/usr/lib/ruby/1.9.1/mathn.rb is in libruby1.9.1 1.9.3.194-8.1+deb7u5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 | #--
# $Release Version: 0.5 $
# $Revision: 1.1.1.1.4.1 $
##
# = mathn
#
# mathn is a library for changing the way Ruby does math. If you need
# more precise rounding with multiple division or exponentiation
# operations, then mathn is the right tool.
#
# Without mathn:
#
# 3 / 2 => 1 # Integer
#
# With mathn:
#
# 3 / 2 => 3/2 # Rational
#
# mathn features late rounding and lacks truncation of intermediate results:
#
# Without mathn:
#
# 20 / 9 * 3 * 14 / 7 * 3 / 2 # => 18
#
# With mathn:
#
# 20 / 9 * 3 * 14 / 7 * 3 / 2 # => 20
#
#
# When you require 'mathn', the libraries for Prime, CMath, Matrix and Vector
# are also loaded.
#
# == Copyright
#
# Author: Keiju ISHITSUKA (SHL Japan Inc.)
#--
# class Numeric follows to make this documentation findable in a reasonable
# location
class Numeric; end
require "cmath.rb"
require "matrix.rb"
require "prime.rb"
require "mathn/rational"
require "mathn/complex"
unless defined?(Math.exp!)
Object.instance_eval{remove_const :Math}
Math = CMath # :nodoc:
end
##
# When mathn is required, Fixnum's division and exponentiation are enhanced to
# return more precise values from mathematical expressions.
#
# 2/3*3 # => 0
# require 'mathn'
# 2/3*3 # => 2
class Fixnum
remove_method :/
##
# +/+ defines the Rational division for Fixnum.
#
# 1/3 # => (1/3)
alias / quo
alias power! ** unless method_defined? :power!
##
# Exponentiate by +other+
def ** (other)
if self < 0 && other.round != other
Complex(self, 0.0) ** other
else
power!(other)
end
end
end
##
# When mathn is required Bignum's division and exponentiation are enhanced to
# return more precise values from mathematical expressions.
class Bignum
remove_method :/
##
# +/+ defines the Rational division for Bignum.
#
# (2**72) / ((2**70) * 3) # => 4/3
alias / quo
alias power! ** unless method_defined? :power!
##
# Exponentiate by +other+
def ** (other)
if self < 0 && other.round != other
Complex(self, 0.0) ** other
else
power!(other)
end
end
end
##
# When mathn is required Rational is changed to simplify the use of Rational
# operations.
#
# Normal behaviour:
#
# Rational.new!(1,3) ** 2 # => Rational(1, 9)
# (1 / 3) ** 2 # => 0
#
# require 'mathn' behaviour:
#
# (1 / 3) ** 2 # => 1/9
class Rational
remove_method :**
##
# Exponentiate by +other+
#
# (1/3) ** 2 # => 1/9
def ** (other)
if other.kind_of?(Rational)
other2 = other
if self < 0
return Complex(self, 0.0) ** other
elsif other == 0
return Rational(1,1)
elsif self == 0
return Rational(0,1)
elsif self == 1
return Rational(1,1)
end
npd = numerator.prime_division
dpd = denominator.prime_division
if other < 0
other = -other
npd, dpd = dpd, npd
end
for elm in npd
elm[1] = elm[1] * other
if !elm[1].kind_of?(Integer) and elm[1].denominator != 1
return Float(self) ** other2
end
elm[1] = elm[1].to_i
end
for elm in dpd
elm[1] = elm[1] * other
if !elm[1].kind_of?(Integer) and elm[1].denominator != 1
return Float(self) ** other2
end
elm[1] = elm[1].to_i
end
num = Integer.from_prime_division(npd)
den = Integer.from_prime_division(dpd)
Rational(num,den)
elsif other.kind_of?(Integer)
if other > 0
num = numerator ** other
den = denominator ** other
elsif other < 0
num = denominator ** -other
den = numerator ** -other
elsif other == 0
num = 1
den = 1
end
Rational(num, den)
elsif other.kind_of?(Float)
Float(self) ** other
else
x , y = other.coerce(self)
x ** y
end
end
end
##
# When mathn is required, the Math module changes as follows:
#
# Standard Math module behaviour:
# Math.sqrt(4/9) # => 0.0
# Math.sqrt(4.0/9.0) # => 0.666666666666667
# Math.sqrt(- 4/9) # => Errno::EDOM: Numerical argument out of domain - sqrt
#
# After require 'mathn', this is changed to:
#
# require 'mathn'
# Math.sqrt(4/9) # => 2/3
# Math.sqrt(4.0/9.0) # => 0.666666666666667
# Math.sqrt(- 4/9) # => Complex(0, 2/3)
module Math
remove_method(:sqrt)
##
# Computes the square root of +a+. It makes use of Complex and
# Rational to have no rounding errors if possible.
#
# Math.sqrt(4/9) # => 2/3
# Math.sqrt(- 4/9) # => Complex(0, 2/3)
# Math.sqrt(4.0/9.0) # => 0.666666666666667
def sqrt(a)
if a.kind_of?(Complex)
abs = sqrt(a.real*a.real + a.imag*a.imag)
# if not abs.kind_of?(Rational)
# return a**Rational(1,2)
# end
x = sqrt((a.real + abs)/Rational(2))
y = sqrt((-a.real + abs)/Rational(2))
# if !(x.kind_of?(Rational) and y.kind_of?(Rational))
# return a**Rational(1,2)
# end
if a.imag >= 0
Complex(x, y)
else
Complex(x, -y)
end
elsif a.respond_to?(:nan?) and a.nan?
a
elsif a >= 0
rsqrt(a)
else
Complex(0,rsqrt(-a))
end
end
##
# Compute square root of a non negative number. This method is
# internally used by +Math.sqrt+.
def rsqrt(a)
if a.kind_of?(Float)
sqrt!(a)
elsif a.kind_of?(Rational)
rsqrt(a.numerator)/rsqrt(a.denominator)
else
src = a
max = 2 ** 32
byte_a = [src & 0xffffffff]
# ruby's bug
while (src >= max) and (src >>= 32)
byte_a.unshift src & 0xffffffff
end
answer = 0
main = 0
side = 0
for elm in byte_a
main = (main << 32) + elm
side <<= 16
if answer != 0
if main * 4 < side * side
applo = main.div(side)
else
applo = ((sqrt!(side * side + 4 * main) - side)/2.0).to_i + 1
end
else
applo = sqrt!(main).to_i + 1
end
while (x = (side + applo) * applo) > main
applo -= 1
end
main -= x
answer = (answer << 16) + applo
side += applo * 2
end
if main == 0
answer
else
sqrt!(a)
end
end
end
class << self
remove_method(:sqrt)
end
module_function :sqrt
module_function :rsqrt
end
##
# When mathn is required, Float is changed to handle Complex numbers.
class Float
alias power! **
##
# Exponentiate by +other+
def ** (other)
if self < 0 && other.round != other
Complex(self, 0.0) ** other
else
power!(other)
end
end
end
|