetMinimize(bool v)
{ this->SetMaximize(!v); }
void MinimizeOn(void)
{ SetMaximize( false ); }
void MinimizeOff(void)
{ SetMaximize( true ); }
/** Start optimization. */
void StartOptimization( void );
/** Resume previously stopped optimization with current parameters.
* \sa StopOptimization */
void ResumeOptimization( void );
/** Stop optimization.
* \sa ResumeOptimization */
void StopOptimization( void );
/** Set/Get parameters to control the optimization process. */
itkSetMacro( MaximumStepLength, double );
itkSetMacro( MinimumStepLength, double );
itkSetMacro( RelaxationFactor, double );
itkSetMacro( NumberOfIterations, unsigned long );
itkSetMacro( GradientMagnitudeTolerance, double );
itkGetConstReferenceMacro( CurrentStepLength, double);
itkGetConstReferenceMacro( MaximumStepLength, double );
itkGetConstReferenceMacro( MinimumStepLength, double );
itkGetConstReferenceMacro( RelaxationFactor, double );
itkGetConstReferenceMacro( NumberOfIterations, unsigned long );
itkGetConstReferenceMacro( GradientMagnitudeTolerance, double );
itkGetConstMacro( CurrentIteration, unsigned int );
itkGetConstReferenceMacro( StopCondition, StopConditionType );
itkGetConstReferenceMacro( Value, MeasureType );
itkGetConstReferenceMacro( Gradient, DerivativeType );
/** Get the reason for termination */
virtual const std::string GetStopConditionDescription() const;
protected:
RegularStepGradientDescentBaseOptimizer();
virtual ~RegularStepGradientDescentBaseOptimizer() {};
void PrintSelf(std::ostream& os, Indent indent) const;
/** Advance one step following the gradient direction
* This method verifies if a change in direction is required
* and if a reduction in steplength is required. */
virtual void AdvanceOneStep( void );
/** Advance one step along the corrected gradient taking into
* account the steplength represented by factor.
* This method is invoked by AdvanceOneStep. It is expected
* to be overrided by optimization methods in non-vector spaces
* \sa AdvanceOneStep */
virtual void StepAlongGradient(
double,
const DerivativeType&)
{
ExceptionObject ex;
ex.SetLocation(__FILE__);
ex.SetDescription("This method MUST be overloaded in derived classes");
throw ex;
}
private:
RegularStepGradientDescentBaseOptimizer(const Self&); //purposely not implemented
void operator=(const Self&);//purposely not implemented
protected:
DerivativeType m_Gradient;
DerivativeType m_PreviousGradient;
bool m_Stop;
bool m_Maximize;
MeasureType m_Value;
double m_GradientMagnitudeTolerance;
double m_MaximumStepLength;
double m_MinimumStepLength;
double m_CurrentStepLength;
double m_RelaxationFactor;
StopConditionType m_StopCondition;
unsigned long m_NumberOfIterations;
unsigned long m_CurrentIteration;
OStringStream m_StopConditionDescription;
};
} // end namespace itk
#endif
|