/usr/include/InsightToolkit/SpatialObject/itkGaussianSpatialObject.txx is in libinsighttoolkit3-dev 3.20.1+git20120521-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 | /*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: itkGaussianSpatialObject.txx
Language: C++
Date: $Date$
Version: $Revision$
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#ifndef __itkGaussianSpatialObject_txx
#define __itkGaussianSpatialObject_txx
#include <math.h>
#include "itkGaussianSpatialObject.h"
namespace itk
{
/** Constructor */
template< unsigned int TDimension >
GaussianSpatialObject< TDimension >
::GaussianSpatialObject()
{
this->SetTypeName("GaussianSpatialObject");
this->SetDimension(TDimension);
m_Radius = 1.0;
m_Sigma = 1.0;
m_Maximum = 1.0;
}
/** Destructor */
template< unsigned int TDimension >
GaussianSpatialObject< TDimension >
::~GaussianSpatialObject()
{
}
/** The z-score is the root mean square of the z-scores along
* each principal axis. */
template< unsigned int TDimension >
typename GaussianSpatialObject< TDimension >::ScalarType
GaussianSpatialObject< TDimension >
::SquaredZScore( const PointType& point ) const
{
if( !this->SetInternalInverseTransformToWorldToIndexTransform() )
{
return 0;
}
PointType transformedPoint =
this->GetInternalInverseTransform()->TransformPoint(point);
ScalarType r = 0;
for( unsigned int i=0; i<TDimension; i++ )
{
r += transformedPoint[i] * transformedPoint[i];
}
return r / ( m_Sigma * m_Sigma );
}
/** Test whether a point is inside or outside the object
* For computational speed purposes, it is faster if the method does not
* check the name of the class and the current depth */
template< unsigned int TDimension >
bool
GaussianSpatialObject< TDimension >
::IsInside( const PointType & point) const
{
if( m_Radius < vnl_math::eps )
{
return false;
}
this->ComputeLocalBoundingBox();
if( !this->GetBounds()->IsInside(point) )
{
return false;
}
if( !this->SetInternalInverseTransformToWorldToIndexTransform() )
{
return false;
}
PointType transformedPoint =
this->GetInternalInverseTransform()->TransformPoint(point);
double r = 0;
for(unsigned int i=0;i<TDimension;i++)
{
r += transformedPoint[i] * transformedPoint[i];
}
r /= ( m_Radius * m_Radius );
if( r < 1.0 )
{
return true;
}
return false;
}
/** Test if the given point is inside the boundary of the spatial
* object */
template< unsigned int TDimension >
bool
GaussianSpatialObject< TDimension >
::IsInside( const PointType & point, unsigned int depth, char * name ) const
{
itkDebugMacro( "Checking the point [" << point
<< "] is inside the GaussianSpatialObject" );
if(name == NULL)
{
if(IsInside(point))
{
return true;
}
}
else if(strstr(typeid(Self).name(), name))
{
if(IsInside(point))
{
return true;
}
}
return Superclass::IsInside(point, depth, name);
}
/** Compute the bounds of the Gaussian (as determined by the
* specified radius). */
template< unsigned int TDimension >
bool
GaussianSpatialObject< TDimension >
::ComputeLocalBoundingBox() const
{
if( this->GetBoundingBoxChildrenName().empty()
|| strstr(typeid(Self).name(),
this->GetBoundingBoxChildrenName().c_str()) )
{
// we need to set the minimum and maximum of the bounding box
// the center is always inside the bounding box.
PointType center;
center.Fill(0);
center = this->GetIndexToWorldTransform()->TransformPoint(center);
const_cast<BoundingBoxType *>(this->GetBounds())->SetMinimum(center);
const_cast<BoundingBoxType *>(this->GetBounds())->SetMaximum(center);
// First we compute the bounding box in the index space
typename BoundingBoxType::Pointer bb = BoundingBoxType::New();
PointType pntMin;
PointType pntMax;
unsigned int i;
for(i=0; i<TDimension;i++)
{
pntMin[i]=-m_Radius;
pntMax[i]=m_Radius;
}
bb->SetMinimum(pntMin);
bb->SetMaximum(pntMax);
bb->ComputeBoundingBox();
typedef typename BoundingBoxType::PointsContainer PointsContainer;
const PointsContainer * corners = bb->GetCorners();
typename BoundingBoxType::PointsContainer::const_iterator
it = corners->begin();
while(it != corners->end())
{
PointType pnt = this->GetIndexToWorldTransform()->TransformPoint(*it);
const_cast<BoundingBoxType *>(this->GetBounds())->ConsiderPoint(pnt);
++it;
}
}
return true;
}
/** Returns if the ellipse os evaluable at one point */
template< unsigned int TDimension >
bool
GaussianSpatialObject< TDimension >
::IsEvaluableAt( const PointType & point,
unsigned int depth, char * name ) const
{
itkDebugMacro( "Checking if the ellipse is evaluable at " << point );
return IsInside(point, depth, name);
}
/** Returns the value at one point */
template< unsigned int TDimension >
bool
GaussianSpatialObject< TDimension >
::ValueAt( const PointType & point, ScalarType & value, unsigned int depth,
char * name ) const
{
itkDebugMacro( "Getting the value of the ellipse at " << point );
if( IsInside(point, 0, name) )
{
double zsq = this->SquaredZScore(point);
value = m_Maximum * (ScalarType)vcl_exp(-zsq / 2.0 );
return true;
}
else
{
if( Superclass::IsEvaluableAt(point, depth, name) )
{
Superclass::ValueAt(point, value, depth, name);
return true;
}
else
{
value = this->GetDefaultOutsideValue();
return false;
}
}
return false;
}
/** Returns the sigma=m_Radius level set of the Gaussian function, as an
* EllipseSpatialObject. */
template< unsigned int TDimension >
typename EllipseSpatialObject< TDimension >::Pointer
GaussianSpatialObject< TDimension >
::GetEllipsoid() const
{
typedef itk::EllipseSpatialObject< TDimension > EllipseType;
typename EllipseType::Pointer ellipse = EllipseType::New();
ellipse->SetRadius( m_Radius );
ellipse->GetIndexToObjectTransform()->SetCenter(
this->GetIndexToObjectTransform()->GetCenter() );
ellipse->GetIndexToObjectTransform()->SetMatrix(
this->GetIndexToObjectTransform()->GetMatrix() );
ellipse->GetIndexToObjectTransform()->SetOffset(
this->GetIndexToObjectTransform()->GetOffset() );
ellipse->GetObjectToWorldTransform()->SetCenter(
this->GetObjectToWorldTransform()->GetCenter() );
ellipse->GetObjectToWorldTransform()->SetMatrix(
this->GetObjectToWorldTransform()->GetMatrix() );
ellipse->GetObjectToWorldTransform()->SetOffset(
this->GetObjectToWorldTransform()->GetOffset() );
ellipse->GetIndexToWorldTransform()->SetCenter(
this->GetIndexToWorldTransform()->GetCenter() );
ellipse->GetIndexToWorldTransform()->SetMatrix(
this->GetIndexToWorldTransform()->GetMatrix() );
ellipse->GetIndexToWorldTransform()->SetOffset(
this->GetIndexToWorldTransform()->GetOffset() );
return ellipse;
}
/** Print Self function */
template< unsigned int TDimension >
void
GaussianSpatialObject< TDimension >
::PrintSelf( std::ostream& os, Indent indent ) const
{
Superclass::PrintSelf(os, indent);
os << "Maximum: " << m_Maximum << std::endl;
os << "Radius: " << m_Radius << std::endl;
os << "Sigma: " << m_Sigma << std::endl;
}
} // end namespace itk
#endif
|