This file is indexed.

/usr/include/InsightToolkit/Review/itkTriangleHelper.txx is in libinsighttoolkit3-dev 3.20.1+git20120521-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
/*=========================================================================

  Program:   Insight Segmentation & Registration Toolkit
  Module:    itkTriangleHelper.txx
  Language:  C++
  Date:      $Date$
  Version:   $Rev$

  Copyright (c) Insight Software Consortium. All rights reserved.
  See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/

#ifndef __itkTriangleHelper_txx
#define __itkTriangleHelper_txx

#include "itkTriangleHelper.h"

namespace itk
{
template< typename TPoint >
bool TriangleHelper< TPoint >::
IsObtuse( const PointType& iA, const PointType& iB, const PointType& iC )
{
  VectorType v01 = iB - iA;
  VectorType v02 = iC - iA;
  VectorType v12 = iC - iB;

  if( v01 * v02 < 0.0 )
    {
    return true;
    }
  else
    {
    if( v02 * v12 < 0.0 )
      {
      return true;
      }
    else
      {
      if( v01 * -v12 < 0.0 )
        {
        return true;
        }
      else
        {
        return false;
        }
      }
    }
}

template< typename TPoint >
typename TriangleHelper< TPoint >::VectorType
TriangleHelper< TPoint >::ComputeNormal( const PointType& iA,
    const PointType& iB,
    const PointType& iC )
{
  CrossVectorType cross;
  VectorType w = cross ( iB - iA, iC - iA );
  CoordRepType l2 = w.GetSquaredNorm();

  if( l2 != 0.0 )
    {
    w /= vcl_sqrt( l2 );
    }

  return w;
}

template< typename TPoint >
typename TriangleHelper< TPoint >::CoordRepType
TriangleHelper< TPoint >::Cotangent ( const PointType& iA,
                                  const PointType& iB,
                                  const PointType& iC )
{
  VectorType v21 = iA - iB;
  CoordRepType v21_l2 = v21.GetSquaredNorm();
  if( v21_l2 != 0.0 )
    {
    v21 /= vcl_sqrt( v21_l2 );
    }
  else
    {
    }

  VectorType v23 = iC - iB;
  CoordRepType v23_l2 = v23.GetSquaredNorm();
  if( v23_l2 != 0.0 )
    {
    v23 /= vcl_sqrt( v23_l2 );
    }
  else
    {
    }

  CoordRepType bound( 0.999999 );

  CoordRepType cos_theta = vnl_math_max( -bound,
    vnl_math_min( bound, v21 * v23 ) );

  return 1.0 / vcl_tan( vcl_acos( cos_theta ) );
}

template< typename TPoint >
typename TriangleHelper< TPoint >::PointType
TriangleHelper< TPoint >::ComputeBarycenter (
      const CoordRepType& iA1, const PointType& iP1,
      const CoordRepType& iA2, const PointType& iP2,
      const CoordRepType& iA3, const PointType& iP3 )
{
  PointType oPt;

  CoordRepType total = iA1 + iA2 + iA3;
  if( total == 0. )
    {
    //in such case there is no barycenter; 
    oPt.Fill( 0. );
    return oPt; 
    }
  
  CoordRepType inv_total = 1. / total;  
  CoordRepType a1 = iA1 * inv_total;
  CoordRepType a2 = iA2 * inv_total;
  CoordRepType a3 = iA3 * inv_total;
  
  for ( unsigned int dim = 0; dim < PointDimension; ++dim )
    {
    oPt[dim] = a1 * iP1[dim] + a2 * iP2[dim] + a3 * iP3[dim];
    }

  return oPt;
}

template< typename TPoint >
typename TriangleHelper< TPoint >::CoordRepType
TriangleHelper< TPoint >::ComputeAngle( const PointType& iP1,
    const PointType& iP2,
    const PointType& iP3 )
{
  VectorType v21 = iP1 - iP2;
  VectorType v23 = iP3 - iP2;

  CoordRepType v21_l2 = v21.GetSquaredNorm();
  CoordRepType v23_l2 = v23.GetSquaredNorm();

  if( v21_l2 != 0.0 )
    v21 /= vcl_sqrt( v21_l2 );
  if( v23_l2 != 0.0 )
    v23 /= vcl_sqrt( v23_l2 );

  CoordRepType bound( 0.999999 );

  CoordRepType cos_theta = vnl_math_max( -bound,
    vnl_math_min( bound, v21 * v23 ) );

  return vcl_acos( cos_theta );
}

template< typename TPoint >
typename TriangleHelper< TPoint >::PointType
TriangleHelper< TPoint >::ComputeGravityCenter (
      const PointType& iP1,
      const PointType& iP2,
      const PointType& iP3 )
{
  return ComputeBarycenter( 1., iP1, 1., iP2, 1., iP3 );
}

template< typename TPoint >
typename TriangleHelper< TPoint >::PointType
TriangleHelper< TPoint >::ComputeCircumCenter (
      const PointType& iP1,
      const PointType& iP2,
      const PointType& iP3 )
{
  PointType oPt;
  oPt.Fill ( 0.0 );

  CoordRepType a = iP2.SquaredEuclideanDistanceTo ( iP3 );
  CoordRepType b = iP1.SquaredEuclideanDistanceTo ( iP3 );
  CoordRepType c = iP2.SquaredEuclideanDistanceTo ( iP1 );

  CoordRepType Weight[3];
  Weight[0] = a * ( b + c - a );
  Weight[1] = b * ( c + a - b );
  Weight[2] = c * ( a + b - c );

  return ComputeBarycenter( Weight[0], iP1, Weight[1], iP2, Weight[2], iP3 );
}

template< typename TPoint >
typename TriangleHelper< TPoint >::PointType
TriangleHelper< TPoint >::ComputeConstrainedCircumCenter ( const PointType& iP1,
      const PointType& iP2, const PointType& iP3 )
{
  PointType oPt;
  CoordRepType a = iP2.SquaredEuclideanDistanceTo ( iP3 );
  CoordRepType b = iP1.SquaredEuclideanDistanceTo ( iP3 );
  CoordRepType c = iP2.SquaredEuclideanDistanceTo ( iP1 );

  CoordRepType Weight[3];
  Weight[0] = a * ( b + c - a );
  Weight[1] = b * ( c + a - b );
  Weight[2] = c * ( a + b - c );

  for ( unsigned int i = 0; i < 3; i++ )
    {
    if ( Weight[i] < 0.0 )
      {
      Weight[i] = 0.;
      }
    }

  return ComputeBarycenter( Weight[0], iP1, Weight[1], iP2, Weight[2], iP3 );
}

template< typename TPoint >
typename TriangleHelper< TPoint >::CoordRepType
TriangleHelper< TPoint >::ComputeArea ( const PointType& iP1,
    const PointType& iP2,
    const PointType& iP3 )
{
  CoordRepType a = iP2.EuclideanDistanceTo ( iP3 );
  CoordRepType b = iP1.EuclideanDistanceTo ( iP3 );
  CoordRepType c = iP2.EuclideanDistanceTo ( iP1 );

  CoordRepType s = 0.5 * ( a + b + c );
  return static_cast< CoordRepType > ( vcl_sqrt ( s * ( s - a ) * ( s - b ) * ( s - c ) ) );
}

}

#endif