/usr/include/polylib/arithmetique.h is in libpolylib64-dev 5.22.5-3+dfsg.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 | /*
This file is part of PolyLib.
PolyLib is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
PolyLib is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with PolyLib. If not, see <http://www.gnu.org/licenses/>.
*/
/* header file built by cproto */
#ifndef arithmetique_header_included
#define arithmetique_header_included
/** package arithmetique
*
* $Id: arithmetique.h,v 1.24 2007/02/22 09:16:57 skimo Exp $
*
* Francois Irigoin, mai 1989
*
* Modifications
* - rewrite of DIVIDE which was wrong (Remi Triolet, Francois Irigoin,
* april 90)
* - simplification of POSITIVE_DIVIDE by suppressing one modulo
* - B.Meister : added addmul, operation existing in gmp and quite useful
* (05-2005)
*/
/* We would like linear to be generic about the "integer" type used
* to represent integer values. Thus Value is defined here. It should
* be changed to "int" "long" or "long long". In an ideal world,
* any source modification should be limited to this package.
*
* Indeed, we cannot switch easily to bignums that need constructors
* dans destructors... That would lead to too many modifications...
* C++ would make things easier and cleaner...
*
* Fabien COELHO
*/
#include <stdio.h>
#include <limits.h> /* Included for getting constants: INT_MAX, etc.. */
#ifdef GNUMP
#include <gmp.h>
#include <stdlib.h>
#include <string.h>
#ifndef mp_get_memory_functions
#if defined(__cplusplus)
extern "C" {
#endif
void mp_get_memory_functions(
void *(**alloc_func_ptr) (size_t),
void *(**realloc_func_ptr) (void *, size_t, size_t),
void (**free_func_ptr) (void *, size_t));
#if defined(__cplusplus)
}
#endif
#endif
#endif
#ifdef CLN
#include <sstream>
#define WANT_OBFUSCATING_OPERATORS
#include <cln/cln.h>
#endif
/*
# #### # # #### # #### # # ####
# # # ## # # # # # # ## # # #
# # # # # # # # # # # # # #
# # # # # # # ### # # # # # # # ###
# # # # ## # # # # # # ## # #
###### #### # # #### ###### #### # # ####
*/
/*
* Constants like LONG_LONG_MAX are not defined with ansi options, so they are
* defined here.
*/
#ifndef LONG_LONG_MAX
/* would fix on solaris:
* #define LONG_LONG_MAX LLONG_MAX
* #define LONG_LONG_MIN LLONG_MIN
*/
#ifndef __LONG_LONG_MAX__
#define __LONG_LONG_MAX__ 9223372036854775807LL
#endif
#undef LONG_LONG_MAX
#define LONG_LONG_MAX __LONG_LONG_MAX__
#undef LONG_LONG_MIN
#define LONG_LONG_MIN (-LONG_LONG_MAX-1)
#undef ULONG_LONG_MAX
#define ULONG_LONG_MAX (LONG_LONG_MAX * 2ULL + 1)
#endif
#if defined(LINEAR_VALUE_IS_LONGLONG)
#define LINEAR_VALUE_STRING "long long int"
typedef long long int Value;
#if defined(WIN32) && !defined(unix)
/* Mingw or Windows need an incompatible format string. */
# define VALUE_FMT "%I64d"
#else
# define VALUE_FMT "%lld"
#endif
#define VALUE_CONST(val) (val##LL)
/*
* CAUTION! 'VALUE_MIN' is defined as 'LONG_LONG_MIN +1' so as to preserve the
* symmetry (-min==max) and to have a NAN value. FC
*/
#define VALUE_NAN LONG_LONG_MIN
#define VALUE_MIN (LONG_LONG_MIN+1LL)
#define VALUE_MAX LONG_LONG_MAX
#define VALUE_SQRT_MIN long_to_value(LONG_MIN)
#define VALUE_SQRT_MAX long_to_value(LONG_MAX)
#define VALUE_ZERO (0LL)
#define VALUE_ONE (1LL)
#define VALUE_MONE (-1LL)
#define VALUE_TO_LONG(val) \
((long)((val)>(Value)LONG_MIN&&(val)<=(Value)LONG_MAX)?\
(val):(THROW(overflow_error), LONG_MIN))
#define VALUE_TO_INT(val) \
((int)((val)>(Value)INT_MIN&&(val)<=(Value)INT_MAX)?\
(val):(THROW(overflow_error), INT_MIN))
#define VALUE_TO_DOUBLE(val) ((double)(val))
/* #define VALUE_TO_FLOAT(val) ((float)(val)): Doesn't seem to work with gcc */
#define VALUE_TO_FLOAT(val) ((float)((int)(val)))
/* end LINEAR_VALUE_IS_LONGLONG */
/*
# #### # # ####
# # # ## # # #
# # # # # # #
# # # # # # # ###
# # # # ## # #
###### #### # # ####
*/
#elif defined(LINEAR_VALUE_IS_LONG)
#define LINEAR_VALUE_STRING "long int"
typedef long Value;
#define VALUE_FMT "%ld"
#define VALUE_CONST(val) (val##L)
#define VALUE_NAN LONG_MIN
#define VALUE_MIN (LONG_MIN+1L)
#define VALUE_MAX LONG_MAX
#define VALUE_SQRT_MIN int_to_value(INT_MIN)
#define VALUE_SQRT_MAX int_to_value(INT_MAX)
#define VALUE_ZERO 0L
#define VALUE_ONE 1L
#define VALUE_MONE -1L
#define VALUE_TO_LONG(val) (val)
#define VALUE_TO_INT(val) ((int)(val))
#define VALUE_TO_FLOAT(val) ((float)(val))
#define VALUE_TO_DOUBLE(val) ((double)(val))
/* end LINEAR_VALUE_IS_LONG */
/*
###### # #### ## #####
# # # # # # #
##### # # # # # #
# # # # ###### #
# # # # # # #
# ###### #### # # #
*/
/*
#elif defined(LINEAR_VALUE_IS_FLOAT)
#define LINEAR_VALUE_STRING "float"
typedef float Value;
#define VALUE_FMT "%f"
#define VALUE_CONST(val) (val)
#define VALUE_MIN FLOAT_MIN
#define VALUE_MAX FLOAT_MAX
#define VALUE_ZERO 0.0
#define VALUE_ONE 1.0
#define VALUE_MONE -1.0
#define VALUE_TO_LONG(val) ((long)(val))
#define VALUE_TO_INT(val) ((int)(val))
#define VALUE_TO_FLOAT(val) ((float)(val))
#define VALUE_TO_DOUBLE(val) ((double)(val))
*/
/* end LINEAR_VALUE_IS_FLOAT */
/*
#### # # ## ##### # #
# # # # # # # # # #
# ###### # # # # #######
# # # ###### ##### # #
# # # # # # # # # #
#### # # # # # #
*/
/* Char version is used to detect invalid assignments */
#elif defined(LINEAR_VALUE_IS_CHARS)
#define LINEAR_VALUE_STRING "char"
typedef union { char *s; long l; int i; float f; double d;} Value;
#define VALUE_FMT "%s"
#define VALUE_CONST(val) ((Value)(val))
#define VALUE_NAN ((Value)(long)0xdadeebee)
#define VALUE_MIN ((Value)(long)0xdeadbeef)
#define VALUE_MAX ((Value)(long)0xfeedabee)
#define VALUE_ZERO ((Value)0)
#define VALUE_ONE ((Value)1)
#define VALUE_MONE ((Value)-1)
#define VALUE_TO_LONG(val) (val.l)
#define VALUE_TO_INT(val) (val.i)
#define VALUE_TO_FLOAT(val) (val.f)
#define VALUE_TO_DOUBLE(val) (val.d)
/* end LINEAR_VALUE_IS_CHARS */
/*
# # # #####
# ## # #
# # # # #
# # # # #
# # ## #
# # # #
*/
#elif defined(LINEAR_VALUE_IS_INT)
#define LINEAR_VALUE_STRING "int"
typedef int Value;
#define VALUE_FMT "%d"
#define VALUE_CONST(val) (val)
#define VALUE_NAN INT_MIN
#define VALUE_MIN (INT_MIN+1)
#define VALUE_MAX INT_MAX
#define VALUE_ZERO 0
#define VALUE_ONE 1
#define VALUE_MONE -1
#define VALUE_TO_LONG(val) ((long)(val))
#define VALUE_TO_INT(val) ((int)(val))
#define VALUE_TO_FLOAT(val) ((float)(val))
#define VALUE_TO_DOUBLE(val) ((double)(val))
/* end LINEAR_VALUE_IS_INT */
#elif defined(GNUMP)
#define LINEAR_VALUE_STRING "gmp"
typedef mpz_t Value;
#define VALUE_FMT "%s"
/* don't use these, use value_set_si instead ! */
#undef VALUE_ZERO
#undef VALUE_ONE
#undef VALUE_MONE
#define VALUE_TO_LONG(val) (mpz_get_si(val))
#define VALUE_TO_INT(val) ((int)mpz_get_si(val))
#define VALUE_TO_FLOAT(val) ((float)((int)mpz_get_si(val)))
#define VALUE_TO_DOUBLE(val) (mpz_get_d(val))
#elif defined(CLN)
#define LINEAR_VALUE_STRING "cln"
typedef cln::cl_I Value;
#define VALUE_FMT "%s"
#define VALUE_TO_INT(val) (cln::cl_I_to_int(val))
#define VALUE_TO_DOUBLE(val) (cln::double_approx(val))
#endif
/* ***************** MACROS FOR MANIPULATING VALUES ******************** */
#if defined(CLN)
#define value_init(val) ((val).word = ((cln::cl_uint)cl_FN_tag) << cl_tag_shift)
#define value_assign(v1,v2) ((v1) = (v2))
#define value_set_si(val,i) ((val) = (i))
#define value_set_double(val,d) ((val) = cln::truncate1(cln::cl_R(d)))
#define value_clear(val) ((val) = 0)
#define value_read(val,str) ((val) = (str))
#define value_print(Dst,fmt,val) {std::ostringstream strm; strm << val; \
fprintf((Dst),(fmt),strm.str().c_str()); \
}
#define value_swap(v1,v2) {Value tmp; tmp = v2; \
v2 = v1; v1 = tmp; \
}
/* Boolean operators on 'Value' */
#define value_eq(v1,v2) ((v1)==(v2))
#define value_ne(v1,v2) ((v1)!=(v2))
#define value_gt(v1,v2) ((v1)>(v2))
#define value_ge(v1,v2) ((v1)>=(v2))
#define value_lt(v1,v2) ((v1)<(v2))
#define value_le(v1,v2) ((v1)<=(v2))
#define value_abs_eq(v1,v2) (cln::abs(v1)==cln::abs(v2))
#define value_abs_ne(v1,v2) (cln::abs(v1)!=cln::abs(v2))
#define value_abs_gt(v1,v2) (cln::abs(v1)>cln::abs(v2))
#define value_abs_ge(v1,v2) (cln::abs(v1)>=cln::abs(v2))
#define value_abs_lt(v1,v2) (cln::abs(v1)<cln::abs(v2))
#define value_abs_le(v1,v2) (cln::abs(v1)<=cln::abs(v2))
#define value_sign(val) (cln::signum(val))
#define value_compare(v1,v2) (cln::compare((v1),(v2)))
#define value_addto(ref,val1,val2) ((ref) = (val1)+(val2))
#define value_add_int(ref,val,vint) ((ref) = (val)+(vint))
#define value_addmul(ref, val1, val2) ((ref) += (val1)*(val2))
#define value_increment(ref,val) ((ref) = (val)+1)
#define value_multiply(ref,val1,val2) ((ref) = (val1)*(val2))
#define value_subtract(ref,val1,val2) ((ref) = (val1)-(val2))
#define value_sub_int(ref,val1,val2) ((ref) = (val1)-(val2))
#define value_decrement(ref,val) ((ref) = (val)-1)
#define value_division(ref,val1,val2) ((ref) = cln::truncate1(val1,val2))
#define value_divexact(ref,val1,val2) ((ref) = cln::exquo(val1,val2))
#define value_modulus(ref,val1,val2) ((ref) = cln::truncate2(val1,val2).remainder)
#define value_pdivision(ref,val1,val2) ((ref) = cln::floor1(val1,val2))
#define value_pmodulus(ref,val1,val2) ((ref) = cln::floor2(val1,val2).remainder)
#define value_oppose(ref,val) ((ref) = -(val))
#define value_absolute(ref,val) ((ref) = cln::abs(val))
#define value_minimum(ref,val1,val2) ((ref) = cln::min((val1),(val2)))
#define value_maximum(ref,val1,val2) ((ref) = cln::max((val1),(val2)))
#define value_gcd(ref,val1,val2) ((ref) = cln::gcd((val1),(val2)))
#define value_lcm(ref,val1,val2) ((ref) = cln::lcm((val1),(val2)))
#define value_orto(ref,val1,val2) ((ref) = (val1)|(val2))
#define value_andto(ref,val1,val2) ((ref) = (val1)&(val2))
/* Conditional operations on 'Value' */
#define value_pos_p(val) ((val) > 0)
#define value_neg_p(val) ((val) < 0)
#define value_posz_p(val) ((val) >= 0)
#define value_negz_p(val) ((val) <= 0)
#define value_zero_p(val) ((val) == 0)
#define value_notzero_p(val) ((val) != 0)
#define value_one_p(val) ((val) == 1)
#define value_notone_p(val) ((val) != 1)
#define value_mone_p(val) ((val) == -1)
#define value_notmone_p(val) ((val) != -1)
#define value_cmp_si(val, n) (cln::compare(val,n))
#elif defined(GNUMP)
/* Basic macros */
#define value_init(val) (mpz_init((val)))
#define value_assign(v1,v2) (mpz_set((v1),(v2)))
#define value_set_si(val,i) (mpz_set_si((val),(i)))
#define value_set_double(val,d)(mpz_set_d((val),(d)))
#define value_clear(val) (mpz_clear((val)))
#define value_read(val,str) (mpz_set_str((val),(str),10))
typedef void (*value_print_gmp_free_t)(void *, size_t);
#define value_print(Dst,fmt,val) {char *str; \
value_print_gmp_free_t gmp_free; \
str = mpz_get_str(0,10,(val)); \
fprintf((Dst),(fmt),str); \
mp_get_memory_functions(NULL, NULL, &gmp_free); \
(*gmp_free) (str, strlen(str)+1); \
}
#define value_swap(val1,val2) (mpz_swap(val1, val2))
/* Boolean operators on 'Value' */
#define value_eq(v1,v2) (mpz_cmp((v1),(v2)) == 0)
#define value_ne(v1,v2) (mpz_cmp((v1),(v2)) != 0)
#define value_gt(v1,v2) (mpz_cmp((v1),(v2)) > 0)
#define value_ge(v1,v2) (mpz_cmp((v1),(v2)) >= 0)
#define value_lt(v1,v2) (mpz_cmp((v1),(v2)) < 0)
#define value_le(v1,v2) (mpz_cmp((v1),(v2)) <= 0)
#define value_abs_eq(v1,v2) (mpz_cmpabs((v1),(v2)) == 0)
#define value_abs_ne(v1,v2) (mpz_cmpabs((v1),(v2)) != 0)
#define value_abs_gt(v1,v2) (mpz_cmpabs((v1),(v2)) > 0)
#define value_abs_ge(v1,v2) (mpz_cmpabs((v1),(v2)) >= 0)
#define value_abs_lt(v1,v2) (mpz_cmpabs((v1),(v2)) < 0)
#define value_abs_le(v1,v2) (mpz_cmpabs((v1),(v2)) <= 0)
/* Trian operators on 'Value' */
#define value_sign(val) (mpz_sgn(val))
#define value_compare(v1,v2) (mpz_cmp((v1),(v2)))
/* Binary operations on 'Value' */
#define value_addto(ref,val1,val2) (mpz_add((ref),(val1),(val2)))
#define value_add_int(ref,val,vint) (mpz_add_ui((ref),(val),(long)(vint)))
#define value_addmul(ref, val1, val2) (mpz_addmul((ref), (val1), (val2)))
#define value_increment(ref,val) (mpz_add_ui((ref),(val),1))
#define value_multiply(ref,val1,val2) (mpz_mul((ref),(val1),(val2)))
#define value_subtract(ref,val1,val2) (mpz_sub((ref),(val1),(val2)))
#define value_sub_int(ref,val,vint) (mpz_sub_ui((ref),(val),(long)(vint)))
#define value_decrement(ref,val) (mpz_sub_ui((ref),(val),1))
#define value_division(ref,val1,val2) (mpz_tdiv_q((ref),(val1),(val2)))
#define value_divexact(ref,val1,val2) (mpz_divexact((ref),(val1),(val2)))
#define value_modulus(ref,val1,val2) (mpz_tdiv_r((ref),(val1),(val2)))
#define value_pdivision(ref,val1,val2) (mpz_fdiv_q((ref),(val1),(val2)))
#define value_pmodulus(ref,val1,val2) (mpz_fdiv_r((ref),(val1),(val2)))
#define value_oppose(ref,val) (mpz_neg((ref),(val)))
#define value_absolute(ref,val) (mpz_abs((ref),(val)))
#define value_minimum(ref,val1,val2) (value_le((val1),(val2)) ? \
mpz_set((ref),(val1)) : \
mpz_set((ref),(val2)))
#define value_maximum(ref,val1,val2) (value_ge((val1),(val2)) ? \
mpz_set((ref),(val1)) : \
mpz_set((ref),(val2)))
#define value_gcd(ref,val1,val2) (mpz_gcd(ref,val1,val2))
#define value_lcm(ref,val1,val2) (mpz_lcm(ref,val1,val2))
#define value_orto(ref,val1,val2) (mpz_ior((ref),(val1),(val2)))
#define value_andto(ref,val1,val2) (mpz_and((ref),(val1),(val2)))
/* Conditional operations on 'Value' */
#define value_pos_p(val) (mpz_sgn(val) > 0)
#define value_neg_p(val) (mpz_sgn(val) < 0)
#define value_posz_p(val) (mpz_sgn(val) >= 0)
#define value_negz_p(val) (mpz_sgn(val) <= 0)
#define value_zero_p(val) (mpz_sgn(val) == 0)
#define value_notzero_p(val) (mpz_sgn(val) != 0)
#define value_one_p(val) (mpz_cmp_si(val,1) == 0)
#define value_notone_p(val) (mpz_cmp_si(val,1) != 0)
#define value_mone_p(val) (mpz_cmp_si(val,-1) ==0)
#define value_notmone_p(val) (mpz_cmp_si(val,-1) !=0)
#define value_cmp_si(val, n) (mpz_cmp_si(val,n))
/* ************************************************************************* */
#else /* 'Value' set to longlong|long|float|char *|int */
/* Basic Macros */
#define value_init(val) ((val) = 0)
#define value_assign(v1,v2) ((v1) = (v2))
#define value_set_si(val,i) ((val) = (Value)(i))
#define value_set_double(val,d) ((val) = (Value)(d))
#define value_clear(val) ((val) = 0)
#define value_read(val,str) (sscanf((str),VALUE_FMT,&(val)))
#define value_print(Dst,fmt,val) (fprintf((Dst),(fmt),(val)))
#define value_swap(v1,v2) {Value tmp; tmp = v2; \
v2 = v1; v1 = tmp; \
}
/* Cast to 'Value' */
#define int_to_value(i) ((Value)(i))
#define long_to_value(l) ((Value)(l))
#define float_to_value(f) ((Value)(f))
#define double_to_value(d) ((Value)(d))
/* Boolean operators on 'Value' */
#define value_eq(v1,v2) ((v1)==(v2))
#define value_ne(v1,v2) ((v1)!=(v2))
#define value_gt(v1,v2) ((v1)>(v2))
#define value_ge(v1,v2) ((v1)>=(v2))
#define value_lt(v1,v2) ((v1)<(v2))
#define value_le(v1,v2) ((v1)<=(v2))
#define value_abs_eq(v1,v2) (value_abs(v1)==value_abs(v2))
#define value_abs_ne(v1,v2) (value_abs(v1)!=value_abs(v2))
#define value_abs_gt(v1,v2) (value_abs(v1)>value_abs(v2))
#define value_abs_ge(v1,v2) (value_abs(v1)>=value_abs(v2))
#define value_abs_lt(v1,v2) (value_abs(v1)<value_abs(v2))
#define value_abs_le(v1,v2) (value_abs(v1)<=value_abs(v2))
/* Trian operators on 'Value' */
#define value_sign(v) (value_eq(v,VALUE_ZERO)?0:value_lt(v,VALUE_ZERO)?-1:1)
#define value_compare(v1,v2) (value_eq(v1,v2)?0:value_lt(v1,v2)?-1:1)
/* Binary operators on 'Value' */
#define value_plus(v1,v2) ((v1)+(v2))
#define value_div(v1,v2) ((v1)/(v2))
#define value_mod(v1,v2) ((v1)%(v2))
#define value_direct_multiply(v1,v2) ((v1)*(v2)) /* direct! */
#define value_minus(v1,v2) ((v1)-(v2))
#define value_pdiv(v1,v2) (DIVIDE((v1),(v2)))
#define value_pmod(v1,v2) (MODULO((v1),(v2)))
#define value_min(v1,v2) (value_le((v1),(v2))? (v1): (v2))
#define value_max(v1,v2) (value_ge((v1),(v2))? (v1): (v2))
#define value_or(v1,v2) ((v1)|(v2))
#define value_and(v1,v2) ((v1)&(v2))
#define value_lshift(v1,v2) ((v1)<<(v2))
#define value_rshift(v1,v2) ((v1)>>(v2))
/* Binary operations on 'Value' */
#define value_addto(ref,val1,val2) ((ref) = (val1)+(val2))
#define value_add_int(ref,val,vint) ((ref) = (val)+(Value)(vint))
#define value_addmul(ref, val1, val2) ((ref) += (val1)*(val2))
#define value_increment(ref,val) ((ref) = (val)+VALUE_ONE)
#define value_direct_product(ref,val1,val2) ((ref) = (val1)*(val2)) /* direct! */
#define value_multiply(ref,val1,val2) ((ref) = value_mult((val1),(val2)))
#define value_subtract(ref,val1,val2) ((ref) = (val1)-(val2))
#define value_sub_int(ref,val,vint) ((ref) = (val)-(Value)(vint))
#define value_decrement(ref,val) ((ref) = (val)-VALUE_ONE)
#define value_division(ref,val1,val2) ((ref) = (val1)/(val2))
#define value_divexact(ref,val1,val2) ((ref) = (val1)/(val2))
#define value_modulus(ref,val1,val2) ((ref) = (val1)%(val2))
#define value_pdivision(ref,val1,val2) ((ref) = value_pdiv((val1),(val2)))
#define value_pmodulus(ref,val1,val2) ((ref) = value_pmod((val1),(val2)))
#define value_oppose(ref,val) ((ref) = value_uminus((val)))
#define value_absolute(ref,val) ((ref) = value_abs((val)))
#define value_minimum(ref,val1,val2) ((ref) = value_min((val1),(val2)))
#define value_maximum(ref,val1,val2) ((ref) = value_max((val1),(val2)))
#define value_gcd(ref,val1,val2) Gcd((val1),(val2),&(ref))
#define value_lcm(ref,val1,val2) Lcm3((val1),(val2),&(ref))
#define value_orto(ref,val1,val2) ((ref) = (val1)|(val2))
#define value_andto(ref,val1,val2) ((ref) = (val1)&(val2))
/* Unary operators on 'Value' */
#define value_uminus(val) (-(val))
#define value_not(val) (~(val))
#define value_abs(val) (value_posz_p(val)? \
(val) : \
(value_ne((val), VALUE_NAN) ? \
value_uminus(val) : \
(THROW (overflow_error), VALUE_NAN )))
/* Conditional operations on 'Value' */
#define value_pos_p(val) value_gt(val,VALUE_ZERO)
#define value_neg_p(val) value_lt(val,VALUE_ZERO)
#define value_posz_p(val) value_ge(val,VALUE_ZERO)
#define value_negz_p(val) value_le(val,VALUE_ZERO)
#define value_zero_p(val) value_eq(val,VALUE_ZERO)
#define value_notzero_p(val) value_ne(val,VALUE_ZERO)
#define value_one_p(val) value_eq(val,VALUE_ONE)
#define value_notone_p(val) value_ne(val,VALUE_ONE)
#define value_mone_p(val) value_eq(val,VALUE_MONE)
#define value_notmone_p(val) value_ne(val,VALUE_MONE)
#define value_cmp_si(val, n) (val - (n))
#define value_min_p(val) value_eq(val,VALUE_MIN)
#define value_max_p(val) value_eq(val,VALUE_MAX)
#define value_notmin_p(val) value_ne(val,VALUE_MIN)
#define value_notmax_p(val) value_ne(val,VALUE_MAX)
#endif /* 'Value' set to |longlong|long|float|char *|int */
/* *********************** PROTECTED MULTIPLICATION ********************** */
#include "arithmetic_errors.h"
/* (|v| < MAX / |w|) => v*w is okay
* I could check ((v*w)/w)==v but a tmp would be useful
*/
#define value_protected_hard_idiv_multiply(v,w,throw) \
((value_zero_p(w) || value_zero_p(v))? VALUE_ZERO: \
value_lt(value_abs(v),value_div(VALUE_MAX,value_abs(w)))? \
value_direct_multiply(v,w): (throw, VALUE_NAN))
/* is a software idiv is assumed, quick check performed first
*/
#if defined(LINEAR_VALUE_ASSUME_SOFTWARE_IDIV)
#define value_protected_multiply(v,w,throw) \
((value_le(v,VALUE_SQRT_MAX) && value_le(w,VALUE_SQRT_MAX) && \
value_ge(v,VALUE_SQRT_MIN) && value_ge(w,VALUE_SQRT_MIN))? \
value_direct_multiply(v,w): value_protected_hard_idiv_multiply(v,w,throw))
#else
#define value_protected_multiply(v,w,throw) \
value_protected_hard_idiv_multiply(v,w,throw)
#endif
/* protected versions
*/
#define value_protected_mult(v,w) \
value_protected_multiply(v,w,THROW(overflow_error))
#define value_protected_product(v,w) \
v=value_protected_mult(v,w)
/* whether the default is protected or not
* this define makes no sense any more... well, doesn't matter. FC.
*/
#if defined(LINEAR_VALUE_PROTECT_MULTIPLY)
#define value_mult(v,w) value_protected_mult(v,w)
#define value_product(v,w) value_protected_product(v,w)
#else
/* I do enforce the protection whatever requested:-)
* prints out a message and throws the exception, hoping
* that some valid CATCH waits for it upwards.
*/
#define value_mult(v,w) \
value_protected_multiply(v,w, \
(fprintf(stderr,"[value_mult] value overflow!\n"),THROW(overflow_error)))
#define value_product(v,w) v=value_mult(v,w)
/* was:
* #define value_mult(v,w) value_direct_multiply(v,w)
* #define value_product(v,w) value_direct_product(v,w)
* could be: protected versions...
*/
#endif
/******************************************************* STATIC VALUE DEBUG */
/* LINEAR_VALUE_IS_CHARS is used for type checking.
* some operations are not allowed on (char*), thus
* they are switched to some other operation here...
*/
#if defined(LINEAR_VALUE_IS_CHARS)
#define value_fake_binary(v1,v2) ((Value)((v1).i+(v2).i))
#define value_bool_binary(v1,v2) ((int)((v1).i+(v2).i))
#undef float_to_value
#define float_to_value(f) ((Value)f)
#undef double_to_value
#define double_to_value(f) ((Value)f)
#undef value_uminus
#define value_uminus(v) (v)
#undef value_mult
#define value_mult(v1,v2) value_fake_binary(v1,v2)
#undef value_mod
#define value_mod(v1,v2) value_fake_binary(v1,v2)
#undef value_ge
#define value_ge(v1,v2) value_bool_binary(v1,v2)
#undef value_gt
#define value_gt(v1,v2) value_bool_binary(v1,v2)
#undef value_le
#define value_le(v1,v2) value_bool_binary(v1,v2)
#undef value_lt
#define value_lt(v1,v2) value_bool_binary(v1,v2)
#undef value_ne
#define value_ne(v1,v2) value_bool_binary(v1,v2)
#undef value_eq
#define value_eq(v1,v2) value_bool_binary(v1,v2)
#undef value_plus
#define value_plus(v1,v2) value_fake_binary(v1,v2)
#undef value_minus
#define value_minus(v1,v2) value_fake_binary(v1,v2)
#undef value_pdiv
#define value_pdiv(v1,v2) value_fake_binary(v1,v2)
#undef value_div
#define value_div(v1,v2) value_fake_binary(v1,v2)
#undef value_mod
#define value_mod(v1,v2) value_fake_binary(v1,v2)
#undef value_addto
#define value_addto(v1,v2) value_assign(v1,value_plus(v1,v2))
#undef value_subtract
#define value_subtract(v1,v2) value_addto(v1,v2)
#undef value_product
#define value_product(v1,v2) value_addto(v1,v2)
#undef value_modulus
#define value_modulus(v1,v2) value_addto(v1,v2)
#undef value_division
#define value_division(v1,v2) value_addto(v1,v2)
#undef value_divexact
#define value_divexact(v1,v2) value_addto(v1,v2)
#undef value_increment
#define value_increment(v) value_addto(v,VALUE_ONE)
#undef value_decrement
#define value_decrement(v) value_addto(v,VALUE_MONE)
#undef value_orto
#define value_orto(ref,val) value_addto(v1,v2)
#undef value_andto
#define value_andto(ref,val) value_addto(v1,v2)
#undef value_or
#define value_or(v1,v2) value_fake_binary(v1,v2)
#undef value_and
#define value_and(v1,v2) value_fake_binary(v1,v2)
#undef value_lshift
#define value_lshift(v1,v2) value_fake_binary(v1,v2)
#undef value_rshift
#define value_rshift(v1,v2) value_fake_binary(v1,v2)
#endif
/* for backward compatibility */
#define value_substract(ref,val1,val2) (value_subtract((ref),(val1),(val2)))
/* valeur absolue
*/
#ifndef ABS
#define ABS(x) (((x)>=0) ? (x) : -(x))
#endif
/* minimum et maximum
* if they are defined somewhere else, they are very likely
* to be defined the same way. Thus the previous def is not overwritten.
*/
#ifndef MIN
#define MIN(x,y) (((x)>=(y))?(y):(x))
#endif
#ifndef MAX
#define MAX(x,y) (((x)>=(y))?(x):(y))
#endif
/* signe d'un entier: -1, 0 ou 1 */
#define SIGN(x) (((x)>0)? 1 : ((x)==0? 0 : -1))
/* division avec reste toujours positif
* basee sur les equations:
* a/(-b) = - (a/b)
* (-a)/b = - ((a+b-1)/b)
* ou a et b sont des entiers positifs
*/
#define DIVIDE(x,y) ((y)>0? POSITIVE_DIVIDE(x,y) : \
-POSITIVE_DIVIDE((x),(-(y))))
/* division avec reste toujours positif quand y est positif: assert(y>=0) */
#define POSITIVE_DIVIDE(x,y) ((x)>0 ? (x)/(y) : - (-(x)+(y)-1)/(y))
/* modulo a resultat toujours positif */
#define MODULO(x,y) ((y)>0 ? POSITIVE_MODULO(x,y) : POSITIVE_MODULO(-x,-y))
/* modulo par rapport a un nombre positif: assert(y>=0)
*
* Ce n'est pas la macro la plus efficace que j'aie jamais ecrite: il faut
* faire, dans le pire des cas, deux appels a la routine .rem, qui n'est
* surement pas plus cablee que la division ou la multiplication
*/
#define POSITIVE_MODULO(x,y) ((x) > 0 ? (x)%(y) : \
((x)%(y) == 0 ? 0 : ((y)-(-(x))%(y))))
/* errors.c */
extern unsigned int overflow_error;
extern unsigned int simplex_arithmetic_error;
extern unsigned int user_exception_error;
extern unsigned int parser_exception_error;
extern unsigned int any_exception_error;
extern unsigned int the_last_just_thrown_exception;
extern void dump_exception_stack_to_file(FILE * /*f*/);
extern void dump_exception_stack(void);
extern jmp_buf *push_exception_on_stack(int /*what*/, const char * /*function*/, const char * /*file*/, int /*line*/);
extern void pop_exception_from_stack(int /*what*/, const char * /*function*/, const char * /*file*/, int /*line*/);
extern void throw_exception(int /*what*/, const char * /*function*/, const char * /*file*/, int /*line*/);
#endif /* arithmetique_header_included */
|