/usr/include/InsightToolkit/Review/itkOptMatchCardinalityImageToImageMetric.h is in libinsighttoolkit3-dev 3.20.1+git20120521-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 | /*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: itkOptMatchCardinalityImageToImageMetric.h
Language: C++
Date: $Date$
Version: $Revision$
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#ifndef __itkOptMatchCardinalityImageToImageMetric_h
#define __itkOptMatchCardinalityImageToImageMetric_h
/**
* TODO: This class needs to be more tightly integrated with the new
* multi-threaded ImageToImageMetric.
*/
#include "itkImageToImageMetric.h"
#include "itkCovariantVector.h"
#include "itkPoint.h"
#include "itkMultiThreader.h"
#include <vector>
namespace itk
{
/** \class MatchCardinalityImageToImageMetric
* \brief Computes similarity between two objects to be registered
*
* This Class is templated over the type of the fixed and moving
* images to be compared.
*
* This metric computes cardinality of the set of pixels that match
* exactly between the moving and fixed images. The spatial
* correspondance between both images is established through a
* Transform. Pixel values are taken from the Moving image. Their
* positions are mapped to the Fixed image and result in general in
* non-grid position on it. Values at these non-grid position of the
* Fixed image are interpolated using a user-selected Interpolator.
*
* This metric is designed for matching label maps. All pixel
* mismatches are considered equal whether they are between label 1
* and label 2 or between label 1 and label 500. In other words, the
* magnitude of an individual label mismatch is not relevant, or the
* occurence of a label mismatch is important.
*
* Given the nature of label maps, a nearest neighbor interpolator is
* the preferred interpolator.
*
* The metric measure can measure the number of pixel matches (pixels
* with exactly the same label) or pixel mismatches (pixels with
* different labels). The returned metric value is the number of pixel
* matches (or mismatches) normalized by the number of pixels
* considered. The number of pixel considered is a function of the
* number of pixels in the overlap of the fixed and moving image
* buffers conditional on any assigned masks.
*
* \ingroup RegistrationMetrics
*/
template < class TFixedImage, class TMovingImage >
class ITK_EXPORT MatchCardinalityImageToImageMetric :
public ImageToImageMetric< TFixedImage, TMovingImage>
{
public:
/** Standard class typedefs. */
typedef MatchCardinalityImageToImageMetric Self;
typedef ImageToImageMetric<TFixedImage, TMovingImage > Superclass;
typedef SmartPointer<Self> Pointer;
typedef SmartPointer<const Self> ConstPointer;
/** Method for creation through the object factory. */
itkNewMacro(Self);
/** Run-time type information (and related methods). */
itkTypeMacro(MatchCardinalityImageToImageMetric, ImageToImageMetric);
/** Types transferred from the base class */
typedef typename Superclass::RealType RealType;
typedef typename Superclass::TransformType TransformType;
typedef typename Superclass::TransformPointer TransformPointer;
typedef typename Superclass::TransformParametersType TransformParametersType;
typedef typename Superclass::TransformJacobianType TransformJacobianType;
typedef typename Superclass::GradientPixelType GradientPixelType;
typedef typename Superclass::MeasureType MeasureType;
typedef typename Superclass::DerivativeType DerivativeType;
typedef typename Superclass::FixedImageType FixedImageType;
typedef typename Superclass::MovingImageType MovingImageType;
typedef typename Superclass::FixedImageConstPointer FixedImageConstPointer;
typedef typename Superclass::MovingImageConstPointer MovingImageConstPointer;
typedef typename Superclass::FixedImageRegionType FixedImageRegionType;
/** Get the derivatives of the match measure. */
void GetDerivative( const TransformParametersType &,
DerivativeType & derivative ) const
{
itkWarningMacro(<< "This metric does not provide metric derivatives.");
derivative.Fill( NumericTraits<ITK_TYPENAME DerivativeType::ValueType>::Zero );
}
/** Get the value of the metric at a particular parameter
* setting. The metric value is the number of pixel matches (or
* mis-matches, see SetMeasureMatches()) normalized by the number
* of pixels under consideration (within the buffer and if
* specified within a mask). In other words, the metric measure the
* percentage of pixel matches or mismatches. */
MeasureType GetValue( const TransformParametersType & parameters ) const;
/** Set/Get whether this metric measures pixel matches or pixel
* mismatches. Note the GetValue() returns the number of matches (or
* mismatches) normalized by the number of pixels considered. In
* other words, the metric measures the percentage of pixel matches
* or mismatches. The default is to measure matches
* (MeasureMatchesOn). */
itkSetMacro(MeasureMatches, bool);
itkBooleanMacro(MeasureMatches);
itkGetConstMacro(MeasureMatches, bool);
/** Return the multithreader used by this class. */
MultiThreader * GetMultiThreader()
{return m_Threader;}
protected:
MatchCardinalityImageToImageMetric();
virtual ~MatchCardinalityImageToImageMetric() {};
void PrintSelf(std::ostream& os, Indent indent) const;
/**
* Non-const version of GetValue(). This is a hack around various
* const issues with trying to spawn threads from the const version
* of GetValue().
*/
MeasureType GetNonconstValue( const TransformParametersType & parameters );
/**
* Thread worker routine to calculate the contribution of the a
* subregion to the overall metric. Can only be called from
* GetValue(). */
virtual
void ThreadedGetValue(const FixedImageRegionType& outputRegionForThread,
int threadId );
/** Split the FixedImageRegion into "num" pieces, returning
* region "i" as "splitRegion". This method is called "num" times. The
* regions must not overlap. The method returns the number of pieces that
* the routine is capable of splitting the FixedImageRegion,
* i.e. return value is less than or equal to "num". */
virtual
int SplitFixedRegion(int i,int num, FixedImageRegionType& splitRegion);
/** Static function used as a "callback" by the MultiThreader. The threading
* library will call this routine for each thread, which will delegate the
* control to ThreadedGetValue(). */
static ITK_THREAD_RETURN_TYPE ThreaderCallback( void *arg );
/** Internal structure used for passing image data into the threading library */
struct ThreadStruct
{
Pointer Metric;
};
private:
MatchCardinalityImageToImageMetric(const Self&); //purposely not implemented
void operator=(const Self&); //purposely not implemented
bool m_MeasureMatches;
std::vector<MeasureType> m_ThreadMatches;
std::vector<unsigned long> m_ThreadCounts;
/** Support processing data in multiple threads. Used by subclasses
* (e.g., ImageSource). */
MultiThreader::Pointer m_Threader;
};
} // end namespace itk
#ifndef ITK_MANUAL_INSTANTIATION
#include "itkMatchCardinalityImageToImageMetric.txx"
#endif
#endif
|