/usr/include/uhd/usrp/multi_usrp.hpp is in libuhd-dev 3.4.2-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 | //
// Copyright 2010-2011 Ettus Research LLC
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
//
#ifndef INCLUDED_UHD_USRP_MULTI_USRP_HPP
#define INCLUDED_UHD_USRP_MULTI_USRP_HPP
//define API capabilities for compile time detection of new features
#define UHD_USRP_MULTI_USRP_REF_SOURCES_API
#define UHD_USRP_MULTI_USRP_GET_RATES_API
#define UHD_USRP_MULTI_USRP_FRONTEND_CAL_API
#define UHD_USRP_MULTI_USRP_COMMAND_TIME_API
#define UHD_USRP_MULTI_USRP_BW_RANGE_API
#define UHD_USRP_MULTI_USRP_USER_REGS_API
#include <uhd/config.hpp>
#include <uhd/device.hpp>
#include <uhd/deprecated.hpp>
#include <uhd/types/ranges.hpp>
#include <uhd/types/stream_cmd.hpp>
#include <uhd/types/tune_request.hpp>
#include <uhd/types/tune_result.hpp>
#include <uhd/types/sensors.hpp>
#include <uhd/usrp/subdev_spec.hpp>
#include <uhd/usrp/dboard_iface.hpp>
#include <boost/shared_ptr.hpp>
#include <boost/utility.hpp>
#include <complex>
#include <string>
#include <vector>
namespace uhd{ namespace usrp{
/*!
* The Multi-USRP device class:
*
* This class facilitates ease-of-use for most use-case scenarios.
* The wrapper provides convenience functions to tune the devices,
* set the dboard gains, antennas, filters, and other properties.
* This class can be used to interface with a single USRP with
* one or more channels, or multiple USRPs in a homogeneous setup.
* All members take an optional parameter for board number or channel number.
* In the single device, single channel case, these parameters can be unspecified.
*
* When using a single device with multiple channels:
* - Channel mapping is determined by the frontend specifications
* - All channels share a common RX sample rate
* - All channels share a common TX sample rate
*
* When using multiple devices in a configuration:
* - Channel mapping is determined by the device address arguments
* - All boards share a common RX sample rate
* - All boards share a common TX sample rate
* - All boards share a common RX frontend specification size
* - All boards share a common TX frontend specification size
* - All boards must have synchronized times (see the set_time_*() calls)
*
* Example to setup channel mapping for multiple devices:
* <pre>
*
* //create a multi_usrp with two boards in the configuration
* device_addr_t dev_addr;
* dev_addr["addr0"] = "192.168.10.2"
* dev_addr["addr1"] = "192.168.10.3";
* multi_usrp::sptr dev = multi_usrp::make(dev_addr);
*
* //set the board on 10.2 to use the A RX frontend (RX channel 0)
* dev->set_rx_subdev_spec("A:A", 0);
*
* //set the board on 10.3 to use the B RX frontend (RX channel 1)
* dev->set_rx_subdev_spec("A:B", 1);
*
* //set both boards to use the AB TX frontend (TX channels 0 and 1)
* dev->set_tx_subdev_spec("A:AB", multi_usrp::ALL_MBOARDS);
*
* //now that all the channels are mapped, continue with configuration...
*
* </pre>
*/
class UHD_API multi_usrp : boost::noncopyable{
public:
typedef boost::shared_ptr<multi_usrp> sptr;
//! A wildcard motherboard index
static const size_t ALL_MBOARDS = size_t(~0);
//! A wildcard channel index
static const size_t ALL_CHANS = size_t(~0);
//! A wildcard gain element name
static const std::string ALL_GAINS;
/*!
* Make a new multi usrp from the device address.
* \param dev_addr the device address
* \return a new single usrp object
*/
static sptr make(const device_addr_t &dev_addr);
/*!
* Get the underlying device object.
* This is needed to get access to the streaming API and properties.
* \return the device object within this single usrp
*/
virtual device::sptr get_device(void) = 0;
//! Convenience method to get a RX streamer
rx_streamer::sptr get_rx_stream(const stream_args_t &args){
return this->get_device()->get_rx_stream(args);
}
//! Convenience method to get a TX streamer
tx_streamer::sptr get_tx_stream(const stream_args_t &args){
return this->get_device()->get_tx_stream(args);
}
/*******************************************************************
* Mboard methods
******************************************************************/
/*!
* Set the master clock rate.
* This controls the rate of the clock that feeds the FPGA DSP.
* On some devices, this re-tunes the clock to the specified rate.
* If the specified rate is not available, this method will throw.
* On other devices, this method notifies the software of the rate,
* but requires the the user has made the necessary hardware change.
* \param rate the new master clock rate in Hz
* \param mboard the motherboard index 0 to M-1
*/
virtual void set_master_clock_rate(double rate, size_t mboard = ALL_MBOARDS) = 0;
/*!
* Get the master clock rate.
* \param mboard the motherboard index 0 to M-1
* \return the master clock rate in Hz.
*/
virtual double get_master_clock_rate(size_t mboard = 0) = 0;
/*!
* Get a printable summary for this USRP configuration.
* \return a printable string
*/
virtual std::string get_pp_string(void) = 0;
/*!
* Get canonical name for this USRP motherboard.
* \param mboard which motherboard to query
* \return a string representing the name
*/
virtual std::string get_mboard_name(size_t mboard = 0) = 0;
/*!
* Get the current time in the usrp time registers.
* \param mboard which motherboard to query
* \return a timespec representing current usrp time
*/
virtual time_spec_t get_time_now(size_t mboard = 0) = 0;
/*!
* Get the time when the last pps pulse occured.
* \param mboard which motherboard to query
* \return a timespec representing the last pps
*/
virtual time_spec_t get_time_last_pps(size_t mboard = 0) = 0;
/*!
* Sets the time registers on the usrp immediately.
*
* If only one MIMO master is present in your configuration, set_time_now is
* safe to use because the slave's time automatically follows the master's time.
* Otherwise, this call cannot set the time synchronously across multiple devices.
* Please use the set_time_next_pps or set_time_unknown_pps calls with a PPS signal.
*
* \param time_spec the time to latch into the usrp device
* \param mboard the motherboard index 0 to M-1
*/
virtual void set_time_now(const time_spec_t &time_spec, size_t mboard = ALL_MBOARDS) = 0;
/*!
* Set the time registers on the usrp at the next pps tick.
* The values will not be latched in until the pulse occurs.
* It is recommended that the user sleep(1) after calling to ensure
* that the time registers will be in a known state prior to use.
*
* Note: Because this call sets the time on the "next" pps,
* the seconds in the time spec should be current seconds + 1.
*
* \param time_spec the time to latch into the usrp device
* \param mboard the motherboard index 0 to M-1
*/
virtual void set_time_next_pps(const time_spec_t &time_spec, size_t mboard = ALL_MBOARDS) = 0;
/*!
* Synchronize the times across all motherboards in this configuration.
* Use this method to sync the times when the edge of the PPS is unknown.
*
* Ex: Host machine is not attached to serial port of GPSDO
* and can therefore not query the GPSDO for the PPS edge.
*
* This is a 2-step process, and will take at most 2 seconds to complete.
* Upon completion, the times will be synchronized to the time provided.
*
* - Step1: wait for the last pps time to transition to catch the edge
* - Step2: set the time at the next pps (synchronous for all boards)
*
* \param time_spec the time to latch at the next pps after catching the edge
*/
virtual void set_time_unknown_pps(const time_spec_t &time_spec) = 0;
/*!
* Are the times across all motherboards in this configuration synchronized?
* Checks that all time registers are approximately close but not exact,
* given that the RTT may varying for a control packet transaction.
* \return true when all motherboards time registers are in sync
*/
virtual bool get_time_synchronized(void) = 0;
/*!
* Set the time at which the control commands will take effect.
*
* A timed command will back-pressure all subsequent timed commands,
* assuming that the subsequent commands occur within the time-window.
* If the time spec is late, the command will be activated upon arrival.
*
* \param time_spec the time at which the next command will activate
* \param mboard which motherboard to set the config
*/
virtual void set_command_time(const uhd::time_spec_t &time_spec, size_t mboard = ALL_MBOARDS) = 0;
/*!
* Clear the command time so future commands are sent ASAP.
*
* \param mboard which motherboard to set the config
*/
virtual void clear_command_time(size_t mboard = ALL_MBOARDS) = 0;
/*!
* Issue a stream command to the usrp device.
* This tells the usrp to send samples into the host.
* See the documentation for stream_cmd_t for more info.
*
* With multiple devices, the first stream command in a chain of commands
* should have a time spec in the near future and stream_now = false;
* to ensure that the packets can be aligned by their time specs.
*
* \param stream_cmd the stream command to issue
* \param chan the channel index 0 to N-1
*/
virtual void issue_stream_cmd(const stream_cmd_t &stream_cmd, size_t chan = ALL_CHANS) = 0;
/*!
* Set the clock configuration for the usrp device.
* DEPRECATED in favor of set time and clock source calls.
* This tells the usrp how to get a 10Mhz reference and PPS clock.
* See the documentation for clock_config_t for more info.
* \param clock_config the clock configuration to set
* \param mboard which motherboard to set the config
*/
virtual void set_clock_config(const clock_config_t &clock_config, size_t mboard = ALL_MBOARDS) = 0;
/*!
* Set the time source for the usrp device.
* This sets the method of time synchronization,
* typically a pulse per second or an encoded time.
* Typical options for source: external, MIMO.
* \param source a string representing the time source
* \param mboard which motherboard to set the config
*/
virtual void set_time_source(const std::string &source, const size_t mboard = ALL_MBOARDS) = 0;
/*!
* Get the currently set time source.
* \param mboard which motherboard to get the config
* \return the string representing the time source
*/
virtual std::string get_time_source(const size_t mboard) = 0;
/*!
* Get a list of possible time sources.
* \param mboard which motherboard to get the list
* \return a vector of strings for possible settings
*/
virtual std::vector<std::string> get_time_sources(const size_t mboard) = 0;
/*!
* Set the clock source for the usrp device.
* This sets the source for a 10 Mhz reference clock.
* Typical options for source: internal, external, MIMO.
* \param source a string representing the clock source
* \param mboard which motherboard to set the config
*/
virtual void set_clock_source(const std::string &source, const size_t mboard = ALL_MBOARDS) = 0;
/*!
* Get the currently set clock source.
* \param mboard which motherboard to get the config
* \return the string representing the clock source
*/
virtual std::string get_clock_source(const size_t mboard) = 0;
/*!
* Get a list of possible clock sources.
* \param mboard which motherboard to get the list
* \return a vector of strings for possible settings
*/
virtual std::vector<std::string> get_clock_sources(const size_t mboard) = 0;
/*!
* Get the number of USRP motherboards in this configuration.
*/
virtual size_t get_num_mboards(void) = 0;
/*!
* Get a motherboard sensor value.
* \param name the name of the sensor
* \param mboard the motherboard index 0 to M-1
* \return a sensor value object
*/
virtual sensor_value_t get_mboard_sensor(const std::string &name, size_t mboard = 0) = 0;
/*!
* Get a list of possible motherboard sensor names.
* \param mboard the motherboard index 0 to M-1
* \return a vector of sensor names
*/
virtual std::vector<std::string> get_mboard_sensor_names(size_t mboard = 0) = 0;
/*!
* Perform write on the user configuration register bus. These only exist if
* the user has implemented custom setting registers in the device FPGA.
* \param addr 8-bit register address
* \param data 32-bit register value
* \param mboard which motherboard to set the user register
*/
virtual void set_user_register(const boost::uint8_t addr, const boost::uint32_t data, size_t mboard = ALL_MBOARDS) = 0;
/*******************************************************************
* RX methods
******************************************************************/
/*!
* Set the RX frontend specification:
* The subdev spec maps a physical part of a daughter-board to a channel number.
* Set the subdev spec before calling into any methods with a channel number.
* The subdev spec must be the same size across all motherboards.
* \param spec the new frontend specification
* \param mboard the motherboard index 0 to M-1
*/
virtual void set_rx_subdev_spec(const uhd::usrp::subdev_spec_t &spec, size_t mboard = ALL_MBOARDS) = 0;
/*!
* Get the RX frontend specification.
* \param mboard the motherboard index 0 to M-1
* \return the frontend specification in use
*/
virtual uhd::usrp::subdev_spec_t get_rx_subdev_spec(size_t mboard = 0) = 0;
/*!
* Get the number of RX channels in this configuration.
* This is the number of USRPs times the number of RX channels per board,
* where the number of RX channels per board is homogeneous among all USRPs.
*/
virtual size_t get_rx_num_channels(void) = 0;
/*!
* Get the name of the RX frontend.
* \param chan the channel index 0 to N-1
* \return the frontend name
*/
virtual std::string get_rx_subdev_name(size_t chan = 0) = 0;
/*!
* Set the RX sample rate.
* \param rate the rate in Sps
* \param chan the channel index 0 to N-1
*/
virtual void set_rx_rate(double rate, size_t chan = ALL_CHANS) = 0;
/*!
* Gets the RX sample rate.
* \param chan the channel index 0 to N-1
* \return the rate in Sps
*/
virtual double get_rx_rate(size_t chan = 0) = 0;
/*!
* Get a range of possible RX rates.
* \param chan the channel index 0 to N-1
* \return the meta range of rates
*/
virtual meta_range_t get_rx_rates(size_t chan = 0) = 0;
/*!
* Set the RX center frequency.
* \param tune_request tune request instructions
* \param chan the channel index 0 to N-1
* \return a tune result object
*/
virtual tune_result_t set_rx_freq(
const tune_request_t &tune_request, size_t chan = 0
) = 0;
/*!
* Get the RX center frequency.
* \param chan the channel index 0 to N-1
* \return the frequency in Hz
*/
virtual double get_rx_freq(size_t chan = 0) = 0;
/*!
* Get the RX center frequency range.
* \param chan the channel index 0 to N-1
* \return a frequency range object
*/
virtual freq_range_t get_rx_freq_range(size_t chan = 0) = 0;
/*!
* Set the RX gain value for the specified gain element.
* For an empty name, distribute across all gain elements.
* \param gain the gain in dB
* \param name the name of the gain element
* \param chan the channel index 0 to N-1
*/
virtual void set_rx_gain(double gain, const std::string &name, size_t chan = 0) = 0;
//! A convenience wrapper for setting overall RX gain
void set_rx_gain(double gain, size_t chan = 0){
return this->set_rx_gain(gain, ALL_GAINS, chan);
}
/*!
* Get the RX gain value for the specified gain element.
* For an empty name, sum across all gain elements.
* \param name the name of the gain element
* \param chan the channel index 0 to N-1
* \return the gain in dB
*/
virtual double get_rx_gain(const std::string &name, size_t chan = 0) = 0;
//! A convenience wrapper for getting overall RX gain
double get_rx_gain(size_t chan = 0){
return this->get_rx_gain(ALL_GAINS, chan);
}
/*!
* Get the RX gain range for the specified gain element.
* For an empty name, calculate the overall gain range.
* \param name the name of the gain element
* \param chan the channel index 0 to N-1
* \return a gain range object
*/
virtual gain_range_t get_rx_gain_range(const std::string &name, size_t chan = 0) = 0;
//! A convenience wrapper for getting overall RX gain range
gain_range_t get_rx_gain_range(size_t chan = 0){
return this->get_rx_gain_range(ALL_GAINS, chan);
}
/*!
* Get the names of the gain elements in the RX chain.
* Gain elements are ordered from antenna to FPGA.
* \param chan the channel index 0 to N-1
* \return a vector of gain element names
*/
virtual std::vector<std::string> get_rx_gain_names(size_t chan = 0) = 0;
/*!
* Select the RX antenna on the frontend.
* \param ant the antenna name
* \param chan the channel index 0 to N-1
*/
virtual void set_rx_antenna(const std::string &ant, size_t chan = 0) = 0;
/*!
* Get the selected RX antenna on the frontend.
* \param chan the channel index 0 to N-1
* \return the antenna name
*/
virtual std::string get_rx_antenna(size_t chan = 0) = 0;
/*!
* Get a list of possible RX antennas on the frontend.
* \param chan the channel index 0 to N-1
* \return a vector of antenna names
*/
virtual std::vector<std::string> get_rx_antennas(size_t chan = 0) = 0;
/*!
* Get the locked status of the LO on the frontend.
* \param chan the channel index 0 to N-1
* \return true for locked
*/
UHD_DEPRECATED bool get_rx_lo_locked(size_t chan = 0){
return this->get_rx_sensor("lo_locked", chan).to_bool();
}
/*!
* Set the RX bandwidth on the frontend.
* \param bandwidth the bandwidth in Hz
* \param chan the channel index 0 to N-1
*/
virtual void set_rx_bandwidth(double bandwidth, size_t chan = 0) = 0;
/*!
* Get the RX bandwidth on the frontend.
* \param chan the channel index 0 to N-1
* \return the bandwidth in Hz
*/
virtual double get_rx_bandwidth(size_t chan = 0) = 0;
/*!
* Get the range of the possible RX bandwidth settings.
* \param chan the channel index 0 to N-1
* \return a range of bandwidths in Hz
*/
virtual meta_range_t get_rx_bandwidth_range(size_t chan = 0) = 0;
/*!
* Read the RSSI value on the RX frontend.
* \param chan the channel index 0 to N-1
* \return the rssi in dB
* \throw exception if RSSI readback not supported
*/
UHD_DEPRECATED double read_rssi(size_t chan = 0){
return this->get_rx_sensor("rssi", chan).to_real();
}
/*!
* Get the dboard interface object for the RX frontend.
* The dboard interface gives access to GPIOs, SPI, I2C, low-speed ADC and DAC.
* Use at your own risk!
* \param chan the channel index 0 to N-1
* \return the dboard interface sptr
*/
virtual dboard_iface::sptr get_rx_dboard_iface(size_t chan = 0) = 0;
/*!
* Get an RX frontend sensor value.
* \param name the name of the sensor
* \param chan the channel index 0 to N-1
* \return a sensor value object
*/
virtual sensor_value_t get_rx_sensor(const std::string &name, size_t chan = 0) = 0;
/*!
* Get a list of possible RX frontend sensor names.
* \param chan the channel index 0 to N-1
* \return a vector of sensor names
*/
virtual std::vector<std::string> get_rx_sensor_names(size_t chan = 0) = 0;
/*!
* Enable/disable the automatic RX DC offset correction.
* The automatic correction subtracts out the long-run average.
*
* When disabled, the averaging option operation is halted.
* Once halted, the average value will be held constant
* until the user re-enables the automatic correction
* or overrides the value by manually setting the offset.
*
* \param enb true to enable automatic DC offset correction
* \param chan the channel index 0 to N-1
*/
virtual void set_rx_dc_offset(const bool enb, size_t chan = ALL_CHANS) = 0;
/*!
* Set a constant RX DC offset value.
* The value is complex to control both I and Q.
* Only set this when automatic correction is disabled.
* \param offset the dc offset (1.0 is full-scale)
* \param chan the channel index 0 to N-1
*/
virtual void set_rx_dc_offset(const std::complex<double> &offset, size_t chan = ALL_CHANS) = 0;
/*!
* Set the RX frontend IQ imbalance correction.
* Use this to adjust the magnitude and phase of I and Q.
*
* \param correction the complex correction (1.0 is full-scale)
* \param chan the channel index 0 to N-1
*/
virtual void set_rx_iq_balance(const std::complex<double> &correction, size_t chan = ALL_CHANS) = 0;
/*******************************************************************
* TX methods
******************************************************************/
/*!
* Set the TX frontend specification:
* The subdev spec maps a physical part of a daughter-board to a channel number.
* Set the subdev spec before calling into any methods with a channel number.
* The subdev spec must be the same size across all motherboards.
* \param spec the new frontend specification
* \param mboard the motherboard index 0 to M-1
*/
virtual void set_tx_subdev_spec(const uhd::usrp::subdev_spec_t &spec, size_t mboard = ALL_MBOARDS) = 0;
/*!
* Get the TX frontend specification.
* \param mboard the motherboard index 0 to M-1
* \return the frontend specification in use
*/
virtual uhd::usrp::subdev_spec_t get_tx_subdev_spec(size_t mboard = 0) = 0;
/*!
* Get the number of TX channels in this configuration.
* This is the number of USRPs times the number of TX channels per board,
* where the number of TX channels per board is homogeneous among all USRPs.
*/
virtual size_t get_tx_num_channels(void) = 0;
/*!
* Get the name of the TX frontend.
* \param chan the channel index 0 to N-1
* \return the frontend name
*/
virtual std::string get_tx_subdev_name(size_t chan = 0) = 0;
/*!
* Set the TX sample rate.
* \param rate the rate in Sps
* \param chan the channel index 0 to N-1
*/
virtual void set_tx_rate(double rate, size_t chan = ALL_CHANS) = 0;
/*!
* Gets the TX sample rate.
* \param chan the channel index 0 to N-1
* \return the rate in Sps
*/
virtual double get_tx_rate(size_t chan = 0) = 0;
/*!
* Get a range of possible TX rates.
* \param chan the channel index 0 to N-1
* \return the meta range of rates
*/
virtual meta_range_t get_tx_rates(size_t chan = 0) = 0;
/*!
* Set the TX center frequency.
* \param tune_request tune request instructions
* \param chan the channel index 0 to N-1
* \return a tune result object
*/
virtual tune_result_t set_tx_freq(
const tune_request_t &tune_request, size_t chan = 0
) = 0;
/*!
* Get the TX center frequency.
* \param chan the channel index 0 to N-1
* \return the frequency in Hz
*/
virtual double get_tx_freq(size_t chan = 0) = 0;
/*!
* Get the TX center frequency range.
* \param chan the channel index 0 to N-1
* \return a frequency range object
*/
virtual freq_range_t get_tx_freq_range(size_t chan = 0) = 0;
/*!
* Set the TX gain value for the specified gain element.
* For an empty name, distribute across all gain elements.
* \param gain the gain in dB
* \param name the name of the gain element
* \param chan the channel index 0 to N-1
*/
virtual void set_tx_gain(double gain, const std::string &name, size_t chan = 0) = 0;
//! A convenience wrapper for setting overall TX gain
void set_tx_gain(double gain, size_t chan = 0){
return this->set_tx_gain(gain, ALL_GAINS, chan);
}
/*!
* Get the TX gain value for the specified gain element.
* For an empty name, sum across all gain elements.
* \param name the name of the gain element
* \param chan the channel index 0 to N-1
* \return the gain in dB
*/
virtual double get_tx_gain(const std::string &name, size_t chan = 0) = 0;
//! A convenience wrapper for getting overall TX gain
double get_tx_gain(size_t chan = 0){
return this->get_tx_gain(ALL_GAINS, chan);
}
/*!
* Get the TX gain range for the specified gain element.
* For an empty name, calculate the overall gain range.
* \param name the name of the gain element
* \param chan the channel index 0 to N-1
* \return a gain range object
*/
virtual gain_range_t get_tx_gain_range(const std::string &name, size_t chan = 0) = 0;
//! A convenience wrapper for getting overall TX gain range
gain_range_t get_tx_gain_range(size_t chan = 0){
return this->get_tx_gain_range(ALL_GAINS, chan);
}
/*!
* Get the names of the gain elements in the TX chain.
* Gain elements are ordered from antenna to FPGA.
* \param chan the channel index 0 to N-1
* \return a vector of gain element names
*/
virtual std::vector<std::string> get_tx_gain_names(size_t chan = 0) = 0;
/*!
* Select the TX antenna on the frontend.
* \param ant the antenna name
* \param chan the channel index 0 to N-1
*/
virtual void set_tx_antenna(const std::string &ant, size_t chan = 0) = 0;
/*!
* Get the selected TX antenna on the frontend.
* \param chan the channel index 0 to N-1
* \return the antenna name
*/
virtual std::string get_tx_antenna(size_t chan = 0) = 0;
/*!
* Get a list of possible TX antennas on the frontend.
* \param chan the channel index 0 to N-1
* \return a vector of antenna names
*/
virtual std::vector<std::string> get_tx_antennas(size_t chan = 0) = 0;
/*!
* Get the locked status of the LO on the frontend.
* \param chan the channel index 0 to N-1
* \return true for locked
*/
UHD_DEPRECATED bool get_tx_lo_locked(size_t chan = 0){
return this->get_tx_sensor("lo_locked", chan).to_bool();
}
/*!
* Set the TX bandwidth on the frontend.
* \param bandwidth the bandwidth in Hz
* \param chan the channel index 0 to N-1
*/
virtual void set_tx_bandwidth(double bandwidth, size_t chan = 0) = 0;
/*!
* Get the TX bandwidth on the frontend.
* \param chan the channel index 0 to N-1
* \return the bandwidth in Hz
*/
virtual double get_tx_bandwidth(size_t chan = 0) = 0;
/*!
* Get the range of the possible TX bandwidth settings.
* \param chan the channel index 0 to N-1
* \return a range of bandwidths in Hz
*/
virtual meta_range_t get_tx_bandwidth_range(size_t chan = 0) = 0;
/*!
* Get the dboard interface object for the TX frontend.
* The dboard interface gives access to GPIOs, SPI, I2C, low-speed ADC and DAC.
* Use at your own risk!
* \param chan the channel index 0 to N-1
* \return the dboard interface sptr
*/
virtual dboard_iface::sptr get_tx_dboard_iface(size_t chan = 0) = 0;
/*!
* Get an TX frontend sensor value.
* \param name the name of the sensor
* \param chan the channel index 0 to N-1
* \return a sensor value object
*/
virtual sensor_value_t get_tx_sensor(const std::string &name, size_t chan = 0) = 0;
/*!
* Get a list of possible TX frontend sensor names.
* \param chan the channel index 0 to N-1
* \return a vector of sensor names
*/
virtual std::vector<std::string> get_tx_sensor_names(size_t chan = 0) = 0;
/*!
* Set a constant TX DC offset value.
* The value is complex to control both I and Q.
* \param offset the dc offset (1.0 is full-scale)
* \param chan the channel index 0 to N-1
*/
virtual void set_tx_dc_offset(const std::complex<double> &offset, size_t chan = ALL_CHANS) = 0;
/*!
* Set the TX frontend IQ imbalance correction.
* Use this to adjust the magnitude and phase of I and Q.
*
* \param correction the complex correction (1.0 is full-scale)
* \param chan the channel index 0 to N-1
*/
virtual void set_tx_iq_balance(const std::complex<double> &correction, size_t chan = ALL_CHANS) = 0;
};
}}
#endif /* INCLUDED_UHD_USRP_MULTI_USRP_HPP */
|