This file is indexed.

/usr/include/tesseract/genericvector.h is in libtesseract-dev 3.02.01-6.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
///////////////////////////////////////////////////////////////////////
// File:        genericvector.h
// Description: Generic vector class
// Author:      Daria Antonova
// Created:     Mon Jun 23 11:26:43 PDT 2008
//
// (C) Copyright 2007, Google Inc.
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
///////////////////////////////////////////////////////////////////////
//
#ifndef TESSERACT_CCUTIL_GENERICVECTOR_H_
#define TESSERACT_CCUTIL_GENERICVECTOR_H_

#include <stdio.h>
#include <stdlib.h>

#include "tesscallback.h"
#include "errcode.h"
#include "helpers.h"
#include "ndminx.h"

// Use PointerVector<T> below in preference to GenericVector<T*>, as that
// provides automatic deletion of pointers, [De]Serialize that works, and
// sort that works.
template <typename T>
class GenericVector {
 public:
  GenericVector() { this->init(kDefaultVectorSize); }
  explicit GenericVector(int size) { this->init(size); }

  // Copy
  GenericVector(const GenericVector& other) {
    this->init(other.size());
    this->operator+=(other);
  }
  GenericVector<T> &operator+=(const GenericVector& other);
  GenericVector<T> &operator=(const GenericVector& other);

  virtual ~GenericVector();

  // Reserve some memory.
  void reserve(int size);
  // Double the size of the internal array.
  void double_the_size();

  // Resizes to size and sets all values to t.
  void init_to_size(int size, T t);

  // Return the size used.
  int size() const {
    return size_used_;
  }

  int length() const {
    return size_used_;
  }

  // Return true if empty.
  bool empty() const {
    return size_used_ == 0;
  }

  // Return the object from an index.
  T &get(int index) const;
  T &back() const;
  T &operator[](int index) const;

  // Return the index of the T object.
  // This method NEEDS a compare_callback to be passed to
  // set_compare_callback.
  int get_index(T object) const;

  // Return true if T is in the array
  bool contains(T object) const;

  // Return true if the index is valid
  T contains_index(int index) const;

  // Push an element in the end of the array
  int push_back(T object);
  void operator+=(T t);

  // Push an element in the end of the array if the same
  // element is not already contained in the array.
  int push_back_new(T object);

  // Push an element in the front of the array
  // Note: This function is O(n)
  int push_front(T object);

  // Set the value at the given index
  void set(T t, int index);

  // Insert t at the given index, push other elements to the right.
  void insert(T t, int index);

  // Removes an element at the given index and
  // shifts the remaining elements to the left.
  virtual void remove(int index);

  // Truncates the array to the given size by removing the end.
  // If the current size is less, the array is not expanded.
  virtual void truncate(int size) {
    if (size < size_used_)
      size_used_ = size;
  }

  // Add a callback to be called to delete the elements when the array took
  // their ownership.
  void set_clear_callback(TessCallback1<T>* cb);

  // Add a callback to be called to compare the elements when needed (contains,
  // get_id, ...)
  void set_compare_callback(TessResultCallback2<bool, T const &, T const &>* cb);

  // Clear the array, calling the clear callback function if any.
  // All the owned callbacks are also deleted.
  // If you don't want the callbacks to be deleted, before calling clear, set
  // the callback to NULL.
  virtual void clear();

  // Delete objects pointed to by data_[i]
  void delete_data_pointers();

  // This method clears the current object, then, does a shallow copy of
  // its argument, and finally invalidates its argument.
  // Callbacks are moved to the current object;
  void move(GenericVector<T>* from);

  // Read/Write the array to a file. This does _NOT_ read/write the callbacks.
  // The callback given must be permanent since they will be called more than
  // once. The given callback will be deleted at the end.
  // If the callbacks are NULL, then the data is simply read/written using
  // fread (and swapping)/fwrite.
  // Returns false on error or if the callback returns false.
  // DEPRECATED. Use [De]Serialize[Classes] instead.
  bool write(FILE* f, TessResultCallback2<bool, FILE*, T const &>* cb) const;
  bool read(FILE* f, TessResultCallback3<bool, FILE*, T*, bool>* cb, bool swap);
  // Writes a vector of simple types to the given file. Assumes that bitwise
  // read/write of T will work. Returns false in case of error.
  virtual bool Serialize(FILE* fp) const;
  // Reads a vector of simple types from the given file. Assumes that bitwise
  // read/write will work with ReverseN according to sizeof(T).
  // Returns false in case of error.
  // If swap is true, assumes a big/little-endian swap is needed.
  virtual bool DeSerialize(bool swap, FILE* fp);
  // Writes a vector of classes to the given file. Assumes the existence of
  // bool T::Serialize(FILE* fp) const that returns false in case of error.
  // Returns false in case of error.
  bool SerializeClasses(FILE* fp) const;
  // Reads a vector of classes from the given file. Assumes the existence of
  // bool T::Deserialize(bool swap, FILE* fp) that returns false in case of
  // error. Also needs T::T() and T::T(constT&), as init_to_size is used in
  // this function. Returns false in case of error.
  // If swap is true, assumes a big/little-endian swap is needed.
  bool DeSerializeClasses(bool swap, FILE* fp);

  // Allocates a new array of double the current_size, copies over the
  // information from data to the new location, deletes data and returns
  // the pointed to the new larger array.
  // This function uses memcpy to copy the data, instead of invoking
  // operator=() for each element like double_the_size() does.
  static T *double_the_size_memcpy(int current_size, T *data) {
    T *data_new = new T[current_size * 2];
    memcpy(data_new, data, sizeof(T) * current_size);
    delete[] data;
    return data_new;
  }

  // Sorts the members of this vector using the less than comparator (cmp_lt),
  // which compares the values. Useful for GenericVectors to primitive types.
  // Will not work so great for pointers (unless you just want to sort some
  // pointers). You need to provide a specialization to sort_cmp to use
  // your type.
  void sort();

  // Sort the array into the order defined by the qsort function comparator.
  // The comparator function is as defined by qsort, ie. it receives pointers
  // to two Ts and returns negative if the first element is to appear earlier
  // in the result and positive if it is to appear later, with 0 for equal.
  void sort(int (*comparator)(const void*, const void*)) {
    qsort(data_, size_used_, sizeof(*data_), comparator);
  }

  // Searches the array (assuming sorted in ascending order, using sort()) for
  // an element equal to target and returns true if it is present.
  // Use binary_search to get the index of target, or its nearest candidate.
  bool bool_binary_search(const T& target) const {
    int index = binary_search(target);
    if (index >= size_used_)
      return false;
    return data_[index] == target;
  }
  // Searches the array (assuming sorted in ascending order, using sort()) for
  // an element equal to target and returns the index of the best candidate.
  // The return value is conceptually the largest index i such that
  // data_[i] <= target or 0 if target < the whole vector.
  // NOTE that this function uses operator> so really the return value is
  // the largest index i such that data_[i] > target is false.
  int binary_search(const T& target) const {
    int bottom = 0;
    int top = size_used_;
    do {
      int middle = (bottom + top) / 2;
      if (data_[middle] > target)
        top = middle;
      else
        bottom = middle;
    }
    while (top - bottom > 1);
    return bottom;
  }

  // Compact the vector by deleting elements using operator!= on basic types.
  // The vector must be sorted.
  void compact_sorted() {
    if (size_used_ == 0)
      return;

    // First element is in no matter what, hence the i = 1.
    int last_write = 0;
    for (int i = 1; i < size_used_; ++i) {
      // Finds next unique item and writes it.
      if (data_[last_write] != data_[i])
        data_[++last_write] = data_[i];
    }
    // last_write is the index of a valid data cell, so add 1.
    size_used_ = last_write + 1;
  }

  // Compact the vector by deleting elements for which delete_cb returns
  // true. delete_cb is a permanent callback and will be deleted.
  void compact(TessResultCallback1<bool, int>* delete_cb) {
    int new_size = 0;
    int old_index = 0;
    // Until the callback returns true, the elements stay the same.
    while (old_index < size_used_ && !delete_cb->Run(old_index++))
      ++new_size;
    // Now just copy anything else that gets false from delete_cb.
    for (; old_index < size_used_; ++old_index) {
      if (!delete_cb->Run(old_index)) {
        data_[new_size++] = data_[old_index];
      }
    }
    size_used_ = new_size;
    delete delete_cb;
  }

  T dot_product(const GenericVector<T>& other) const {
    T result = static_cast<T>(0);
    for (int i = MIN(size_used_, other.size_used_) - 1; i >= 0; --i)
      result += data_[i] * other.data_[i];
    return result;
  }

 protected:

  // Init the object, allocating size memory.
  void init(int size);

  // We are assuming that the object generally placed in thie
  // vector are small enough that for efficiency it makes sence
  // to start with a larger initial size.
  static const int kDefaultVectorSize = 4;
  inT32   size_used_;
  inT32   size_reserved_;
  T*    data_;
  TessCallback1<T>* clear_cb_;
  // Mutable because Run method is not const
  mutable TessResultCallback2<bool, T const &, T const &>* compare_cb_;
};

namespace tesseract {

template <typename T>
bool cmp_eq(T const & t1, T const & t2) {
  return t1 == t2;
}

// Used by sort()
// return < 0 if t1 < t2
// return 0 if t1 == t2
// return > 0 if t1 > t2
template <typename T>
int sort_cmp(const void* t1, const void* t2) {
  const T* a = static_cast<const T *> (t1);
  const T* b = static_cast<const T *> (t2);
  if (*a < *b) {
    return -1;
  } else if (*b < *a) {
    return 1;
  } else {
    return 0;
  }
}

// Used by PointerVector::sort()
// return < 0 if t1 < t2
// return 0 if t1 == t2
// return > 0 if t1 > t2
template <typename T>
int sort_ptr_cmp(const void* t1, const void* t2) {
  const T* a = *reinterpret_cast<T * const *>(t1);
  const T* b = *reinterpret_cast<T * const *>(t2);
  if (*a < *b) {
    return -1;
  } else if (*b < *a) {
    return 1;
  } else {
    return 0;
  }
}

// Subclass for a vector of pointers. Use in preference to GenericVector<T*>
// as it provides automatic deletion and correct serialization, with the
// corollary that all copy operations are deep copies of the pointed-to objects.
template<typename T>
class PointerVector : public GenericVector<T*> {
 public:
  PointerVector() : GenericVector<T*>() { }
  explicit PointerVector(int size) : GenericVector<T*>(size) { }
  virtual ~PointerVector() {
    // Clear must be called here, even though it is called again by the base,
    // as the base will call the wrong clear.
    clear();
  }
  // Copy must be deep, as the pointers will be automatically deleted on
  // destruction.
  PointerVector(const PointerVector& other) {
    this->init(other.size());
    this->operator+=(other);
  }
  PointerVector<T>& operator+=(const PointerVector& other) {
    this->reserve(this->size_used_ + other.size_used_);
    for (int i = 0; i < other.size(); ++i) {
      this->push_back(new T(*other.data_[i]));
    }
    return *this;
  }

  PointerVector<T>& operator=(const PointerVector& other) {
    this->truncate(0);
    this->operator+=(other);
    return *this;
  }

  // Removes an element at the given index and
  // shifts the remaining elements to the left.
  virtual void remove(int index) {
    delete GenericVector<T*>::data_[index];
    GenericVector<T*>::remove(index);
  }

  // Truncates the array to the given size by removing the end.
  // If the current size is less, the array is not expanded.
  virtual void truncate(int size) {
    for (int i = size; i < GenericVector<T*>::size_used_; ++i)
      delete GenericVector<T*>::data_[i];
    GenericVector<T*>::truncate(size);
  }

  // Compact the vector by deleting elements for which delete_cb returns
  // true. delete_cb is a permanent callback and will be deleted.
  void compact(TessResultCallback1<bool, const T*>* delete_cb) {
    int new_size = 0;
    int old_index = 0;
    // Until the callback returns true, the elements stay the same.
    while (old_index < GenericVector<T*>::size_used_ &&
           !delete_cb->Run(GenericVector<T*>::data_[old_index++]))
      ++new_size;
    // Now just copy anything else that gets false from delete_cb.
    for (; old_index < GenericVector<T*>::size_used_; ++old_index) {
      if (!delete_cb->Run(GenericVector<T*>::data_[old_index])) {
        GenericVector<T*>::data_[new_size++] =
            GenericVector<T*>::data_[old_index];
      } else {
        delete GenericVector<T*>::data_[old_index];
      }
    }
    GenericVector<T*>::size_used_ = new_size;
    delete delete_cb;
  }

  // Clear the array, calling the clear callback function if any.
  // All the owned callbacks are also deleted.
  // If you don't want the callbacks to be deleted, before calling clear, set
  // the callback to NULL.
  virtual void clear() {
    GenericVector<T*>::delete_data_pointers();
    GenericVector<T*>::clear();
  }

  // Writes a vector of simple types to the given file. Assumes that bitwise
  // read/write of T will work. Returns false in case of error.
  virtual bool Serialize(FILE* fp) const {
    inT32 used = GenericVector<T*>::size_used_;
    if (fwrite(&used, sizeof(used), 1, fp) != 1) return false;
    for (int i = 0; i < used; ++i) {
      inT8 non_null = GenericVector<T*>::data_[i] != NULL;
      if (fwrite(&non_null, sizeof(non_null), 1, fp) != 1) return false;
      if (non_null && !GenericVector<T*>::data_[i]->Serialize(fp)) return false;
    }
    return true;
  }
  // Reads a vector of simple types from the given file. Assumes that bitwise
  // read/write will work with ReverseN according to sizeof(T).
  // Also needs T::T(), as new T is used in this function.
  // Returns false in case of error.
  // If swap is true, assumes a big/little-endian swap is needed.
  virtual bool DeSerialize(bool swap, FILE* fp) {
    inT32 reserved;
    if (fread(&reserved, sizeof(reserved), 1, fp) != 1) return false;
    if (swap) Reverse32(&reserved);
    GenericVector<T*>::reserve(reserved);
    for (int i = 0; i < reserved; ++i) {
      inT8 non_null;
      if (fread(&non_null, sizeof(non_null), 1, fp) != 1) return false;
      T* item = NULL;
      if (non_null) {
        item = new T;
        if (!item->DeSerialize(swap, fp)) return false;
      }
      this->push_back(item);
    }
    return true;
  }

  // Sorts the items pointed to by the members of this vector using
  // t::operator<().
  void sort() {
    sort(&sort_ptr_cmp<T>);
  }
};

}  // namespace tesseract

// A useful vector that uses operator== to do comparisons.
template <typename T>
class GenericVectorEqEq : public GenericVector<T> {
 public:
  GenericVectorEqEq() {
    GenericVector<T>::set_compare_callback(
        NewPermanentTessCallback(tesseract::cmp_eq<T>));
  }
  GenericVectorEqEq(int size) : GenericVector<T>(size) {
    GenericVector<T>::set_compare_callback(
        NewPermanentTessCallback(tesseract::cmp_eq<T>));
  }
};

template <typename T>
void GenericVector<T>::init(int size) {
  size_used_ = 0;
  size_reserved_ = 0;
  data_ = 0;
  clear_cb_ = 0;
  compare_cb_ = 0;
  reserve(size);
}

template <typename T>
GenericVector<T>::~GenericVector() {
  clear();
}

// Reserve some memory. If the internal array contains elements, they are
// copied.
template <typename T>
void GenericVector<T>::reserve(int size) {
  if (size_reserved_ >= size || size <= 0)
    return;
  T* new_array = new T[size];
  for (int i = 0; i < size_used_; ++i)
    new_array[i] = data_[i];
  if (data_ != NULL) delete[] data_;
  data_ = new_array;
  size_reserved_ = size;
}

template <typename T>
void GenericVector<T>::double_the_size() {
  if (size_reserved_ == 0) {
    reserve(kDefaultVectorSize);
  }
  else {
    reserve(2 * size_reserved_);
  }
}

// Resizes to size and sets all values to t.
template <typename T>
void GenericVector<T>::init_to_size(int size, T t) {
  reserve(size);
  size_used_ = size;
  for (int i = 0; i < size; ++i)
    data_[i] = t;
}


// Return the object from an index.
template <typename T>
T &GenericVector<T>::get(int index) const {
  ASSERT_HOST(index >= 0 && index < size_used_);
  return data_[index];
}

template <typename T>
T &GenericVector<T>::operator[](int index) const {
 return data_[index];
}

template <typename T>
T &GenericVector<T>::back() const {
  ASSERT_HOST(size_used_ > 0);
  return data_[size_used_ - 1];
}

// Return the object from an index.
template <typename T>
void GenericVector<T>::set(T t, int index) {
  ASSERT_HOST(index >= 0 && index < size_used_);
  data_[index] = t;
}

// Shifts the rest of the elements to the right to make
// space for the new elements and inserts the given element
// at the specified index.
template <typename T>
void GenericVector<T>::insert(T t, int index) {
  ASSERT_HOST(index >= 0 && index < size_used_);
  if (size_reserved_ == size_used_)
    double_the_size();
  for (int i = size_used_; i > index; --i) {
    data_[i] = data_[i-1];
  }
  data_[index] = t;
  size_used_++;
}

// Removes an element at the given index and
// shifts the remaining elements to the left.
template <typename T>
void GenericVector<T>::remove(int index) {
  ASSERT_HOST(index >= 0 && index < size_used_);
  for (int i = index; i < size_used_ - 1; ++i) {
    data_[i] = data_[i+1];
  }
  size_used_--;
}

// Return true if the index is valindex
template <typename T>
T GenericVector<T>::contains_index(int index) const {
  return index >= 0 && index < size_used_;
}

// Return the index of the T object.
template <typename T>
int GenericVector<T>::get_index(T object) const {
  for (int i = 0; i < size_used_; ++i) {
    ASSERT_HOST(compare_cb_ != NULL);
    if (compare_cb_->Run(object, data_[i]))
      return i;
  }
  return -1;
}

// Return true if T is in the array
template <typename T>
bool GenericVector<T>::contains(T object) const {
  return get_index(object) != -1;
}

// Add an element in the array
template <typename T>
int GenericVector<T>::push_back(T object) {
  int index = 0;
  if (size_used_ == size_reserved_)
    double_the_size();
  index = size_used_++;
  data_[index] = object;
  return index;
}

template <typename T>
int GenericVector<T>::push_back_new(T object) {
  int index = get_index(object);
  if (index >= 0)
    return index;
  return push_back(object);
}

// Add an element in the array (front)
template <typename T>
int GenericVector<T>::push_front(T object) {
  if (size_used_ == size_reserved_)
    double_the_size();
  for (int i = size_used_; i > 0; --i)
    data_[i] = data_[i-1];
  data_[0] = object;
  ++size_used_;
  return 0;
}

template <typename T>
void GenericVector<T>::operator+=(T t) {
  push_back(t);
}

template <typename T>
GenericVector<T> &GenericVector<T>::operator+=(const GenericVector& other) {
  this->reserve(size_used_ + other.size_used_);
  for (int i = 0; i < other.size(); ++i) {
    this->operator+=(other.data_[i]);
  }
  return *this;
}

template <typename T>
GenericVector<T> &GenericVector<T>::operator=(const GenericVector& other) {
  this->truncate(0);
  this->operator+=(other);
  return *this;
}

// Add a callback to be called to delete the elements when the array took
// their ownership.
template <typename T>
void GenericVector<T>::set_clear_callback(TessCallback1<T>* cb) {
  clear_cb_ = cb;
}

// Add a callback to be called to delete the elements when the array took
// their ownership.
template <typename T>
void GenericVector<T>::set_compare_callback(TessResultCallback2<bool, T const &, T const &>* cb) {
  compare_cb_ = cb;
}

// Clear the array, calling the callback function if any.
template <typename T>
void GenericVector<T>::clear() {
  if (size_reserved_ > 0) {
    if (clear_cb_ != NULL)
      for (int i = 0; i < size_used_; ++i)
        clear_cb_->Run(data_[i]);
    delete[] data_;
    data_ = NULL;
    size_used_ = 0;
    size_reserved_ = 0;
  }
  if (clear_cb_ != NULL) {
    delete clear_cb_;
    clear_cb_ = NULL;
  }
  if (compare_cb_ != NULL) {
    delete compare_cb_;
    compare_cb_ = NULL;
  }
}

template <typename T>
void GenericVector<T>::delete_data_pointers() {
  for (int i = 0; i < size_used_; ++i)
    if (data_[i]) {
      delete data_[i];
    }
}


template <typename T>
bool GenericVector<T>::write(
    FILE* f, TessResultCallback2<bool, FILE*, T const &>* cb) const {
  if (fwrite(&size_reserved_, sizeof(size_reserved_), 1, f) != 1) return false;
  if (fwrite(&size_used_, sizeof(size_used_), 1, f) != 1) return false;
  if (cb != NULL) {
    for (int i = 0; i < size_used_; ++i) {
      if (!cb->Run(f, data_[i])) {
        delete cb;
        return false;
      }
    }
    delete cb;
  } else {
    if (fwrite(data_, sizeof(T), size_used_, f) != size_used_) return false;
  }
  return true;
}

template <typename T>
bool GenericVector<T>::read(FILE* f,
                            TessResultCallback3<bool, FILE*, T*, bool>* cb,
                            bool swap) {
  inT32 reserved;
  if (fread(&reserved, sizeof(reserved), 1, f) != 1) return false;
  if (swap) Reverse32(&reserved);
  reserve(reserved);
  if (fread(&size_used_, sizeof(size_used_), 1, f) != 1) return false;
  if (swap) Reverse32(&size_used_);
  if (cb != NULL) {
    for (int i = 0; i < size_used_; ++i) {
      if (!cb->Run(f, data_ + i, swap)) {
        delete cb;
        return false;
      }
    }
    delete cb;
  } else {
    if (fread(data_, sizeof(T), size_used_, f) != size_used_) return false;
    if (swap) {
      for (int i = 0; i < size_used_; ++i)
        ReverseN(&data_[i], sizeof(T));
    }
  }
  return true;
}

// Writes a vector of simple types to the given file. Assumes that bitwise
// read/write of T will work. Returns false in case of error.
template <typename T>
bool GenericVector<T>::Serialize(FILE* fp) const {
  if (fwrite(&size_used_, sizeof(size_used_), 1, fp) != 1) return false;
  if (fwrite(data_, sizeof(*data_), size_used_, fp) != size_used_) return false;
  return true;
}

// Reads a vector of simple types from the given file. Assumes that bitwise
// read/write will work with ReverseN according to sizeof(T).
// Returns false in case of error.
// If swap is true, assumes a big/little-endian swap is needed.
template <typename T>
bool GenericVector<T>::DeSerialize(bool swap, FILE* fp) {
  inT32 reserved;
  if (fread(&reserved, sizeof(reserved), 1, fp) != 1) return false;
  if (swap) Reverse32(&reserved);
  reserve(reserved);
  size_used_ = reserved;
  if (fread(data_, sizeof(T), size_used_, fp) != size_used_) return false;
  if (swap) {
    for (int i = 0; i < size_used_; ++i)
      ReverseN(&data_[i], sizeof(data_[i]));
  }
  return true;
}

// Writes a vector of classes to the given file. Assumes the existence of
// bool T::Serialize(FILE* fp) const that returns false in case of error.
// Returns false in case of error.
template <typename T>
bool GenericVector<T>::SerializeClasses(FILE* fp) const {
  if (fwrite(&size_used_, sizeof(size_used_), 1, fp) != 1) return false;
  for (int i = 0; i < size_used_; ++i) {
    if (!data_[i].Serialize(fp)) return false;
  }
  return true;
}

// Reads a vector of classes from the given file. Assumes the existence of
// bool T::Deserialize(bool swap, FILE* fp) that returns false in case of
// error. Alse needs T::T() and T::T(constT&), as init_to_size is used in
// this function. Returns false in case of error.
// If swap is true, assumes a big/little-endian swap is needed.
template <typename T>
bool GenericVector<T>::DeSerializeClasses(bool swap, FILE* fp) {
  uinT32 reserved;
  if (fread(&reserved, sizeof(reserved), 1, fp) != 1) return false;
  if (swap) Reverse32(&reserved);
  T empty;
  init_to_size(reserved, empty);
  for (int i = 0; i < reserved; ++i) {
    if (!data_[i].DeSerialize(swap, fp)) return false;
  }
  return true;
}

// This method clear the current object, then, does a shallow copy of
// its argument, and finally invalidates its argument.
template <typename T>
void GenericVector<T>::move(GenericVector<T>* from) {
  this->clear();
  this->data_ = from->data_;
  this->size_reserved_ = from->size_reserved_;
  this->size_used_ = from->size_used_;
  this->compare_cb_ = from->compare_cb_;
  this->clear_cb_ = from->clear_cb_;
  from->data_ = NULL;
  from->clear_cb_ = NULL;
  from->compare_cb_ = NULL;
  from->size_used_ = 0;
  from->size_reserved_ = 0;
}

template <typename T>
void GenericVector<T>::sort() {
  sort(&tesseract::sort_cmp<T>);
}

#endif  // TESSERACT_CCUTIL_GENERICVECTOR_H_