This file is indexed.

/usr/share/pyshared/bzrlib/chk_map.py is in python-bzrlib 2.6.0~bzr6526-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
# Copyright (C) 2008-2011 Canonical Ltd
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA

"""Persistent maps from tuple_of_strings->string using CHK stores.

Overview and current status:

The CHKMap class implements a dict from tuple_of_strings->string by using a trie
with internal nodes of 8-bit fan out; The key tuples are mapped to strings by
joining them by \x00, and \x00 padding shorter keys out to the length of the
longest key. Leaf nodes are packed as densely as possible, and internal nodes
are all an additional 8-bits wide leading to a sparse upper tree.

Updates to a CHKMap are done preferentially via the apply_delta method, to
allow optimisation of the update operation; but individual map/unmap calls are
possible and supported. Individual changes via map/unmap are buffered in memory
until the _save method is called to force serialisation of the tree.
apply_delta records its changes immediately by performing an implicit _save.

TODO:
-----

Densely packed upper nodes.

"""

from __future__ import absolute_import

import heapq
import threading

from bzrlib import lazy_import
lazy_import.lazy_import(globals(), """
from bzrlib import (
    errors,
    )
""")
from bzrlib import (
    errors,
    lru_cache,
    osutils,
    registry,
    static_tuple,
    trace,
    )
from bzrlib.static_tuple import StaticTuple

# approx 4MB
# If each line is 50 bytes, and you have 255 internal pages, with 255-way fan
# out, it takes 3.1MB to cache the layer.
_PAGE_CACHE_SIZE = 4*1024*1024
# Per thread caches for 2 reasons:
# - in the server we may be serving very different content, so we get less
#   cache thrashing.
# - we avoid locking on every cache lookup.
_thread_caches = threading.local()
# The page cache.
_thread_caches.page_cache = None

def _get_cache():
    """Get the per-thread page cache.

    We need a function to do this because in a new thread the _thread_caches
    threading.local object does not have the cache initialized yet.
    """
    page_cache = getattr(_thread_caches, 'page_cache', None)
    if page_cache is None:
        # We are caching bytes so len(value) is perfectly accurate
        page_cache = lru_cache.LRUSizeCache(_PAGE_CACHE_SIZE)
        _thread_caches.page_cache = page_cache
    return page_cache


def clear_cache():
    _get_cache().clear()


# If a ChildNode falls below this many bytes, we check for a remap
_INTERESTING_NEW_SIZE = 50
# If a ChildNode shrinks by more than this amount, we check for a remap
_INTERESTING_SHRINKAGE_LIMIT = 20


def _search_key_plain(key):
    """Map the key tuple into a search string that just uses the key bytes."""
    return '\x00'.join(key)


search_key_registry = registry.Registry()
search_key_registry.register('plain', _search_key_plain)


class CHKMap(object):
    """A persistent map from string to string backed by a CHK store."""

    __slots__ = ('_store', '_root_node', '_search_key_func')

    def __init__(self, store, root_key, search_key_func=None):
        """Create a CHKMap object.

        :param store: The store the CHKMap is stored in.
        :param root_key: The root key of the map. None to create an empty
            CHKMap.
        :param search_key_func: A function mapping a key => bytes. These bytes
            are then used by the internal nodes to split up leaf nodes into
            multiple pages.
        """
        self._store = store
        if search_key_func is None:
            search_key_func = _search_key_plain
        self._search_key_func = search_key_func
        if root_key is None:
            self._root_node = LeafNode(search_key_func=search_key_func)
        else:
            self._root_node = self._node_key(root_key)

    def apply_delta(self, delta):
        """Apply a delta to the map.

        :param delta: An iterable of old_key, new_key, new_value tuples.
            If new_key is not None, then new_key->new_value is inserted
            into the map; if old_key is not None, then the old mapping
            of old_key is removed.
        """
        has_deletes = False
        # Check preconditions first.
        as_st = StaticTuple.from_sequence
        new_items = set([as_st(key) for (old, key, value) in delta
                         if key is not None and old is None])
        existing_new = list(self.iteritems(key_filter=new_items))
        if existing_new:
            raise errors.InconsistentDeltaDelta(delta,
                "New items are already in the map %r." % existing_new)
        # Now apply changes.
        for old, new, value in delta:
            if old is not None and old != new:
                self.unmap(old, check_remap=False)
                has_deletes = True
        for old, new, value in delta:
            if new is not None:
                self.map(new, value)
        if has_deletes:
            self._check_remap()
        return self._save()

    def _ensure_root(self):
        """Ensure that the root node is an object not a key."""
        if type(self._root_node) is StaticTuple:
            # Demand-load the root
            self._root_node = self._get_node(self._root_node)

    def _get_node(self, node):
        """Get a node.

        Note that this does not update the _items dict in objects containing a
        reference to this node. As such it does not prevent subsequent IO being
        performed.

        :param node: A tuple key or node object.
        :return: A node object.
        """
        if type(node) is StaticTuple:
            bytes = self._read_bytes(node)
            return _deserialise(bytes, node,
                search_key_func=self._search_key_func)
        else:
            return node

    def _read_bytes(self, key):
        try:
            return _get_cache()[key]
        except KeyError:
            stream = self._store.get_record_stream([key], 'unordered', True)
            bytes = stream.next().get_bytes_as('fulltext')
            _get_cache()[key] = bytes
            return bytes

    def _dump_tree(self, include_keys=False):
        """Return the tree in a string representation."""
        self._ensure_root()
        res = self._dump_tree_node(self._root_node, prefix='', indent='',
                                   include_keys=include_keys)
        res.append('') # Give a trailing '\n'
        return '\n'.join(res)

    def _dump_tree_node(self, node, prefix, indent, include_keys=True):
        """For this node and all children, generate a string representation."""
        result = []
        if not include_keys:
            key_str = ''
        else:
            node_key = node.key()
            if node_key is not None:
                key_str = ' %s' % (node_key[0],)
            else:
                key_str = ' None'
        result.append('%s%r %s%s' % (indent, prefix, node.__class__.__name__,
                                     key_str))
        if type(node) is InternalNode:
            # Trigger all child nodes to get loaded
            list(node._iter_nodes(self._store))
            for prefix, sub in sorted(node._items.iteritems()):
                result.extend(self._dump_tree_node(sub, prefix, indent + '  ',
                                                   include_keys=include_keys))
        else:
            for key, value in sorted(node._items.iteritems()):
                # Don't use prefix nor indent here to line up when used in
                # tests in conjunction with assertEqualDiff
                result.append('      %r %r' % (tuple(key), value))
        return result

    @classmethod
    def from_dict(klass, store, initial_value, maximum_size=0, key_width=1,
        search_key_func=None):
        """Create a CHKMap in store with initial_value as the content.

        :param store: The store to record initial_value in, a VersionedFiles
            object with 1-tuple keys supporting CHK key generation.
        :param initial_value: A dict to store in store. Its keys and values
            must be bytestrings.
        :param maximum_size: The maximum_size rule to apply to nodes. This
            determines the size at which no new data is added to a single node.
        :param key_width: The number of elements in each key_tuple being stored
            in this map.
        :param search_key_func: A function mapping a key => bytes. These bytes
            are then used by the internal nodes to split up leaf nodes into
            multiple pages.
        :return: The root chk of the resulting CHKMap.
        """
        root_key = klass._create_directly(store, initial_value,
            maximum_size=maximum_size, key_width=key_width,
            search_key_func=search_key_func)
        if type(root_key) is not StaticTuple:
            raise AssertionError('we got a %s instead of a StaticTuple'
                                 % (type(root_key),))
        return root_key

    @classmethod
    def _create_via_map(klass, store, initial_value, maximum_size=0,
                        key_width=1, search_key_func=None):
        result = klass(store, None, search_key_func=search_key_func)
        result._root_node.set_maximum_size(maximum_size)
        result._root_node._key_width = key_width
        delta = []
        for key, value in initial_value.items():
            delta.append((None, key, value))
        root_key = result.apply_delta(delta)
        return root_key

    @classmethod
    def _create_directly(klass, store, initial_value, maximum_size=0,
                         key_width=1, search_key_func=None):
        node = LeafNode(search_key_func=search_key_func)
        node.set_maximum_size(maximum_size)
        node._key_width = key_width
        as_st = StaticTuple.from_sequence
        node._items = dict([(as_st(key), val) for key, val
                                               in initial_value.iteritems()])
        node._raw_size = sum([node._key_value_len(key, value)
                              for key,value in node._items.iteritems()])
        node._len = len(node._items)
        node._compute_search_prefix()
        node._compute_serialised_prefix()
        if (node._len > 1
            and maximum_size
            and node._current_size() > maximum_size):
            prefix, node_details = node._split(store)
            if len(node_details) == 1:
                raise AssertionError('Failed to split using node._split')
            node = InternalNode(prefix, search_key_func=search_key_func)
            node.set_maximum_size(maximum_size)
            node._key_width = key_width
            for split, subnode in node_details:
                node.add_node(split, subnode)
        keys = list(node.serialise(store))
        return keys[-1]

    def iter_changes(self, basis):
        """Iterate over the changes between basis and self.

        :return: An iterator of tuples: (key, old_value, new_value). Old_value
            is None for keys only in self; new_value is None for keys only in
            basis.
        """
        # Overview:
        # Read both trees in lexographic, highest-first order.
        # Any identical nodes we skip
        # Any unique prefixes we output immediately.
        # values in a leaf node are treated as single-value nodes in the tree
        # which allows them to be not-special-cased. We know to output them
        # because their value is a string, not a key(tuple) or node.
        #
        # corner cases to beware of when considering this function:
        # *) common references are at different heights.
        #    consider two trees:
        #    {'a': LeafNode={'aaa':'foo', 'aab':'bar'}, 'b': LeafNode={'b'}}
        #    {'a': InternalNode={'aa':LeafNode={'aaa':'foo', 'aab':'bar'},
        #                        'ab':LeafNode={'ab':'bar'}}
        #     'b': LeafNode={'b'}}
        #    the node with aaa/aab will only be encountered in the second tree
        #    after reading the 'a' subtree, but it is encountered in the first
        #    tree immediately. Variations on this may have read internal nodes
        #    like this.  we want to cut the entire pending subtree when we
        #    realise we have a common node.  For this we use a list of keys -
        #    the path to a node - and check the entire path is clean as we
        #    process each item.
        if self._node_key(self._root_node) == self._node_key(basis._root_node):
            return
        self._ensure_root()
        basis._ensure_root()
        excluded_keys = set()
        self_node = self._root_node
        basis_node = basis._root_node
        # A heap, each element is prefix, node(tuple/NodeObject/string),
        # key_path (a list of tuples, tail-sharing down the tree.)
        self_pending = []
        basis_pending = []
        def process_node(node, path, a_map, pending):
            # take a node and expand it
            node = a_map._get_node(node)
            if type(node) == LeafNode:
                path = (node._key, path)
                for key, value in node._items.items():
                    # For a LeafNode, the key is a serialized_key, rather than
                    # a search_key, but the heap is using search_keys
                    search_key = node._search_key_func(key)
                    heapq.heappush(pending, (search_key, key, value, path))
            else:
                # type(node) == InternalNode
                path = (node._key, path)
                for prefix, child in node._items.items():
                    heapq.heappush(pending, (prefix, None, child, path))
        def process_common_internal_nodes(self_node, basis_node):
            self_items = set(self_node._items.items())
            basis_items = set(basis_node._items.items())
            path = (self_node._key, None)
            for prefix, child in self_items - basis_items:
                heapq.heappush(self_pending, (prefix, None, child, path))
            path = (basis_node._key, None)
            for prefix, child in basis_items - self_items:
                heapq.heappush(basis_pending, (prefix, None, child, path))
        def process_common_leaf_nodes(self_node, basis_node):
            self_items = set(self_node._items.items())
            basis_items = set(basis_node._items.items())
            path = (self_node._key, None)
            for key, value in self_items - basis_items:
                prefix = self._search_key_func(key)
                heapq.heappush(self_pending, (prefix, key, value, path))
            path = (basis_node._key, None)
            for key, value in basis_items - self_items:
                prefix = basis._search_key_func(key)
                heapq.heappush(basis_pending, (prefix, key, value, path))
        def process_common_prefix_nodes(self_node, self_path,
                                        basis_node, basis_path):
            # Would it be more efficient if we could request both at the same
            # time?
            self_node = self._get_node(self_node)
            basis_node = basis._get_node(basis_node)
            if (type(self_node) == InternalNode
                and type(basis_node) == InternalNode):
                # Matching internal nodes
                process_common_internal_nodes(self_node, basis_node)
            elif (type(self_node) == LeafNode
                  and type(basis_node) == LeafNode):
                process_common_leaf_nodes(self_node, basis_node)
            else:
                process_node(self_node, self_path, self, self_pending)
                process_node(basis_node, basis_path, basis, basis_pending)
        process_common_prefix_nodes(self_node, None, basis_node, None)
        self_seen = set()
        basis_seen = set()
        excluded_keys = set()
        def check_excluded(key_path):
            # Note that this is N^2, it depends on us trimming trees
            # aggressively to not become slow.
            # A better implementation would probably have a reverse map
            # back to the children of a node, and jump straight to it when
            # a common node is detected, the proceed to remove the already
            # pending children. bzrlib.graph has a searcher module with a
            # similar problem.
            while key_path is not None:
                key, key_path = key_path
                if key in excluded_keys:
                    return True
            return False

        loop_counter = 0
        while self_pending or basis_pending:
            loop_counter += 1
            if not self_pending:
                # self is exhausted: output remainder of basis
                for prefix, key, node, path in basis_pending:
                    if check_excluded(path):
                        continue
                    node = basis._get_node(node)
                    if key is not None:
                        # a value
                        yield (key, node, None)
                    else:
                        # subtree - fastpath the entire thing.
                        for key, value in node.iteritems(basis._store):
                            yield (key, value, None)
                return
            elif not basis_pending:
                # basis is exhausted: output remainder of self.
                for prefix, key, node, path in self_pending:
                    if check_excluded(path):
                        continue
                    node = self._get_node(node)
                    if key is not None:
                        # a value
                        yield (key, None, node)
                    else:
                        # subtree - fastpath the entire thing.
                        for key, value in node.iteritems(self._store):
                            yield (key, None, value)
                return
            else:
                # XXX: future optimisation - yield the smaller items
                # immediately rather than pushing everything on/off the
                # heaps. Applies to both internal nodes and leafnodes.
                if self_pending[0][0] < basis_pending[0][0]:
                    # expand self
                    prefix, key, node, path = heapq.heappop(self_pending)
                    if check_excluded(path):
                        continue
                    if key is not None:
                        # a value
                        yield (key, None, node)
                    else:
                        process_node(node, path, self, self_pending)
                        continue
                elif self_pending[0][0] > basis_pending[0][0]:
                    # expand basis
                    prefix, key, node, path = heapq.heappop(basis_pending)
                    if check_excluded(path):
                        continue
                    if key is not None:
                        # a value
                        yield (key, node, None)
                    else:
                        process_node(node, path, basis, basis_pending)
                        continue
                else:
                    # common prefix: possibly expand both
                    if self_pending[0][1] is None:
                        # process next self
                        read_self = True
                    else:
                        read_self = False
                    if basis_pending[0][1] is None:
                        # process next basis
                        read_basis = True
                    else:
                        read_basis = False
                    if not read_self and not read_basis:
                        # compare a common value
                        self_details = heapq.heappop(self_pending)
                        basis_details = heapq.heappop(basis_pending)
                        if self_details[2] != basis_details[2]:
                            yield (self_details[1],
                                basis_details[2], self_details[2])
                        continue
                    # At least one side wasn't a simple value
                    if (self._node_key(self_pending[0][2]) ==
                        self._node_key(basis_pending[0][2])):
                        # Identical pointers, skip (and don't bother adding to
                        # excluded, it won't turn up again.
                        heapq.heappop(self_pending)
                        heapq.heappop(basis_pending)
                        continue
                    # Now we need to expand this node before we can continue
                    if read_self and read_basis:
                        # Both sides start with the same prefix, so process
                        # them in parallel
                        self_prefix, _, self_node, self_path = heapq.heappop(
                            self_pending)
                        basis_prefix, _, basis_node, basis_path = heapq.heappop(
                            basis_pending)
                        if self_prefix != basis_prefix:
                            raise AssertionError(
                                '%r != %r' % (self_prefix, basis_prefix))
                        process_common_prefix_nodes(
                            self_node, self_path,
                            basis_node, basis_path)
                        continue
                    if read_self:
                        prefix, key, node, path = heapq.heappop(self_pending)
                        if check_excluded(path):
                            continue
                        process_node(node, path, self, self_pending)
                    if read_basis:
                        prefix, key, node, path = heapq.heappop(basis_pending)
                        if check_excluded(path):
                            continue
                        process_node(node, path, basis, basis_pending)
        # print loop_counter

    def iteritems(self, key_filter=None):
        """Iterate over the entire CHKMap's contents."""
        self._ensure_root()
        if key_filter is not None:
            as_st = StaticTuple.from_sequence
            key_filter = [as_st(key) for key in key_filter]
        return self._root_node.iteritems(self._store, key_filter=key_filter)

    def key(self):
        """Return the key for this map."""
        if type(self._root_node) is StaticTuple:
            return self._root_node
        else:
            return self._root_node._key

    def __len__(self):
        self._ensure_root()
        return len(self._root_node)

    def map(self, key, value):
        """Map a key tuple to value.
        
        :param key: A key to map.
        :param value: The value to assign to key.
        """
        key = StaticTuple.from_sequence(key)
        # Need a root object.
        self._ensure_root()
        prefix, node_details = self._root_node.map(self._store, key, value)
        if len(node_details) == 1:
            self._root_node = node_details[0][1]
        else:
            self._root_node = InternalNode(prefix,
                                search_key_func=self._search_key_func)
            self._root_node.set_maximum_size(node_details[0][1].maximum_size)
            self._root_node._key_width = node_details[0][1]._key_width
            for split, node in node_details:
                self._root_node.add_node(split, node)

    def _node_key(self, node):
        """Get the key for a node whether it's a tuple or node."""
        if type(node) is tuple:
            node = StaticTuple.from_sequence(node)
        if type(node) is StaticTuple:
            return node
        else:
            return node._key

    def unmap(self, key, check_remap=True):
        """remove key from the map."""
        key = StaticTuple.from_sequence(key)
        self._ensure_root()
        if type(self._root_node) is InternalNode:
            unmapped = self._root_node.unmap(self._store, key,
                check_remap=check_remap)
        else:
            unmapped = self._root_node.unmap(self._store, key)
        self._root_node = unmapped

    def _check_remap(self):
        """Check if nodes can be collapsed."""
        self._ensure_root()
        if type(self._root_node) is InternalNode:
            self._root_node = self._root_node._check_remap(self._store)

    def _save(self):
        """Save the map completely.

        :return: The key of the root node.
        """
        if type(self._root_node) is StaticTuple:
            # Already saved.
            return self._root_node
        keys = list(self._root_node.serialise(self._store))
        return keys[-1]


class Node(object):
    """Base class defining the protocol for CHK Map nodes.

    :ivar _raw_size: The total size of the serialized key:value data, before
        adding the header bytes, and without prefix compression.
    """

    __slots__ = ('_key', '_len', '_maximum_size', '_key_width',
                 '_raw_size', '_items', '_search_prefix', '_search_key_func'
                )

    def __init__(self, key_width=1):
        """Create a node.

        :param key_width: The width of keys for this node.
        """
        self._key = None
        # Current number of elements
        self._len = 0
        self._maximum_size = 0
        self._key_width = key_width
        # current size in bytes
        self._raw_size = 0
        # The pointers/values this node has - meaning defined by child classes.
        self._items = {}
        # The common search prefix
        self._search_prefix = None

    def __repr__(self):
        items_str = str(sorted(self._items))
        if len(items_str) > 20:
            items_str = items_str[:16] + '...]'
        return '%s(key:%s len:%s size:%s max:%s prefix:%s items:%s)' % (
            self.__class__.__name__, self._key, self._len, self._raw_size,
            self._maximum_size, self._search_prefix, items_str)

    def key(self):
        return self._key

    def __len__(self):
        return self._len

    @property
    def maximum_size(self):
        """What is the upper limit for adding references to a node."""
        return self._maximum_size

    def set_maximum_size(self, new_size):
        """Set the size threshold for nodes.

        :param new_size: The size at which no data is added to a node. 0 for
            unlimited.
        """
        self._maximum_size = new_size

    @classmethod
    def common_prefix(cls, prefix, key):
        """Given 2 strings, return the longest prefix common to both.

        :param prefix: This has been the common prefix for other keys, so it is
            more likely to be the common prefix in this case as well.
        :param key: Another string to compare to
        """
        if key.startswith(prefix):
            return prefix
        pos = -1
        # Is there a better way to do this?
        for pos, (left, right) in enumerate(zip(prefix, key)):
            if left != right:
                pos -= 1
                break
        common = prefix[:pos+1]
        return common

    @classmethod
    def common_prefix_for_keys(cls, keys):
        """Given a list of keys, find their common prefix.

        :param keys: An iterable of strings.
        :return: The longest common prefix of all keys.
        """
        common_prefix = None
        for key in keys:
            if common_prefix is None:
                common_prefix = key
                continue
            common_prefix = cls.common_prefix(common_prefix, key)
            if not common_prefix:
                # if common_prefix is the empty string, then we know it won't
                # change further
                return ''
        return common_prefix


# Singleton indicating we have not computed _search_prefix yet
_unknown = object()

class LeafNode(Node):
    """A node containing actual key:value pairs.

    :ivar _items: A dict of key->value items. The key is in tuple form.
    :ivar _size: The number of bytes that would be used by serializing all of
        the key/value pairs.
    """

    __slots__ = ('_common_serialised_prefix',)

    def __init__(self, search_key_func=None):
        Node.__init__(self)
        # All of the keys in this leaf node share this common prefix
        self._common_serialised_prefix = None
        if search_key_func is None:
            self._search_key_func = _search_key_plain
        else:
            self._search_key_func = search_key_func

    def __repr__(self):
        items_str = str(sorted(self._items))
        if len(items_str) > 20:
            items_str = items_str[:16] + '...]'
        return \
            '%s(key:%s len:%s size:%s max:%s prefix:%s keywidth:%s items:%s)' \
            % (self.__class__.__name__, self._key, self._len, self._raw_size,
            self._maximum_size, self._search_prefix, self._key_width, items_str)

    def _current_size(self):
        """Answer the current serialised size of this node.

        This differs from self._raw_size in that it includes the bytes used for
        the header.
        """
        if self._common_serialised_prefix is None:
            bytes_for_items = 0
            prefix_len = 0
        else:
            # We will store a single string with the common prefix
            # And then that common prefix will not be stored in any of the
            # entry lines
            prefix_len = len(self._common_serialised_prefix)
            bytes_for_items = (self._raw_size - (prefix_len * self._len))
        return (9 # 'chkleaf:\n'
            + len(str(self._maximum_size)) + 1
            + len(str(self._key_width)) + 1
            + len(str(self._len)) + 1
            + prefix_len + 1
            + bytes_for_items)

    @classmethod
    def deserialise(klass, bytes, key, search_key_func=None):
        """Deserialise bytes, with key key, into a LeafNode.

        :param bytes: The bytes of the node.
        :param key: The key that the serialised node has.
        """
        key = static_tuple.expect_static_tuple(key)
        return _deserialise_leaf_node(bytes, key,
                                      search_key_func=search_key_func)

    def iteritems(self, store, key_filter=None):
        """Iterate over items in the node.

        :param key_filter: A filter to apply to the node. It should be a
            list/set/dict or similar repeatedly iterable container.
        """
        if key_filter is not None:
            # Adjust the filter - short elements go to a prefix filter. All
            # other items are looked up directly.
            # XXX: perhaps defaultdict? Profiling<rinse and repeat>
            filters = {}
            for key in key_filter:
                if len(key) == self._key_width:
                    # This filter is meant to match exactly one key, yield it
                    # if we have it.
                    try:
                        yield key, self._items[key]
                    except KeyError:
                        # This key is not present in this map, continue
                        pass
                else:
                    # Short items, we need to match based on a prefix
                    length_filter = filters.setdefault(len(key), set())
                    length_filter.add(key)
            if filters:
                filters = filters.items()
                for item in self._items.iteritems():
                    for length, length_filter in filters:
                        if item[0][:length] in length_filter:
                            yield item
                            break
        else:
            for item in self._items.iteritems():
                yield item

    def _key_value_len(self, key, value):
        # TODO: Should probably be done without actually joining the key, but
        #       then that can be done via the C extension
        return (len(self._serialise_key(key)) + 1
                + len(str(value.count('\n'))) + 1
                + len(value) + 1)

    def _search_key(self, key):
        return self._search_key_func(key)

    def _map_no_split(self, key, value):
        """Map a key to a value.

        This assumes either the key does not already exist, or you have already
        removed its size and length from self.

        :return: True if adding this node should cause us to split.
        """
        self._items[key] = value
        self._raw_size += self._key_value_len(key, value)
        self._len += 1
        serialised_key = self._serialise_key(key)
        if self._common_serialised_prefix is None:
            self._common_serialised_prefix = serialised_key
        else:
            self._common_serialised_prefix = self.common_prefix(
                self._common_serialised_prefix, serialised_key)
        search_key = self._search_key(key)
        if self._search_prefix is _unknown:
            self._compute_search_prefix()
        if self._search_prefix is None:
            self._search_prefix = search_key
        else:
            self._search_prefix = self.common_prefix(
                self._search_prefix, search_key)
        if (self._len > 1
            and self._maximum_size
            and self._current_size() > self._maximum_size):
            # Check to see if all of the search_keys for this node are
            # identical. We allow the node to grow under that circumstance
            # (we could track this as common state, but it is infrequent)
            if (search_key != self._search_prefix
                or not self._are_search_keys_identical()):
                return True
        return False

    def _split(self, store):
        """We have overflowed.

        Split this node into multiple LeafNodes, return it up the stack so that
        the next layer creates a new InternalNode and references the new nodes.

        :return: (common_serialised_prefix, [(node_serialised_prefix, node)])
        """
        if self._search_prefix is _unknown:
            raise AssertionError('Search prefix must be known')
        common_prefix = self._search_prefix
        split_at = len(common_prefix) + 1
        result = {}
        for key, value in self._items.iteritems():
            search_key = self._search_key(key)
            prefix = search_key[:split_at]
            # TODO: Generally only 1 key can be exactly the right length,
            #       which means we can only have 1 key in the node pointed
            #       at by the 'prefix\0' key. We might want to consider
            #       folding it into the containing InternalNode rather than
            #       having a fixed length-1 node.
            #       Note this is probably not true for hash keys, as they
            #       may get a '\00' node anywhere, but won't have keys of
            #       different lengths.
            if len(prefix) < split_at:
                prefix += '\x00'*(split_at - len(prefix))
            if prefix not in result:
                node = LeafNode(search_key_func=self._search_key_func)
                node.set_maximum_size(self._maximum_size)
                node._key_width = self._key_width
                result[prefix] = node
            else:
                node = result[prefix]
            sub_prefix, node_details = node.map(store, key, value)
            if len(node_details) > 1:
                if prefix != sub_prefix:
                    # This node has been split and is now found via a different
                    # path
                    result.pop(prefix)
                new_node = InternalNode(sub_prefix,
                    search_key_func=self._search_key_func)
                new_node.set_maximum_size(self._maximum_size)
                new_node._key_width = self._key_width
                for split, node in node_details:
                    new_node.add_node(split, node)
                result[prefix] = new_node
        return common_prefix, result.items()

    def map(self, store, key, value):
        """Map key to value."""
        if key in self._items:
            self._raw_size -= self._key_value_len(key, self._items[key])
            self._len -= 1
        self._key = None
        if self._map_no_split(key, value):
            return self._split(store)
        else:
            if self._search_prefix is _unknown:
                raise AssertionError('%r must be known' % self._search_prefix)
            return self._search_prefix, [("", self)]

    _serialise_key = '\x00'.join

    def serialise(self, store):
        """Serialise the LeafNode to store.

        :param store: A VersionedFiles honouring the CHK extensions.
        :return: An iterable of the keys inserted by this operation.
        """
        lines = ["chkleaf:\n"]
        lines.append("%d\n" % self._maximum_size)
        lines.append("%d\n" % self._key_width)
        lines.append("%d\n" % self._len)
        if self._common_serialised_prefix is None:
            lines.append('\n')
            if len(self._items) != 0:
                raise AssertionError('If _common_serialised_prefix is None'
                    ' we should have no items')
        else:
            lines.append('%s\n' % (self._common_serialised_prefix,))
            prefix_len = len(self._common_serialised_prefix)
        for key, value in sorted(self._items.items()):
            # Always add a final newline
            value_lines = osutils.chunks_to_lines([value + '\n'])
            serialized = "%s\x00%s\n" % (self._serialise_key(key),
                                         len(value_lines))
            if not serialized.startswith(self._common_serialised_prefix):
                raise AssertionError('We thought the common prefix was %r'
                    ' but entry %r does not have it in common'
                    % (self._common_serialised_prefix, serialized))
            lines.append(serialized[prefix_len:])
            lines.extend(value_lines)
        sha1, _, _ = store.add_lines((None,), (), lines)
        self._key = StaticTuple("sha1:" + sha1,).intern()
        bytes = ''.join(lines)
        if len(bytes) != self._current_size():
            raise AssertionError('Invalid _current_size')
        _get_cache()[self._key] = bytes
        return [self._key]

    def refs(self):
        """Return the references to other CHK's held by this node."""
        return []

    def _compute_search_prefix(self):
        """Determine the common search prefix for all keys in this node.

        :return: A bytestring of the longest search key prefix that is
            unique within this node.
        """
        search_keys = [self._search_key_func(key) for key in self._items]
        self._search_prefix = self.common_prefix_for_keys(search_keys)
        return self._search_prefix

    def _are_search_keys_identical(self):
        """Check to see if the search keys for all entries are the same.

        When using a hash as the search_key it is possible for non-identical
        keys to collide. If that happens enough, we may try overflow a
        LeafNode, but as all are collisions, we must not split.
        """
        common_search_key = None
        for key in self._items:
            search_key = self._search_key(key)
            if common_search_key is None:
                common_search_key = search_key
            elif search_key != common_search_key:
                return False
        return True

    def _compute_serialised_prefix(self):
        """Determine the common prefix for serialised keys in this node.

        :return: A bytestring of the longest serialised key prefix that is
            unique within this node.
        """
        serialised_keys = [self._serialise_key(key) for key in self._items]
        self._common_serialised_prefix = self.common_prefix_for_keys(
            serialised_keys)
        return self._common_serialised_prefix

    def unmap(self, store, key):
        """Unmap key from the node."""
        try:
            self._raw_size -= self._key_value_len(key, self._items[key])
        except KeyError:
            trace.mutter("key %s not found in %r", key, self._items)
            raise
        self._len -= 1
        del self._items[key]
        self._key = None
        # Recompute from scratch
        self._compute_search_prefix()
        self._compute_serialised_prefix()
        return self


class InternalNode(Node):
    """A node that contains references to other nodes.

    An InternalNode is responsible for mapping search key prefixes to child
    nodes.

    :ivar _items: serialised_key => node dictionary. node may be a tuple,
        LeafNode or InternalNode.
    """

    __slots__ = ('_node_width',)

    def __init__(self, prefix='', search_key_func=None):
        Node.__init__(self)
        # The size of an internalnode with default values and no children.
        # How many octets key prefixes within this node are.
        self._node_width = 0
        self._search_prefix = prefix
        if search_key_func is None:
            self._search_key_func = _search_key_plain
        else:
            self._search_key_func = search_key_func

    def add_node(self, prefix, node):
        """Add a child node with prefix prefix, and node node.

        :param prefix: The search key prefix for node.
        :param node: The node being added.
        """
        if self._search_prefix is None:
            raise AssertionError("_search_prefix should not be None")
        if not prefix.startswith(self._search_prefix):
            raise AssertionError("prefixes mismatch: %s must start with %s"
                % (prefix,self._search_prefix))
        if len(prefix) != len(self._search_prefix) + 1:
            raise AssertionError("prefix wrong length: len(%s) is not %d" %
                (prefix, len(self._search_prefix) + 1))
        self._len += len(node)
        if not len(self._items):
            self._node_width = len(prefix)
        if self._node_width != len(self._search_prefix) + 1:
            raise AssertionError("node width mismatch: %d is not %d" %
                (self._node_width, len(self._search_prefix) + 1))
        self._items[prefix] = node
        self._key = None

    def _current_size(self):
        """Answer the current serialised size of this node."""
        return (self._raw_size + len(str(self._len)) + len(str(self._key_width)) +
            len(str(self._maximum_size)))

    @classmethod
    def deserialise(klass, bytes, key, search_key_func=None):
        """Deserialise bytes to an InternalNode, with key key.

        :param bytes: The bytes of the node.
        :param key: The key that the serialised node has.
        :return: An InternalNode instance.
        """
        key = static_tuple.expect_static_tuple(key)
        return _deserialise_internal_node(bytes, key,
                                          search_key_func=search_key_func)

    def iteritems(self, store, key_filter=None):
        for node, node_filter in self._iter_nodes(store, key_filter=key_filter):
            for item in node.iteritems(store, key_filter=node_filter):
                yield item

    def _iter_nodes(self, store, key_filter=None, batch_size=None):
        """Iterate over node objects which match key_filter.

        :param store: A store to use for accessing content.
        :param key_filter: A key filter to filter nodes. Only nodes that might
            contain a key in key_filter will be returned.
        :param batch_size: If not None, then we will return the nodes that had
            to be read using get_record_stream in batches, rather than reading
            them all at once.
        :return: An iterable of nodes. This function does not have to be fully
            consumed.  (There will be no pending I/O when items are being returned.)
        """
        # Map from chk key ('sha1:...',) to (prefix, key_filter)
        # prefix is the key in self._items to use, key_filter is the key_filter
        # entries that would match this node
        keys = {}
        shortcut = False
        if key_filter is None:
            # yielding all nodes, yield whatever we have, and queue up a read
            # for whatever we are missing
            shortcut = True
            for prefix, node in self._items.iteritems():
                if node.__class__ is StaticTuple:
                    keys[node] = (prefix, None)
                else:
                    yield node, None
        elif len(key_filter) == 1:
            # Technically, this path could also be handled by the first check
            # in 'self._node_width' in length_filters. However, we can handle
            # this case without spending any time building up the
            # prefix_to_keys, etc state.

            # This is a bit ugly, but TIMEIT showed it to be by far the fastest
            # 0.626us   list(key_filter)[0]
            #       is a func() for list(), 2 mallocs, and a getitem
            # 0.489us   [k for k in key_filter][0]
            #       still has the mallocs, avoids the func() call
            # 0.350us   iter(key_filter).next()
            #       has a func() call, and mallocs an iterator
            # 0.125us   for key in key_filter: pass
            #       no func() overhead, might malloc an iterator
            # 0.105us   for key in key_filter: break
            #       no func() overhead, might malloc an iterator, probably
            #       avoids checking an 'else' clause as part of the for
            for key in key_filter:
                break
            search_prefix = self._search_prefix_filter(key)
            if len(search_prefix) == self._node_width:
                # This item will match exactly, so just do a dict lookup, and
                # see what we can return
                shortcut = True
                try:
                    node = self._items[search_prefix]
                except KeyError:
                    # A given key can only match 1 child node, if it isn't
                    # there, then we can just return nothing
                    return
                if node.__class__ is StaticTuple:
                    keys[node] = (search_prefix, [key])
                else:
                    # This is loaded, and the only thing that can match,
                    # return
                    yield node, [key]
                    return
        if not shortcut:
            # First, convert all keys into a list of search prefixes
            # Aggregate common prefixes, and track the keys they come from
            prefix_to_keys = {}
            length_filters = {}
            for key in key_filter:
                search_prefix = self._search_prefix_filter(key)
                length_filter = length_filters.setdefault(
                                    len(search_prefix), set())
                length_filter.add(search_prefix)
                prefix_to_keys.setdefault(search_prefix, []).append(key)

            if (self._node_width in length_filters
                and len(length_filters) == 1):
                # all of the search prefixes match exactly _node_width. This
                # means that everything is an exact match, and we can do a
                # lookup into self._items, rather than iterating over the items
                # dict.
                search_prefixes = length_filters[self._node_width]
                for search_prefix in search_prefixes:
                    try:
                        node = self._items[search_prefix]
                    except KeyError:
                        # We can ignore this one
                        continue
                    node_key_filter = prefix_to_keys[search_prefix]
                    if node.__class__ is StaticTuple:
                        keys[node] = (search_prefix, node_key_filter)
                    else:
                        yield node, node_key_filter
            else:
                # The slow way. We walk every item in self._items, and check to
                # see if there are any matches
                length_filters = length_filters.items()
                for prefix, node in self._items.iteritems():
                    node_key_filter = []
                    for length, length_filter in length_filters:
                        sub_prefix = prefix[:length]
                        if sub_prefix in length_filter:
                            node_key_filter.extend(prefix_to_keys[sub_prefix])
                    if node_key_filter: # this key matched something, yield it
                        if node.__class__ is StaticTuple:
                            keys[node] = (prefix, node_key_filter)
                        else:
                            yield node, node_key_filter
        if keys:
            # Look in the page cache for some more bytes
            found_keys = set()
            for key in keys:
                try:
                    bytes = _get_cache()[key]
                except KeyError:
                    continue
                else:
                    node = _deserialise(bytes, key,
                        search_key_func=self._search_key_func)
                    prefix, node_key_filter = keys[key]
                    self._items[prefix] = node
                    found_keys.add(key)
                    yield node, node_key_filter
            for key in found_keys:
                del keys[key]
        if keys:
            # demand load some pages.
            if batch_size is None:
                # Read all the keys in
                batch_size = len(keys)
            key_order = list(keys)
            for batch_start in range(0, len(key_order), batch_size):
                batch = key_order[batch_start:batch_start + batch_size]
                # We have to fully consume the stream so there is no pending
                # I/O, so we buffer the nodes for now.
                stream = store.get_record_stream(batch, 'unordered', True)
                node_and_filters = []
                for record in stream:
                    bytes = record.get_bytes_as('fulltext')
                    node = _deserialise(bytes, record.key,
                        search_key_func=self._search_key_func)
                    prefix, node_key_filter = keys[record.key]
                    node_and_filters.append((node, node_key_filter))
                    self._items[prefix] = node
                    _get_cache()[record.key] = bytes
                for info in node_and_filters:
                    yield info

    def map(self, store, key, value):
        """Map key to value."""
        if not len(self._items):
            raise AssertionError("can't map in an empty InternalNode.")
        search_key = self._search_key(key)
        if self._node_width != len(self._search_prefix) + 1:
            raise AssertionError("node width mismatch: %d is not %d" %
                (self._node_width, len(self._search_prefix) + 1))
        if not search_key.startswith(self._search_prefix):
            # This key doesn't fit in this index, so we need to split at the
            # point where it would fit, insert self into that internal node,
            # and then map this key into that node.
            new_prefix = self.common_prefix(self._search_prefix,
                                            search_key)
            new_parent = InternalNode(new_prefix,
                search_key_func=self._search_key_func)
            new_parent.set_maximum_size(self._maximum_size)
            new_parent._key_width = self._key_width
            new_parent.add_node(self._search_prefix[:len(new_prefix)+1],
                                self)
            return new_parent.map(store, key, value)
        children = [node for node, _
                          in self._iter_nodes(store, key_filter=[key])]
        if children:
            child = children[0]
        else:
            # new child needed:
            child = self._new_child(search_key, LeafNode)
        old_len = len(child)
        if type(child) is LeafNode:
            old_size = child._current_size()
        else:
            old_size = None
        prefix, node_details = child.map(store, key, value)
        if len(node_details) == 1:
            # child may have shrunk, or might be a new node
            child = node_details[0][1]
            self._len = self._len - old_len + len(child)
            self._items[search_key] = child
            self._key = None
            new_node = self
            if type(child) is LeafNode:
                if old_size is None:
                    # The old node was an InternalNode which means it has now
                    # collapsed, so we need to check if it will chain to a
                    # collapse at this level.
                    trace.mutter("checking remap as InternalNode -> LeafNode")
                    new_node = self._check_remap(store)
                else:
                    # If the LeafNode has shrunk in size, we may want to run
                    # a remap check. Checking for a remap is expensive though
                    # and the frequency of a successful remap is very low.
                    # Shrinkage by small amounts is common, so we only do the
                    # remap check if the new_size is low or the shrinkage
                    # amount is over a configurable limit.
                    new_size = child._current_size()
                    shrinkage = old_size - new_size
                    if (shrinkage > 0 and new_size < _INTERESTING_NEW_SIZE
                        or shrinkage > _INTERESTING_SHRINKAGE_LIMIT):
                        trace.mutter(
                            "checking remap as size shrunk by %d to be %d",
                            shrinkage, new_size)
                        new_node = self._check_remap(store)
            if new_node._search_prefix is None:
                raise AssertionError("_search_prefix should not be None")
            return new_node._search_prefix, [('', new_node)]
        # child has overflown - create a new intermediate node.
        # XXX: This is where we might want to try and expand our depth
        # to refer to more bytes of every child (which would give us
        # multiple pointers to child nodes, but less intermediate nodes)
        child = self._new_child(search_key, InternalNode)
        child._search_prefix = prefix
        for split, node in node_details:
            child.add_node(split, node)
        self._len = self._len - old_len + len(child)
        self._key = None
        return self._search_prefix, [("", self)]

    def _new_child(self, search_key, klass):
        """Create a new child node of type klass."""
        child = klass()
        child.set_maximum_size(self._maximum_size)
        child._key_width = self._key_width
        child._search_key_func = self._search_key_func
        self._items[search_key] = child
        return child

    def serialise(self, store):
        """Serialise the node to store.

        :param store: A VersionedFiles honouring the CHK extensions.
        :return: An iterable of the keys inserted by this operation.
        """
        for node in self._items.itervalues():
            if type(node) is StaticTuple:
                # Never deserialised.
                continue
            if node._key is not None:
                # Never altered
                continue
            for key in node.serialise(store):
                yield key
        lines = ["chknode:\n"]
        lines.append("%d\n" % self._maximum_size)
        lines.append("%d\n" % self._key_width)
        lines.append("%d\n" % self._len)
        if self._search_prefix is None:
            raise AssertionError("_search_prefix should not be None")
        lines.append('%s\n' % (self._search_prefix,))
        prefix_len = len(self._search_prefix)
        for prefix, node in sorted(self._items.items()):
            if type(node) is StaticTuple:
                key = node[0]
            else:
                key = node._key[0]
            serialised = "%s\x00%s\n" % (prefix, key)
            if not serialised.startswith(self._search_prefix):
                raise AssertionError("prefixes mismatch: %s must start with %s"
                    % (serialised, self._search_prefix))
            lines.append(serialised[prefix_len:])
        sha1, _, _ = store.add_lines((None,), (), lines)
        self._key = StaticTuple("sha1:" + sha1,).intern()
        _get_cache()[self._key] = ''.join(lines)
        yield self._key

    def _search_key(self, key):
        """Return the serialised key for key in this node."""
        # search keys are fixed width. All will be self._node_width wide, so we
        # pad as necessary.
        return (self._search_key_func(key) + '\x00'*self._node_width)[:self._node_width]

    def _search_prefix_filter(self, key):
        """Serialise key for use as a prefix filter in iteritems."""
        return self._search_key_func(key)[:self._node_width]

    def _split(self, offset):
        """Split this node into smaller nodes starting at offset.

        :param offset: The offset to start the new child nodes at.
        :return: An iterable of (prefix, node) tuples. prefix is a byte
            prefix for reaching node.
        """
        if offset >= self._node_width:
            for node in self._items.values():
                for result in node._split(offset):
                    yield result
            return
        for key, node in self._items.items():
            pass

    def refs(self):
        """Return the references to other CHK's held by this node."""
        if self._key is None:
            raise AssertionError("unserialised nodes have no refs.")
        refs = []
        for value in self._items.itervalues():
            if type(value) is StaticTuple:
                refs.append(value)
            else:
                refs.append(value.key())
        return refs

    def _compute_search_prefix(self, extra_key=None):
        """Return the unique key prefix for this node.

        :return: A bytestring of the longest search key prefix that is
            unique within this node.
        """
        self._search_prefix = self.common_prefix_for_keys(self._items)
        return self._search_prefix

    def unmap(self, store, key, check_remap=True):
        """Remove key from this node and its children."""
        if not len(self._items):
            raise AssertionError("can't unmap in an empty InternalNode.")
        children = [node for node, _
                          in self._iter_nodes(store, key_filter=[key])]
        if children:
            child = children[0]
        else:
            raise KeyError(key)
        self._len -= 1
        unmapped = child.unmap(store, key)
        self._key = None
        search_key = self._search_key(key)
        if len(unmapped) == 0:
            # All child nodes are gone, remove the child:
            del self._items[search_key]
            unmapped = None
        else:
            # Stash the returned node
            self._items[search_key] = unmapped
        if len(self._items) == 1:
            # this node is no longer needed:
            return self._items.values()[0]
        if type(unmapped) is InternalNode:
            return self
        if check_remap:
            return self._check_remap(store)
        else:
            return self

    def _check_remap(self, store):
        """Check if all keys contained by children fit in a single LeafNode.

        :param store: A store to use for reading more nodes
        :return: Either self, or a new LeafNode which should replace self.
        """
        # Logic for how we determine when we need to rebuild
        # 1) Implicitly unmap() is removing a key which means that the child
        #    nodes are going to be shrinking by some extent.
        # 2) If all children are LeafNodes, it is possible that they could be
        #    combined into a single LeafNode, which can then completely replace
        #    this internal node with a single LeafNode
        # 3) If *one* child is an InternalNode, we assume it has already done
        #    all the work to determine that its children cannot collapse, and
        #    we can then assume that those nodes *plus* the current nodes don't
        #    have a chance of collapsing either.
        #    So a very cheap check is to just say if 'unmapped' is an
        #    InternalNode, we don't have to check further.

        # TODO: Another alternative is to check the total size of all known
        #       LeafNodes. If there is some formula we can use to determine the
        #       final size without actually having to read in any more
        #       children, it would be nice to have. However, we have to be
        #       careful with stuff like nodes that pull out the common prefix
        #       of each key, as adding a new key can change the common prefix
        #       and cause size changes greater than the length of one key.
        #       So for now, we just add everything to a new Leaf until it
        #       splits, as we know that will give the right answer
        new_leaf = LeafNode(search_key_func=self._search_key_func)
        new_leaf.set_maximum_size(self._maximum_size)
        new_leaf._key_width = self._key_width
        # A batch_size of 16 was chosen because:
        #   a) In testing, a 4k page held 14 times. So if we have more than 16
        #      leaf nodes we are unlikely to hold them in a single new leaf
        #      node. This still allows for 1 round trip
        #   b) With 16-way fan out, we can still do a single round trip
        #   c) With 255-way fan out, we don't want to read all 255 and destroy
        #      the page cache, just to determine that we really don't need it.
        for node, _ in self._iter_nodes(store, batch_size=16):
            if type(node) is InternalNode:
                # Without looking at any leaf nodes, we are sure
                return self
            for key, value in node._items.iteritems():
                if new_leaf._map_no_split(key, value):
                    return self
        trace.mutter("remap generated a new LeafNode")
        return new_leaf


def _deserialise(bytes, key, search_key_func):
    """Helper for repositorydetails - convert bytes to a node."""
    if bytes.startswith("chkleaf:\n"):
        node = LeafNode.deserialise(bytes, key, search_key_func=search_key_func)
    elif bytes.startswith("chknode:\n"):
        node = InternalNode.deserialise(bytes, key,
            search_key_func=search_key_func)
    else:
        raise AssertionError("Unknown node type.")
    return node


class CHKMapDifference(object):
    """Iterate the stored pages and key,value pairs for (new - old).

    This class provides a generator over the stored CHK pages and the
    (key, value) pairs that are in any of the new maps and not in any of the
    old maps.

    Note that it may yield chk pages that are common (especially root nodes),
    but it won't yield (key,value) pairs that are common.
    """

    def __init__(self, store, new_root_keys, old_root_keys,
                 search_key_func, pb=None):
        # TODO: Should we add a StaticTuple barrier here? It would be nice to
        #       force callers to use StaticTuple, because there will often be
        #       lots of keys passed in here. And even if we cast it locally,
        #       that just meanst that we will have *both* a StaticTuple and a
        #       tuple() in memory, referring to the same object. (so a net
        #       increase in memory, not a decrease.)
        self._store = store
        self._new_root_keys = new_root_keys
        self._old_root_keys = old_root_keys
        self._pb = pb
        # All uninteresting chks that we have seen. By the time they are added
        # here, they should be either fully ignored, or queued up for
        # processing
        # TODO: This might grow to a large size if there are lots of merge
        #       parents, etc. However, it probably doesn't scale to O(history)
        #       like _processed_new_refs does.
        self._all_old_chks = set(self._old_root_keys)
        # All items that we have seen from the old_root_keys
        self._all_old_items = set()
        # These are interesting items which were either read, or already in the
        # interesting queue (so we don't need to walk them again)
        # TODO: processed_new_refs becomes O(all_chks), consider switching to
        #       SimpleSet here.
        self._processed_new_refs = set()
        self._search_key_func = search_key_func

        # The uninteresting and interesting nodes to be searched
        self._old_queue = []
        self._new_queue = []
        # Holds the (key, value) items found when processing the root nodes,
        # waiting for the uninteresting nodes to be walked
        self._new_item_queue = []
        self._state = None

    def _read_nodes_from_store(self, keys):
        # We chose not to use _get_cache(), because we think in
        # terms of records to be yielded. Also, we expect to touch each page
        # only 1 time during this code. (We may want to evaluate saving the
        # raw bytes into the page cache, which would allow a working tree
        # update after the fetch to not have to read the bytes again.)
        as_st = StaticTuple.from_sequence
        stream = self._store.get_record_stream(keys, 'unordered', True)
        for record in stream:
            if self._pb is not None:
                self._pb.tick()
            if record.storage_kind == 'absent':
                raise errors.NoSuchRevision(self._store, record.key)
            bytes = record.get_bytes_as('fulltext')
            node = _deserialise(bytes, record.key,
                                search_key_func=self._search_key_func)
            if type(node) is InternalNode:
                # Note we don't have to do node.refs() because we know that
                # there are no children that have been pushed into this node
                # Note: Using as_st() here seemed to save 1.2MB, which would
                #       indicate that we keep 100k prefix_refs around while
                #       processing. They *should* be shorter lived than that...
                #       It does cost us ~10s of processing time
                #prefix_refs = [as_st(item) for item in node._items.iteritems()]
                prefix_refs = node._items.items()
                items = []
            else:
                prefix_refs = []
                # Note: We don't use a StaticTuple here. Profiling showed a
                #       minor memory improvement (0.8MB out of 335MB peak 0.2%)
                #       But a significant slowdown (15s / 145s, or 10%)
                items = node._items.items()
            yield record, node, prefix_refs, items

    def _read_old_roots(self):
        old_chks_to_enqueue = []
        all_old_chks = self._all_old_chks
        for record, node, prefix_refs, items in \
                self._read_nodes_from_store(self._old_root_keys):
            # Uninteresting node
            prefix_refs = [p_r for p_r in prefix_refs
                                if p_r[1] not in all_old_chks]
            new_refs = [p_r[1] for p_r in prefix_refs]
            all_old_chks.update(new_refs)
            # TODO: This might be a good time to turn items into StaticTuple
            #       instances and possibly intern them. However, this does not
            #       impact 'initial branch' performance, so I'm not worrying
            #       about this yet
            self._all_old_items.update(items)
            # Queue up the uninteresting references
            # Don't actually put them in the 'to-read' queue until we have
            # finished checking the interesting references
            old_chks_to_enqueue.extend(prefix_refs)
        return old_chks_to_enqueue

    def _enqueue_old(self, new_prefixes, old_chks_to_enqueue):
        # At this point, we have read all the uninteresting and interesting
        # items, so we can queue up the uninteresting stuff, knowing that we've
        # handled the interesting ones
        for prefix, ref in old_chks_to_enqueue:
            not_interesting = True
            for i in xrange(len(prefix), 0, -1):
                if prefix[:i] in new_prefixes:
                    not_interesting = False
                    break
            if not_interesting:
                # This prefix is not part of the remaining 'interesting set'
                continue
            self._old_queue.append(ref)

    def _read_all_roots(self):
        """Read the root pages.

        This is structured as a generator, so that the root records can be
        yielded up to whoever needs them without any buffering.
        """
        # This is the bootstrap phase
        if not self._old_root_keys:
            # With no old_root_keys we can just shortcut and be ready
            # for _flush_new_queue
            self._new_queue = list(self._new_root_keys)
            return
        old_chks_to_enqueue = self._read_old_roots()
        # filter out any root keys that are already known to be uninteresting
        new_keys = set(self._new_root_keys).difference(self._all_old_chks)
        # These are prefixes that are present in new_keys that we are
        # thinking to yield
        new_prefixes = set()
        # We are about to yield all of these, so we don't want them getting
        # added a second time
        processed_new_refs = self._processed_new_refs
        processed_new_refs.update(new_keys)
        for record, node, prefix_refs, items in \
                self._read_nodes_from_store(new_keys):
            # At this level, we now know all the uninteresting references
            # So we filter and queue up whatever is remaining
            prefix_refs = [p_r for p_r in prefix_refs
                           if p_r[1] not in self._all_old_chks
                              and p_r[1] not in processed_new_refs]
            refs = [p_r[1] for p_r in prefix_refs]
            new_prefixes.update([p_r[0] for p_r in prefix_refs])
            self._new_queue.extend(refs)
            # TODO: We can potentially get multiple items here, however the
            #       current design allows for this, as callers will do the work
            #       to make the results unique. We might profile whether we
            #       gain anything by ensuring unique return values for items
            # TODO: This might be a good time to cast to StaticTuple, as
            #       self._new_item_queue will hold the contents of multiple
            #       records for an extended lifetime
            new_items = [item for item in items
                               if item not in self._all_old_items]
            self._new_item_queue.extend(new_items)
            new_prefixes.update([self._search_key_func(item[0])
                                 for item in new_items])
            processed_new_refs.update(refs)
            yield record
        # For new_prefixes we have the full length prefixes queued up.
        # However, we also need possible prefixes. (If we have a known ref to
        # 'ab', then we also need to include 'a'.) So expand the
        # new_prefixes to include all shorter prefixes
        for prefix in list(new_prefixes):
            new_prefixes.update([prefix[:i] for i in xrange(1, len(prefix))])
        self._enqueue_old(new_prefixes, old_chks_to_enqueue)

    def _flush_new_queue(self):
        # No need to maintain the heap invariant anymore, just pull things out
        # and process them
        refs = set(self._new_queue)
        self._new_queue = []
        # First pass, flush all interesting items and convert to using direct refs
        all_old_chks = self._all_old_chks
        processed_new_refs = self._processed_new_refs
        all_old_items = self._all_old_items
        new_items = [item for item in self._new_item_queue
                           if item not in all_old_items]
        self._new_item_queue = []
        if new_items:
            yield None, new_items
        refs = refs.difference(all_old_chks)
        processed_new_refs.update(refs)
        while refs:
            # TODO: Using a SimpleSet for self._processed_new_refs and
            #       saved as much as 10MB of peak memory. However, it requires
            #       implementing a non-pyrex version.
            next_refs = set()
            next_refs_update = next_refs.update
            # Inlining _read_nodes_from_store improves 'bzr branch bzr.dev'
            # from 1m54s to 1m51s. Consider it.
            for record, _, p_refs, items in self._read_nodes_from_store(refs):
                if all_old_items:
                    # using the 'if' check saves about 145s => 141s, when
                    # streaming initial branch of Launchpad data.
                    items = [item for item in items
                             if item not in all_old_items]
                yield record, items
                next_refs_update([p_r[1] for p_r in p_refs])
                del p_refs
            # set1.difference(set/dict) walks all of set1, and checks if it
            # exists in 'other'.
            # set1.difference(iterable) walks all of iterable, and does a
            # 'difference_update' on a clone of set1. Pick wisely based on the
            # expected sizes of objects.
            # in our case it is expected that 'new_refs' will always be quite
            # small.
            next_refs = next_refs.difference(all_old_chks)
            next_refs = next_refs.difference(processed_new_refs)
            processed_new_refs.update(next_refs)
            refs = next_refs

    def _process_next_old(self):
        # Since we don't filter uninteresting any further than during
        # _read_all_roots, process the whole queue in a single pass.
        refs = self._old_queue
        self._old_queue = []
        all_old_chks = self._all_old_chks
        for record, _, prefix_refs, items in self._read_nodes_from_store(refs):
            # TODO: Use StaticTuple here?
            self._all_old_items.update(items)
            refs = [r for _,r in prefix_refs if r not in all_old_chks]
            self._old_queue.extend(refs)
            all_old_chks.update(refs)

    def _process_queues(self):
        while self._old_queue:
            self._process_next_old()
        return self._flush_new_queue()

    def process(self):
        for record in self._read_all_roots():
            yield record, []
        for record, items in self._process_queues():
            yield record, items


def iter_interesting_nodes(store, interesting_root_keys,
                           uninteresting_root_keys, pb=None):
    """Given root keys, find interesting nodes.

    Evaluate nodes referenced by interesting_root_keys. Ones that are also
    referenced from uninteresting_root_keys are not considered interesting.

    :param interesting_root_keys: keys which should be part of the
        "interesting" nodes (which will be yielded)
    :param uninteresting_root_keys: keys which should be filtered out of the
        result set.
    :return: Yield
        (interesting record, {interesting key:values})
    """
    iterator = CHKMapDifference(store, interesting_root_keys,
                                uninteresting_root_keys,
                                search_key_func=store._search_key_func,
                                pb=pb)
    return iterator.process()


try:
    from bzrlib._chk_map_pyx import (
        _bytes_to_text_key,
        _search_key_16,
        _search_key_255,
        _deserialise_leaf_node,
        _deserialise_internal_node,
        )
except ImportError, e:
    osutils.failed_to_load_extension(e)
    from bzrlib._chk_map_py import (
        _bytes_to_text_key,
        _search_key_16,
        _search_key_255,
        _deserialise_leaf_node,
        _deserialise_internal_node,
        )
search_key_registry.register('hash-16-way', _search_key_16)
search_key_registry.register('hash-255-way', _search_key_255)


def _check_key(key):
    """Helper function to assert that a key is properly formatted.

    This generally shouldn't be used in production code, but it can be helpful
    to debug problems.
    """
    if type(key) is not StaticTuple:
        raise TypeError('key %r is not StaticTuple but %s' % (key, type(key)))
    if len(key) != 1:
        raise ValueError('key %r should have length 1, not %d' % (key, len(key),))
    if type(key[0]) is not str:
        raise TypeError('key %r should hold a str, not %r'
                        % (key, type(key[0])))
    if not key[0].startswith('sha1:'):
        raise ValueError('key %r should point to a sha1:' % (key,))