/usr/include/InsightToolkit/Review/itkDiscreteGaussianDerivativeImageFunction.txx is in libinsighttoolkit3-dev 3.20.1+git20120521-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 | /*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: itkDiscreteGaussianDerivativeImageFunction.txx
Language: C++
Date: $Date$
Version: $Revision$
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#ifndef __itkDiscreteGaussianDerivativeImageFunction_txx
#define __itkDiscreteGaussianDerivativeImageFunction_txx
#include "itkDiscreteGaussianDerivativeImageFunction.h"
#include "itkNeighborhoodOperatorImageFilter.h"
namespace itk
{
/** Set the Input Image */
template <class TInputImage, class TOutput>
DiscreteGaussianDerivativeImageFunction<TInputImage,TOutput>
::DiscreteGaussianDerivativeImageFunction() :
m_MaximumError( 0.005 ),
m_MaximumKernelWidth( 30 ),
m_NormalizeAcrossScale( true ),
m_UseImageSpacing( true ),
m_InterpolationMode( NearestNeighbourInterpolation )
{
m_Variance.Fill(1.0);
m_Order.Fill(0);
m_Order[0] = 1; // by default calculate derivative in x
m_OperatorImageFunction = OperatorImageFunctionType::New();
}
/** Print self method */
template <class TInputImage, class TOutput>
void
DiscreteGaussianDerivativeImageFunction<TInputImage,TOutput>
::PrintSelf(std::ostream& os, Indent indent) const
{
this->Superclass::PrintSelf(os,indent);
os << indent << "UseImageSpacing: " << m_UseImageSpacing << std::endl;
os << indent << "NormalizeAcrossScale: " << m_NormalizeAcrossScale << std::endl;
os << indent << "Variance: " << m_Variance << std::endl;
os << indent << "Order: " << m_Order << std::endl;
os << indent << "MaximumError: " << m_MaximumError << std::endl;
os << indent << "MaximumKernelWidth: " << m_MaximumKernelWidth << std::endl;
os << indent << "InterpolationMode: " << m_InterpolationMode << std::endl;
os << indent << "OperatorArray: " << m_OperatorArray << std::endl;
os << indent << "DerivativeKernel: " << m_DerivativeKernel << std::endl;
os << indent << "OperatorImageFunction: " << m_OperatorImageFunction << std::endl;
}
/** Set the input image */
template <class TInputImage, class TOutput>
void
DiscreteGaussianDerivativeImageFunction<TInputImage,TOutput>
::SetInputImage( const InputImageType * ptr )
{
Superclass::SetInputImage(ptr);
m_OperatorImageFunction->SetInputImage(ptr);
}
/** Recompute the gaussian kernel used to evaluate indexes
* This should use a fastest Derivative Gaussian operator */
template <class TInputImage, class TOutput>
void
DiscreteGaussianDerivativeImageFunction<TInputImage,TOutput>
::RecomputeGaussianKernel()
{
// Create N operators (N=ImageDimension) with the order specified in m_Order
unsigned int idx;
for(unsigned int direction = 0;
direction < itkGetStaticConstMacro(ImageDimension2);
direction++ )
{
m_OperatorArray[direction].SetDirection( direction );
m_OperatorArray[direction].SetMaximumKernelWidth( m_MaximumKernelWidth );
m_OperatorArray[direction].SetMaximumError( m_MaximumError );
if( ( m_UseImageSpacing == true ) && ( this->GetInputImage() ) )
{
if ( this->GetInputImage()->GetSpacing()[direction] == 0.0)
{
itkExceptionMacro(<< "Pixel spacing cannot be zero");
}
else
{
m_OperatorArray[direction].SetSpacing(this->GetInputImage()->GetSpacing()[direction]);
}
}
// GaussianDerivativeOperator modifies the variance when setting
// image spacing
m_OperatorArray[direction].SetVariance( m_Variance[direction] );
m_OperatorArray[direction].SetOrder( m_Order[direction] );
m_OperatorArray[direction].SetNormalizeAcrossScale( m_NormalizeAcrossScale );
m_OperatorArray[direction].CreateDirectional();
}
// Now precompute the N-dimensional kernel. This fastest as we don't
// have to perform N convolutions for each point we calculate but
// only one.
typedef itk::Image<TOutput,itkGetStaticConstMacro(ImageDimension2)> KernelImageType;
typename KernelImageType::Pointer kernelImage = KernelImageType::New();
typedef typename KernelImageType::RegionType RegionType;
RegionType region;
typename RegionType::SizeType size;
size.Fill( 4 * m_OperatorArray[0].GetRadius()[0] + 1 );
region.SetSize( size );
kernelImage->SetRegions( region );
kernelImage->Allocate();
kernelImage->FillBuffer( itk::NumericTraits<TOutput>::Zero );
// Initially the kernel image will be an impulse at the center
typename KernelImageType::IndexType centerIndex;
centerIndex.Fill( 2 * m_OperatorArray[0].GetRadius()[0] ); // include also boundaries
kernelImage->SetPixel( centerIndex, itk::NumericTraits<TOutput>::One );
// Create an image region to be used later that does not include boundaries
RegionType kernelRegion;
size.Fill( 2 * m_OperatorArray[0].GetRadius()[0] + 1 );
typename RegionType::IndexType origin;
origin.Fill( m_OperatorArray[0].GetRadius()[0] );
kernelRegion.SetSize( size );
kernelRegion.SetIndex( origin );
// Now create an image filter to perform sucessive convolutions
typedef itk::NeighborhoodOperatorImageFilter<KernelImageType,KernelImageType>
NeighborhoodFilterType;
typename NeighborhoodFilterType::Pointer convolutionFilter = NeighborhoodFilterType::New();
for( unsigned int direction = 0; direction<itkGetStaticConstMacro(ImageDimension2); ++direction )
{
convolutionFilter->SetInput( kernelImage );
convolutionFilter->SetOperator( m_OperatorArray[direction] );
convolutionFilter->Update();
kernelImage = convolutionFilter->GetOutput();
kernelImage->DisconnectPipeline();
}
// Set the size of the kernel
m_DerivativeKernel.SetRadius( m_OperatorArray[0].GetRadius()[0] );
// Copy kernel image to neighborhood. Do not copy boundaries.
ImageRegionConstIterator<KernelImageType> it( kernelImage, kernelRegion );
it.GoToBegin();
idx = 0;
while( !it.IsAtEnd() )
{
m_DerivativeKernel[idx] = it.Get();
++idx;
++it;
}
}
/** Evaluate the function at the specifed index */
template <class TInputImage, class TOutput>
typename DiscreteGaussianDerivativeImageFunction<TInputImage,TOutput>::OutputType
DiscreteGaussianDerivativeImageFunction<TInputImage,TOutput>
::EvaluateAtIndex(const IndexType& index) const
{
OutputType derivative;
m_OperatorImageFunction->SetOperator( m_DerivativeKernel );
derivative = m_OperatorImageFunction->EvaluateAtIndex( index );
return derivative;
}
/** Evaluate the function at the specifed point */
template <class TInputImage, class TOutput>
typename DiscreteGaussianDerivativeImageFunction<TInputImage,TOutput>::OutputType
DiscreteGaussianDerivativeImageFunction<TInputImage,TOutput>
::Evaluate(const PointType& point) const
{
if( m_InterpolationMode == NearestNeighbourInterpolation )
{
IndexType index;
this->ConvertPointToNearestIndex( point , index );
return this->EvaluateAtIndex ( index );
}
else
{
ContinuousIndexType cindex;
#if ( ITK_VERSION_MAJOR < 3 ) || ( ITK_VERSION_MAJOR == 3 && ITK_VERSION_MINOR < 6 )
this->ConvertPointToContinousIndex( point, cindex );
#else
this->ConvertPointToContinuousIndex( point, cindex );
#endif
return this->EvaluateAtContinuousIndex( cindex );
}
}
/** Evaluate the function at specified ContinousIndex position.*/
template <class TInputImage, class TOutput>
typename DiscreteGaussianDerivativeImageFunction<TInputImage,TOutput>::OutputType
DiscreteGaussianDerivativeImageFunction<TInputImage,TOutput>
::EvaluateAtContinuousIndex(const ContinuousIndexType & cindex ) const
{
if( m_InterpolationMode == NearestNeighbourInterpolation )
{
IndexType index;
this->ConvertContinuousIndexToNearestIndex( cindex, index );
return this->EvaluateAtIndex( index );
}
else
{
unsigned int dim; // index over dimension
unsigned long neighbors = 1 << ImageDimension2;
// Compute base index = closet index below point
// Compute distance from point to base index
IndexType baseIndex;
double distance[ImageDimension2];
for( dim = 0; dim < ImageDimension2; dim++ )
{
baseIndex[dim] = Math::Floor<signed long>( cindex[dim] );
distance[dim] = cindex[dim] - static_cast< double >( baseIndex[dim] );
}
// Interpolated value is the weighted sum of each of the surrounding
// neighbors. The weight for each neighbor is the fraction overlap
// of the neighbor pixel with respect to a pixel centered on point.
TOutput value = NumericTraits<TOutput>::Zero;
TOutput totalOverlap = NumericTraits<TOutput>::Zero;
for( unsigned int counter = 0; counter < neighbors; counter++ )
{
double overlap = 1.0; // fraction overlap
unsigned int upper = counter; // each bit indicates upper/lower neighbour
IndexType neighIndex;
// get neighbor index and overlap fraction
for( dim = 0; dim < ImageDimension2; dim++ )
{
if ( upper & 1 )
{
neighIndex[dim] = baseIndex[dim] + 1;
overlap *= distance[dim];
}
else
{
neighIndex[dim] = baseIndex[dim];
overlap *= 1.0 - distance[dim];
}
upper >>= 1;
}
// get neighbor value only if overlap is not zero
if( overlap )
{
value += overlap * static_cast<TOutput>( this->EvaluateAtIndex( neighIndex ) );
totalOverlap += overlap;
}
if( totalOverlap == 1.0 )
{
// finished
break;
}
}
return ( static_cast<OutputType>( value ) );
}
}
} // end namespace itk
#endif
|