This file is indexed.

/usr/share/pyshared/bzrlib/graph.py is in python-bzrlib 2.6.0~bzr6526-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
# Copyright (C) 2007-2011 Canonical Ltd
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA

from __future__ import absolute_import

import time

from bzrlib import (
    debug,
    errors,
    osutils,
    revision,
    trace,
    )

STEP_UNIQUE_SEARCHER_EVERY = 5

# DIAGRAM of terminology
#       A
#       /\
#      B  C
#      |  |\
#      D  E F
#      |\/| |
#      |/\|/
#      G  H
#
# In this diagram, relative to G and H:
# A, B, C, D, E are common ancestors.
# C, D and E are border ancestors, because each has a non-common descendant.
# D and E are least common ancestors because none of their descendants are
# common ancestors.
# C is not a least common ancestor because its descendant, E, is a common
# ancestor.
#
# The find_unique_lca algorithm will pick A in two steps:
# 1. find_lca('G', 'H') => ['D', 'E']
# 2. Since len(['D', 'E']) > 1, find_lca('D', 'E') => ['A']


class DictParentsProvider(object):
    """A parents provider for Graph objects."""

    def __init__(self, ancestry):
        self.ancestry = ancestry

    def __repr__(self):
        return 'DictParentsProvider(%r)' % self.ancestry

    # Note: DictParentsProvider does not implement get_cached_parent_map
    #       Arguably, the data is clearly cached in memory. However, this class
    #       is mostly used for testing, and it keeps the tests clean to not
    #       change it.

    def get_parent_map(self, keys):
        """See StackedParentsProvider.get_parent_map"""
        ancestry = self.ancestry
        return dict([(k, ancestry[k]) for k in keys if k in ancestry])


class StackedParentsProvider(object):
    """A parents provider which stacks (or unions) multiple providers.

    The providers are queries in the order of the provided parent_providers.
    """

    def __init__(self, parent_providers):
        self._parent_providers = parent_providers

    def __repr__(self):
        return "%s(%r)" % (self.__class__.__name__, self._parent_providers)

    def get_parent_map(self, keys):
        """Get a mapping of keys => parents

        A dictionary is returned with an entry for each key present in this
        source. If this source doesn't have information about a key, it should
        not include an entry.

        [NULL_REVISION] is used as the parent of the first user-committed
        revision.  Its parent list is empty.

        :param keys: An iterable returning keys to check (eg revision_ids)
        :return: A dictionary mapping each key to its parents
        """
        found = {}
        remaining = set(keys)
        # This adds getattr() overhead to each get_parent_map call. However,
        # this is StackedParentsProvider, which means we're dealing with I/O
        # (either local indexes, or remote RPCs), so CPU overhead should be
        # minimal.
        for parents_provider in self._parent_providers:
            get_cached = getattr(parents_provider, 'get_cached_parent_map',
                                 None)
            if get_cached is None:
                continue
            new_found = get_cached(remaining)
            found.update(new_found)
            remaining.difference_update(new_found)
            if not remaining:
                break
        if not remaining:
            return found
        for parents_provider in self._parent_providers:
            new_found = parents_provider.get_parent_map(remaining)
            found.update(new_found)
            remaining.difference_update(new_found)
            if not remaining:
                break
        return found


class CachingParentsProvider(object):
    """A parents provider which will cache the revision => parents as a dict.

    This is useful for providers which have an expensive look up.

    Either a ParentsProvider or a get_parent_map-like callback may be
    supplied.  If it provides extra un-asked-for parents, they will be cached,
    but filtered out of get_parent_map.

    The cache is enabled by default, but may be disabled and re-enabled.
    """
    def __init__(self, parent_provider=None, get_parent_map=None):
        """Constructor.

        :param parent_provider: The ParentProvider to use.  It or
            get_parent_map must be supplied.
        :param get_parent_map: The get_parent_map callback to use.  It or
            parent_provider must be supplied.
        """
        self._real_provider = parent_provider
        if get_parent_map is None:
            self._get_parent_map = self._real_provider.get_parent_map
        else:
            self._get_parent_map = get_parent_map
        self._cache = None
        self.enable_cache(True)

    def __repr__(self):
        return "%s(%r)" % (self.__class__.__name__, self._real_provider)

    def enable_cache(self, cache_misses=True):
        """Enable cache."""
        if self._cache is not None:
            raise AssertionError('Cache enabled when already enabled.')
        self._cache = {}
        self._cache_misses = cache_misses
        self.missing_keys = set()

    def disable_cache(self):
        """Disable and clear the cache."""
        self._cache = None
        self._cache_misses = None
        self.missing_keys = set()

    def get_cached_map(self):
        """Return any cached get_parent_map values."""
        if self._cache is None:
            return None
        return dict(self._cache)

    def get_cached_parent_map(self, keys):
        """Return items from the cache.

        This returns the same info as get_parent_map, but explicitly does not
        invoke the supplied ParentsProvider to search for uncached values.
        """
        cache = self._cache
        if cache is None:
            return {}
        return dict([(key, cache[key]) for key in keys if key in cache])

    def get_parent_map(self, keys):
        """See StackedParentsProvider.get_parent_map."""
        cache = self._cache
        if cache is None:
            cache = self._get_parent_map(keys)
        else:
            needed_revisions = set(key for key in keys if key not in cache)
            # Do not ask for negatively cached keys
            needed_revisions.difference_update(self.missing_keys)
            if needed_revisions:
                parent_map = self._get_parent_map(needed_revisions)
                cache.update(parent_map)
                if self._cache_misses:
                    for key in needed_revisions:
                        if key not in parent_map:
                            self.note_missing_key(key)
        result = {}
        for key in keys:
            value = cache.get(key)
            if value is not None:
                result[key] = value
        return result

    def note_missing_key(self, key):
        """Note that key is a missing key."""
        if self._cache_misses:
            self.missing_keys.add(key)


class CallableToParentsProviderAdapter(object):
    """A parents provider that adapts any callable to the parents provider API.

    i.e. it accepts calls to self.get_parent_map and relays them to the
    callable it was constructed with.
    """

    def __init__(self, a_callable):
        self.callable = a_callable

    def __repr__(self):
        return "%s(%r)" % (self.__class__.__name__, self.callable)

    def get_parent_map(self, keys):
        return self.callable(keys)


class Graph(object):
    """Provide incremental access to revision graphs.

    This is the generic implementation; it is intended to be subclassed to
    specialize it for other repository types.
    """

    def __init__(self, parents_provider):
        """Construct a Graph that uses several graphs as its input

        This should not normally be invoked directly, because there may be
        specialized implementations for particular repository types.  See
        Repository.get_graph().

        :param parents_provider: An object providing a get_parent_map call
            conforming to the behavior of
            StackedParentsProvider.get_parent_map.
        """
        if getattr(parents_provider, 'get_parents', None) is not None:
            self.get_parents = parents_provider.get_parents
        if getattr(parents_provider, 'get_parent_map', None) is not None:
            self.get_parent_map = parents_provider.get_parent_map
        self._parents_provider = parents_provider

    def __repr__(self):
        return 'Graph(%r)' % self._parents_provider

    def find_lca(self, *revisions):
        """Determine the lowest common ancestors of the provided revisions

        A lowest common ancestor is a common ancestor none of whose
        descendants are common ancestors.  In graphs, unlike trees, there may
        be multiple lowest common ancestors.

        This algorithm has two phases.  Phase 1 identifies border ancestors,
        and phase 2 filters border ancestors to determine lowest common
        ancestors.

        In phase 1, border ancestors are identified, using a breadth-first
        search starting at the bottom of the graph.  Searches are stopped
        whenever a node or one of its descendants is determined to be common

        In phase 2, the border ancestors are filtered to find the least
        common ancestors.  This is done by searching the ancestries of each
        border ancestor.

        Phase 2 is perfomed on the principle that a border ancestor that is
        not an ancestor of any other border ancestor is a least common
        ancestor.

        Searches are stopped when they find a node that is determined to be a
        common ancestor of all border ancestors, because this shows that it
        cannot be a descendant of any border ancestor.

        The scaling of this operation should be proportional to:

        1. The number of uncommon ancestors
        2. The number of border ancestors
        3. The length of the shortest path between a border ancestor and an
           ancestor of all border ancestors.
        """
        border_common, common, sides = self._find_border_ancestors(revisions)
        # We may have common ancestors that can be reached from each other.
        # - ask for the heads of them to filter it down to only ones that
        # cannot be reached from each other - phase 2.
        return self.heads(border_common)

    def find_difference(self, left_revision, right_revision):
        """Determine the graph difference between two revisions"""
        border, common, searchers = self._find_border_ancestors(
            [left_revision, right_revision])
        self._search_for_extra_common(common, searchers)
        left = searchers[0].seen
        right = searchers[1].seen
        return (left.difference(right), right.difference(left))

    def find_descendants(self, old_key, new_key):
        """Find descendants of old_key that are ancestors of new_key."""
        child_map = self.get_child_map(self._find_descendant_ancestors(
            old_key, new_key))
        graph = Graph(DictParentsProvider(child_map))
        searcher = graph._make_breadth_first_searcher([old_key])
        list(searcher)
        return searcher.seen

    def _find_descendant_ancestors(self, old_key, new_key):
        """Find ancestors of new_key that may be descendants of old_key."""
        stop = self._make_breadth_first_searcher([old_key])
        descendants = self._make_breadth_first_searcher([new_key])
        for revisions in descendants:
            old_stop = stop.seen.intersection(revisions)
            descendants.stop_searching_any(old_stop)
            seen_stop = descendants.find_seen_ancestors(stop.step())
            descendants.stop_searching_any(seen_stop)
        return descendants.seen.difference(stop.seen)

    def get_child_map(self, keys):
        """Get a mapping from parents to children of the specified keys.

        This is simply the inversion of get_parent_map.  Only supplied keys
        will be discovered as children.
        :return: a dict of key:child_list for keys.
        """
        parent_map = self._parents_provider.get_parent_map(keys)
        parent_child = {}
        for child, parents in sorted(parent_map.items()):
            for parent in parents:
                parent_child.setdefault(parent, []).append(child)
        return parent_child

    def find_distance_to_null(self, target_revision_id, known_revision_ids):
        """Find the left-hand distance to the NULL_REVISION.

        (This can also be considered the revno of a branch at
        target_revision_id.)

        :param target_revision_id: A revision_id which we would like to know
            the revno for.
        :param known_revision_ids: [(revision_id, revno)] A list of known
            revno, revision_id tuples. We'll use this to seed the search.
        """
        # Map from revision_ids to a known value for their revno
        known_revnos = dict(known_revision_ids)
        cur_tip = target_revision_id
        num_steps = 0
        NULL_REVISION = revision.NULL_REVISION
        known_revnos[NULL_REVISION] = 0

        searching_known_tips = list(known_revnos.keys())

        unknown_searched = {}

        while cur_tip not in known_revnos:
            unknown_searched[cur_tip] = num_steps
            num_steps += 1
            to_search = set([cur_tip])
            to_search.update(searching_known_tips)
            parent_map = self.get_parent_map(to_search)
            parents = parent_map.get(cur_tip, None)
            if not parents: # An empty list or None is a ghost
                raise errors.GhostRevisionsHaveNoRevno(target_revision_id,
                                                       cur_tip)
            cur_tip = parents[0]
            next_known_tips = []
            for revision_id in searching_known_tips:
                parents = parent_map.get(revision_id, None)
                if not parents:
                    continue
                next = parents[0]
                next_revno = known_revnos[revision_id] - 1
                if next in unknown_searched:
                    # We have enough information to return a value right now
                    return next_revno + unknown_searched[next]
                if next in known_revnos:
                    continue
                known_revnos[next] = next_revno
                next_known_tips.append(next)
            searching_known_tips = next_known_tips

        # We reached a known revision, so just add in how many steps it took to
        # get there.
        return known_revnos[cur_tip] + num_steps

    def find_lefthand_distances(self, keys):
        """Find the distance to null for all the keys in keys.

        :param keys: keys to lookup.
        :return: A dict key->distance for all of keys.
        """
        # Optimisable by concurrent searching, but a random spread should get
        # some sort of hit rate.
        result = {}
        known_revnos = []
        ghosts = []
        for key in keys:
            try:
                known_revnos.append(
                    (key, self.find_distance_to_null(key, known_revnos)))
            except errors.GhostRevisionsHaveNoRevno:
                ghosts.append(key)
        for key in ghosts:
            known_revnos.append((key, -1))
        return dict(known_revnos)

    def find_unique_ancestors(self, unique_revision, common_revisions):
        """Find the unique ancestors for a revision versus others.

        This returns the ancestry of unique_revision, excluding all revisions
        in the ancestry of common_revisions. If unique_revision is in the
        ancestry, then the empty set will be returned.

        :param unique_revision: The revision_id whose ancestry we are
            interested in.
            (XXX: Would this API be better if we allowed multiple revisions on
            to be searched here?)
        :param common_revisions: Revision_ids of ancestries to exclude.
        :return: A set of revisions in the ancestry of unique_revision
        """
        if unique_revision in common_revisions:
            return set()

        # Algorithm description
        # 1) Walk backwards from the unique node and all common nodes.
        # 2) When a node is seen by both sides, stop searching it in the unique
        #    walker, include it in the common walker.
        # 3) Stop searching when there are no nodes left for the unique walker.
        #    At this point, you have a maximal set of unique nodes. Some of
        #    them may actually be common, and you haven't reached them yet.
        # 4) Start new searchers for the unique nodes, seeded with the
        #    information you have so far.
        # 5) Continue searching, stopping the common searches when the search
        #    tip is an ancestor of all unique nodes.
        # 6) Aggregate together unique searchers when they are searching the
        #    same tips. When all unique searchers are searching the same node,
        #    stop move it to a single 'all_unique_searcher'.
        # 7) The 'all_unique_searcher' represents the very 'tip' of searching.
        #    Most of the time this produces very little important information.
        #    So don't step it as quickly as the other searchers.
        # 8) Search is done when all common searchers have completed.

        unique_searcher, common_searcher = self._find_initial_unique_nodes(
            [unique_revision], common_revisions)

        unique_nodes = unique_searcher.seen.difference(common_searcher.seen)
        if not unique_nodes:
            return unique_nodes

        (all_unique_searcher,
         unique_tip_searchers) = self._make_unique_searchers(unique_nodes,
                                    unique_searcher, common_searcher)

        self._refine_unique_nodes(unique_searcher, all_unique_searcher,
                                  unique_tip_searchers, common_searcher)
        true_unique_nodes = unique_nodes.difference(common_searcher.seen)
        if 'graph' in debug.debug_flags:
            trace.mutter('Found %d truly unique nodes out of %d',
                         len(true_unique_nodes), len(unique_nodes))
        return true_unique_nodes

    def _find_initial_unique_nodes(self, unique_revisions, common_revisions):
        """Steps 1-3 of find_unique_ancestors.

        Find the maximal set of unique nodes. Some of these might actually
        still be common, but we are sure that there are no other unique nodes.

        :return: (unique_searcher, common_searcher)
        """

        unique_searcher = self._make_breadth_first_searcher(unique_revisions)
        # we know that unique_revisions aren't in common_revisions, so skip
        # past them.
        unique_searcher.next()
        common_searcher = self._make_breadth_first_searcher(common_revisions)

        # As long as we are still finding unique nodes, keep searching
        while unique_searcher._next_query:
            next_unique_nodes = set(unique_searcher.step())
            next_common_nodes = set(common_searcher.step())

            # Check if either searcher encounters new nodes seen by the other
            # side.
            unique_are_common_nodes = next_unique_nodes.intersection(
                common_searcher.seen)
            unique_are_common_nodes.update(
                next_common_nodes.intersection(unique_searcher.seen))
            if unique_are_common_nodes:
                ancestors = unique_searcher.find_seen_ancestors(
                                unique_are_common_nodes)
                # TODO: This is a bit overboard, we only really care about
                #       the ancestors of the tips because the rest we
                #       already know. This is *correct* but causes us to
                #       search too much ancestry.
                ancestors.update(common_searcher.find_seen_ancestors(ancestors))
                unique_searcher.stop_searching_any(ancestors)
                common_searcher.start_searching(ancestors)

        return unique_searcher, common_searcher

    def _make_unique_searchers(self, unique_nodes, unique_searcher,
                               common_searcher):
        """Create a searcher for all the unique search tips (step 4).

        As a side effect, the common_searcher will stop searching any nodes
        that are ancestors of the unique searcher tips.

        :return: (all_unique_searcher, unique_tip_searchers)
        """
        unique_tips = self._remove_simple_descendants(unique_nodes,
                        self.get_parent_map(unique_nodes))

        if len(unique_tips) == 1:
            unique_tip_searchers = []
            ancestor_all_unique = unique_searcher.find_seen_ancestors(unique_tips)
        else:
            unique_tip_searchers = []
            for tip in unique_tips:
                revs_to_search = unique_searcher.find_seen_ancestors([tip])
                revs_to_search.update(
                    common_searcher.find_seen_ancestors(revs_to_search))
                searcher = self._make_breadth_first_searcher(revs_to_search)
                # We don't care about the starting nodes.
                searcher._label = tip
                searcher.step()
                unique_tip_searchers.append(searcher)

            ancestor_all_unique = None
            for searcher in unique_tip_searchers:
                if ancestor_all_unique is None:
                    ancestor_all_unique = set(searcher.seen)
                else:
                    ancestor_all_unique = ancestor_all_unique.intersection(
                                                searcher.seen)
        # Collapse all the common nodes into a single searcher
        all_unique_searcher = self._make_breadth_first_searcher(
                                ancestor_all_unique)
        if ancestor_all_unique:
            # We've seen these nodes in all the searchers, so we'll just go to
            # the next
            all_unique_searcher.step()

            # Stop any search tips that are already known as ancestors of the
            # unique nodes
            stopped_common = common_searcher.stop_searching_any(
                common_searcher.find_seen_ancestors(ancestor_all_unique))

            total_stopped = 0
            for searcher in unique_tip_searchers:
                total_stopped += len(searcher.stop_searching_any(
                    searcher.find_seen_ancestors(ancestor_all_unique)))
        if 'graph' in debug.debug_flags:
            trace.mutter('For %d unique nodes, created %d + 1 unique searchers'
                         ' (%d stopped search tips, %d common ancestors'
                         ' (%d stopped common)',
                         len(unique_nodes), len(unique_tip_searchers),
                         total_stopped, len(ancestor_all_unique),
                         len(stopped_common))
        return all_unique_searcher, unique_tip_searchers

    def _step_unique_and_common_searchers(self, common_searcher,
                                          unique_tip_searchers,
                                          unique_searcher):
        """Step all the searchers"""
        newly_seen_common = set(common_searcher.step())
        newly_seen_unique = set()
        for searcher in unique_tip_searchers:
            next = set(searcher.step())
            next.update(unique_searcher.find_seen_ancestors(next))
            next.update(common_searcher.find_seen_ancestors(next))
            for alt_searcher in unique_tip_searchers:
                if alt_searcher is searcher:
                    continue
                next.update(alt_searcher.find_seen_ancestors(next))
            searcher.start_searching(next)
            newly_seen_unique.update(next)
        return newly_seen_common, newly_seen_unique

    def _find_nodes_common_to_all_unique(self, unique_tip_searchers,
                                         all_unique_searcher,
                                         newly_seen_unique, step_all_unique):
        """Find nodes that are common to all unique_tip_searchers.

        If it is time, step the all_unique_searcher, and add its nodes to the
        result.
        """
        common_to_all_unique_nodes = newly_seen_unique.copy()
        for searcher in unique_tip_searchers:
            common_to_all_unique_nodes.intersection_update(searcher.seen)
        common_to_all_unique_nodes.intersection_update(
                                    all_unique_searcher.seen)
        # Step all-unique less frequently than the other searchers.
        # In the common case, we don't need to spider out far here, so
        # avoid doing extra work.
        if step_all_unique:
            tstart = time.clock()
            nodes = all_unique_searcher.step()
            common_to_all_unique_nodes.update(nodes)
            if 'graph' in debug.debug_flags:
                tdelta = time.clock() - tstart
                trace.mutter('all_unique_searcher step() took %.3fs'
                             'for %d nodes (%d total), iteration: %s',
                             tdelta, len(nodes), len(all_unique_searcher.seen),
                             all_unique_searcher._iterations)
        return common_to_all_unique_nodes

    def _collapse_unique_searchers(self, unique_tip_searchers,
                                   common_to_all_unique_nodes):
        """Combine searchers that are searching the same tips.

        When two searchers are searching the same tips, we can stop one of the
        searchers. We also know that the maximal set of common ancestors is the
        intersection of the two original searchers.

        :return: A list of searchers that are searching unique nodes.
        """
        # Filter out searchers that don't actually search different
        # nodes. We already have the ancestry intersection for them
        unique_search_tips = {}
        for searcher in unique_tip_searchers:
            stopped = searcher.stop_searching_any(common_to_all_unique_nodes)
            will_search_set = frozenset(searcher._next_query)
            if not will_search_set:
                if 'graph' in debug.debug_flags:
                    trace.mutter('Unique searcher %s was stopped.'
                                 ' (%s iterations) %d nodes stopped',
                                 searcher._label,
                                 searcher._iterations,
                                 len(stopped))
            elif will_search_set not in unique_search_tips:
                # This searcher is searching a unique set of nodes, let it
                unique_search_tips[will_search_set] = [searcher]
            else:
                unique_search_tips[will_search_set].append(searcher)
        # TODO: it might be possible to collapse searchers faster when they
        #       only have *some* search tips in common.
        next_unique_searchers = []
        for searchers in unique_search_tips.itervalues():
            if len(searchers) == 1:
                # Searching unique tips, go for it
                next_unique_searchers.append(searchers[0])
            else:
                # These searchers have started searching the same tips, we
                # don't need them to cover the same ground. The
                # intersection of their ancestry won't change, so create a
                # new searcher, combining their histories.
                next_searcher = searchers[0]
                for searcher in searchers[1:]:
                    next_searcher.seen.intersection_update(searcher.seen)
                if 'graph' in debug.debug_flags:
                    trace.mutter('Combining %d searchers into a single'
                                 ' searcher searching %d nodes with'
                                 ' %d ancestry',
                                 len(searchers),
                                 len(next_searcher._next_query),
                                 len(next_searcher.seen))
                next_unique_searchers.append(next_searcher)
        return next_unique_searchers

    def _refine_unique_nodes(self, unique_searcher, all_unique_searcher,
                             unique_tip_searchers, common_searcher):
        """Steps 5-8 of find_unique_ancestors.

        This function returns when common_searcher has stopped searching for
        more nodes.
        """
        # We step the ancestor_all_unique searcher only every
        # STEP_UNIQUE_SEARCHER_EVERY steps.
        step_all_unique_counter = 0
        # While we still have common nodes to search
        while common_searcher._next_query:
            (newly_seen_common,
             newly_seen_unique) = self._step_unique_and_common_searchers(
                common_searcher, unique_tip_searchers, unique_searcher)
            # These nodes are common ancestors of all unique nodes
            common_to_all_unique_nodes = self._find_nodes_common_to_all_unique(
                unique_tip_searchers, all_unique_searcher, newly_seen_unique,
                step_all_unique_counter==0)
            step_all_unique_counter = ((step_all_unique_counter + 1)
                                       % STEP_UNIQUE_SEARCHER_EVERY)

            if newly_seen_common:
                # If a 'common' node is an ancestor of all unique searchers, we
                # can stop searching it.
                common_searcher.stop_searching_any(
                    all_unique_searcher.seen.intersection(newly_seen_common))
            if common_to_all_unique_nodes:
                common_to_all_unique_nodes.update(
                    common_searcher.find_seen_ancestors(
                        common_to_all_unique_nodes))
                # The all_unique searcher can start searching the common nodes
                # but everyone else can stop.
                # This is the sort of thing where we would like to not have it
                # start_searching all of the nodes, but only mark all of them
                # as seen, and have it search only the actual tips. Otherwise
                # it is another get_parent_map() traversal for it to figure out
                # what we already should know.
                all_unique_searcher.start_searching(common_to_all_unique_nodes)
                common_searcher.stop_searching_any(common_to_all_unique_nodes)

            next_unique_searchers = self._collapse_unique_searchers(
                unique_tip_searchers, common_to_all_unique_nodes)
            if len(unique_tip_searchers) != len(next_unique_searchers):
                if 'graph' in debug.debug_flags:
                    trace.mutter('Collapsed %d unique searchers => %d'
                                 ' at %s iterations',
                                 len(unique_tip_searchers),
                                 len(next_unique_searchers),
                                 all_unique_searcher._iterations)
            unique_tip_searchers = next_unique_searchers

    def get_parent_map(self, revisions):
        """Get a map of key:parent_list for revisions.

        This implementation delegates to get_parents, for old parent_providers
        that do not supply get_parent_map.
        """
        result = {}
        for rev, parents in self.get_parents(revisions):
            if parents is not None:
                result[rev] = parents
        return result

    def _make_breadth_first_searcher(self, revisions):
        return _BreadthFirstSearcher(revisions, self)

    def _find_border_ancestors(self, revisions):
        """Find common ancestors with at least one uncommon descendant.

        Border ancestors are identified using a breadth-first
        search starting at the bottom of the graph.  Searches are stopped
        whenever a node or one of its descendants is determined to be common.

        This will scale with the number of uncommon ancestors.

        As well as the border ancestors, a set of seen common ancestors and a
        list of sets of seen ancestors for each input revision is returned.
        This allows calculation of graph difference from the results of this
        operation.
        """
        if None in revisions:
            raise errors.InvalidRevisionId(None, self)
        common_ancestors = set()
        searchers = [self._make_breadth_first_searcher([r])
                     for r in revisions]
        active_searchers = searchers[:]
        border_ancestors = set()

        while True:
            newly_seen = set()
            for searcher in searchers:
                new_ancestors = searcher.step()
                if new_ancestors:
                    newly_seen.update(new_ancestors)
            new_common = set()
            for revision in newly_seen:
                if revision in common_ancestors:
                    # Not a border ancestor because it was seen as common
                    # already
                    new_common.add(revision)
                    continue
                for searcher in searchers:
                    if revision not in searcher.seen:
                        break
                else:
                    # This is a border because it is a first common that we see
                    # after walking for a while.
                    border_ancestors.add(revision)
                    new_common.add(revision)
            if new_common:
                for searcher in searchers:
                    new_common.update(searcher.find_seen_ancestors(new_common))
                for searcher in searchers:
                    searcher.start_searching(new_common)
                common_ancestors.update(new_common)

            # Figure out what the searchers will be searching next, and if
            # there is only 1 set being searched, then we are done searching,
            # since all searchers would have to be searching the same data,
            # thus it *must* be in common.
            unique_search_sets = set()
            for searcher in searchers:
                will_search_set = frozenset(searcher._next_query)
                if will_search_set not in unique_search_sets:
                    # This searcher is searching a unique set of nodes, let it
                    unique_search_sets.add(will_search_set)

            if len(unique_search_sets) == 1:
                nodes = unique_search_sets.pop()
                uncommon_nodes = nodes.difference(common_ancestors)
                if uncommon_nodes:
                    raise AssertionError("Somehow we ended up converging"
                                         " without actually marking them as"
                                         " in common."
                                         "\nStart_nodes: %s"
                                         "\nuncommon_nodes: %s"
                                         % (revisions, uncommon_nodes))
                break
        return border_ancestors, common_ancestors, searchers

    def heads(self, keys):
        """Return the heads from amongst keys.

        This is done by searching the ancestries of each key.  Any key that is
        reachable from another key is not returned; all the others are.

        This operation scales with the relative depth between any two keys. If
        any two keys are completely disconnected all ancestry of both sides
        will be retrieved.

        :param keys: An iterable of keys.
        :return: A set of the heads. Note that as a set there is no ordering
            information. Callers will need to filter their input to create
            order if they need it.
        """
        candidate_heads = set(keys)
        if revision.NULL_REVISION in candidate_heads:
            # NULL_REVISION is only a head if it is the only entry
            candidate_heads.remove(revision.NULL_REVISION)
            if not candidate_heads:
                return set([revision.NULL_REVISION])
        if len(candidate_heads) < 2:
            return candidate_heads
        searchers = dict((c, self._make_breadth_first_searcher([c]))
                          for c in candidate_heads)
        active_searchers = dict(searchers)
        # skip over the actual candidate for each searcher
        for searcher in active_searchers.itervalues():
            searcher.next()
        # The common walker finds nodes that are common to two or more of the
        # input keys, so that we don't access all history when a currently
        # uncommon search point actually meets up with something behind a
        # common search point. Common search points do not keep searches
        # active; they just allow us to make searches inactive without
        # accessing all history.
        common_walker = self._make_breadth_first_searcher([])
        while len(active_searchers) > 0:
            ancestors = set()
            # advance searches
            try:
                common_walker.next()
            except StopIteration:
                # No common points being searched at this time.
                pass
            for candidate in active_searchers.keys():
                try:
                    searcher = active_searchers[candidate]
                except KeyError:
                    # rare case: we deleted candidate in a previous iteration
                    # through this for loop, because it was determined to be
                    # a descendant of another candidate.
                    continue
                try:
                    ancestors.update(searcher.next())
                except StopIteration:
                    del active_searchers[candidate]
                    continue
            # process found nodes
            new_common = set()
            for ancestor in ancestors:
                if ancestor in candidate_heads:
                    candidate_heads.remove(ancestor)
                    del searchers[ancestor]
                    if ancestor in active_searchers:
                        del active_searchers[ancestor]
                # it may meet up with a known common node
                if ancestor in common_walker.seen:
                    # some searcher has encountered our known common nodes:
                    # just stop it
                    ancestor_set = set([ancestor])
                    for searcher in searchers.itervalues():
                        searcher.stop_searching_any(ancestor_set)
                else:
                    # or it may have been just reached by all the searchers:
                    for searcher in searchers.itervalues():
                        if ancestor not in searcher.seen:
                            break
                    else:
                        # The final active searcher has just reached this node,
                        # making it be known as a descendant of all candidates,
                        # so we can stop searching it, and any seen ancestors
                        new_common.add(ancestor)
                        for searcher in searchers.itervalues():
                            seen_ancestors =\
                                searcher.find_seen_ancestors([ancestor])
                            searcher.stop_searching_any(seen_ancestors)
            common_walker.start_searching(new_common)
        return candidate_heads

    def find_merge_order(self, tip_revision_id, lca_revision_ids):
        """Find the order that each revision was merged into tip.

        This basically just walks backwards with a stack, and walks left-first
        until it finds a node to stop.
        """
        if len(lca_revision_ids) == 1:
            return list(lca_revision_ids)
        looking_for = set(lca_revision_ids)
        # TODO: Is there a way we could do this "faster" by batching up the
        # get_parent_map requests?
        # TODO: Should we also be culling the ancestry search right away? We
        # could add looking_for to the "stop" list, and walk their
        # ancestry in batched mode. The flip side is it might mean we walk a
        # lot of "stop" nodes, rather than only the minimum.
        # Then again, without it we may trace back into ancestry we could have
        # stopped early.
        stack = [tip_revision_id]
        found = []
        stop = set()
        while stack and looking_for:
            next = stack.pop()
            stop.add(next)
            if next in looking_for:
                found.append(next)
                looking_for.remove(next)
                if len(looking_for) == 1:
                    found.append(looking_for.pop())
                    break
                continue
            parent_ids = self.get_parent_map([next]).get(next, None)
            if not parent_ids: # Ghost, nothing to search here
                continue
            for parent_id in reversed(parent_ids):
                # TODO: (performance) We see the parent at this point, but we
                #       wait to mark it until later to make sure we get left
                #       parents before right parents. However, instead of
                #       waiting until we have traversed enough parents, we
                #       could instead note that we've found it, and once all
                #       parents are in the stack, just reverse iterate the
                #       stack for them.
                if parent_id not in stop:
                    # this will need to be searched
                    stack.append(parent_id)
                stop.add(parent_id)
        return found

    def find_lefthand_merger(self, merged_key, tip_key):
        """Find the first lefthand ancestor of tip_key that merged merged_key.

        We do this by first finding the descendants of merged_key, then
        walking through the lefthand ancestry of tip_key until we find a key
        that doesn't descend from merged_key.  Its child is the key that
        merged merged_key.

        :return: The first lefthand ancestor of tip_key to merge merged_key.
            merged_key if it is a lefthand ancestor of tip_key.
            None if no ancestor of tip_key merged merged_key.
        """
        descendants = self.find_descendants(merged_key, tip_key)
        candidate_iterator = self.iter_lefthand_ancestry(tip_key)
        last_candidate = None
        for candidate in candidate_iterator:
            if candidate not in descendants:
                return last_candidate
            last_candidate = candidate

    def find_unique_lca(self, left_revision, right_revision,
                        count_steps=False):
        """Find a unique LCA.

        Find lowest common ancestors.  If there is no unique  common
        ancestor, find the lowest common ancestors of those ancestors.

        Iteration stops when a unique lowest common ancestor is found.
        The graph origin is necessarily a unique lowest common ancestor.

        Note that None is not an acceptable substitute for NULL_REVISION.
        in the input for this method.

        :param count_steps: If True, the return value will be a tuple of
            (unique_lca, steps) where steps is the number of times that
            find_lca was run.  If False, only unique_lca is returned.
        """
        revisions = [left_revision, right_revision]
        steps = 0
        while True:
            steps += 1
            lca = self.find_lca(*revisions)
            if len(lca) == 1:
                result = lca.pop()
                if count_steps:
                    return result, steps
                else:
                    return result
            if len(lca) == 0:
                raise errors.NoCommonAncestor(left_revision, right_revision)
            revisions = lca

    def iter_ancestry(self, revision_ids):
        """Iterate the ancestry of this revision.

        :param revision_ids: Nodes to start the search
        :return: Yield tuples mapping a revision_id to its parents for the
            ancestry of revision_id.
            Ghosts will be returned with None as their parents, and nodes
            with no parents will have NULL_REVISION as their only parent. (As
            defined by get_parent_map.)
            There will also be a node for (NULL_REVISION, ())
        """
        pending = set(revision_ids)
        processed = set()
        while pending:
            processed.update(pending)
            next_map = self.get_parent_map(pending)
            next_pending = set()
            for item in next_map.iteritems():
                yield item
                next_pending.update(p for p in item[1] if p not in processed)
            ghosts = pending.difference(next_map)
            for ghost in ghosts:
                yield (ghost, None)
            pending = next_pending

    def iter_lefthand_ancestry(self, start_key, stop_keys=None):
        if stop_keys is None:
            stop_keys = ()
        next_key = start_key
        def get_parents(key):
            try:
                return self._parents_provider.get_parent_map([key])[key]
            except KeyError:
                raise errors.RevisionNotPresent(next_key, self)
        while True:
            if next_key in stop_keys:
                return
            parents = get_parents(next_key)
            yield next_key
            if len(parents) == 0:
                return
            else:
                next_key = parents[0]

    def iter_topo_order(self, revisions):
        """Iterate through the input revisions in topological order.

        This sorting only ensures that parents come before their children.
        An ancestor may sort after a descendant if the relationship is not
        visible in the supplied list of revisions.
        """
        from bzrlib import tsort
        sorter = tsort.TopoSorter(self.get_parent_map(revisions))
        return sorter.iter_topo_order()

    def is_ancestor(self, candidate_ancestor, candidate_descendant):
        """Determine whether a revision is an ancestor of another.

        We answer this using heads() as heads() has the logic to perform the
        smallest number of parent lookups to determine the ancestral
        relationship between N revisions.
        """
        return set([candidate_descendant]) == self.heads(
            [candidate_ancestor, candidate_descendant])

    def is_between(self, revid, lower_bound_revid, upper_bound_revid):
        """Determine whether a revision is between two others.

        returns true if and only if:
        lower_bound_revid <= revid <= upper_bound_revid
        """
        return ((upper_bound_revid is None or
                    self.is_ancestor(revid, upper_bound_revid)) and
               (lower_bound_revid is None or
                    self.is_ancestor(lower_bound_revid, revid)))

    def _search_for_extra_common(self, common, searchers):
        """Make sure that unique nodes are genuinely unique.

        After _find_border_ancestors, all nodes marked "common" are indeed
        common. Some of the nodes considered unique are not, due to history
        shortcuts stopping the searches early.

        We know that we have searched enough when all common search tips are
        descended from all unique (uncommon) nodes because we know that a node
        cannot be an ancestor of its own ancestor.

        :param common: A set of common nodes
        :param searchers: The searchers returned from _find_border_ancestors
        :return: None
        """
        # Basic algorithm...
        #   A) The passed in searchers should all be on the same tips, thus
        #      they should be considered the "common" searchers.
        #   B) We find the difference between the searchers, these are the
        #      "unique" nodes for each side.
        #   C) We do a quick culling so that we only start searching from the
        #      more interesting unique nodes. (A unique ancestor is more
        #      interesting than any of its children.)
        #   D) We start searching for ancestors common to all unique nodes.
        #   E) We have the common searchers stop searching any ancestors of
        #      nodes found by (D)
        #   F) When there are no more common search tips, we stop

        # TODO: We need a way to remove unique_searchers when they overlap with
        #       other unique searchers.
        if len(searchers) != 2:
            raise NotImplementedError(
                "Algorithm not yet implemented for > 2 searchers")
        common_searchers = searchers
        left_searcher = searchers[0]
        right_searcher = searchers[1]
        unique = left_searcher.seen.symmetric_difference(right_searcher.seen)
        if not unique: # No unique nodes, nothing to do
            return
        total_unique = len(unique)
        unique = self._remove_simple_descendants(unique,
                    self.get_parent_map(unique))
        simple_unique = len(unique)

        unique_searchers = []
        for revision_id in unique:
            if revision_id in left_searcher.seen:
                parent_searcher = left_searcher
            else:
                parent_searcher = right_searcher
            revs_to_search = parent_searcher.find_seen_ancestors([revision_id])
            if not revs_to_search: # XXX: This shouldn't be possible
                revs_to_search = [revision_id]
            searcher = self._make_breadth_first_searcher(revs_to_search)
            # We don't care about the starting nodes.
            searcher.step()
            unique_searchers.append(searcher)

        # possible todo: aggregate the common searchers into a single common
        #   searcher, just make sure that we include the nodes into the .seen
        #   properties of the original searchers

        ancestor_all_unique = None
        for searcher in unique_searchers:
            if ancestor_all_unique is None:
                ancestor_all_unique = set(searcher.seen)
            else:
                ancestor_all_unique = ancestor_all_unique.intersection(
                                            searcher.seen)

        trace.mutter('Started %s unique searchers for %s unique revisions',
                     simple_unique, total_unique)

        while True: # If we have no more nodes we have nothing to do
            newly_seen_common = set()
            for searcher in common_searchers:
                newly_seen_common.update(searcher.step())
            newly_seen_unique = set()
            for searcher in unique_searchers:
                newly_seen_unique.update(searcher.step())
            new_common_unique = set()
            for revision in newly_seen_unique:
                for searcher in unique_searchers:
                    if revision not in searcher.seen:
                        break
                else:
                    # This is a border because it is a first common that we see
                    # after walking for a while.
                    new_common_unique.add(revision)
            if newly_seen_common:
                # These are nodes descended from one of the 'common' searchers.
                # Make sure all searchers are on the same page
                for searcher in common_searchers:
                    newly_seen_common.update(
                        searcher.find_seen_ancestors(newly_seen_common))
                # We start searching the whole ancestry. It is a bit wasteful,
                # though. We really just want to mark all of these nodes as
                # 'seen' and then start just the tips. However, it requires a
                # get_parent_map() call to figure out the tips anyway, and all
                # redundant requests should be fairly fast.
                for searcher in common_searchers:
                    searcher.start_searching(newly_seen_common)

                # If a 'common' node is an ancestor of all unique searchers, we
                # can stop searching it.
                stop_searching_common = ancestor_all_unique.intersection(
                                            newly_seen_common)
                if stop_searching_common:
                    for searcher in common_searchers:
                        searcher.stop_searching_any(stop_searching_common)
            if new_common_unique:
                # We found some ancestors that are common
                for searcher in unique_searchers:
                    new_common_unique.update(
                        searcher.find_seen_ancestors(new_common_unique))
                # Since these are common, we can grab another set of ancestors
                # that we have seen
                for searcher in common_searchers:
                    new_common_unique.update(
                        searcher.find_seen_ancestors(new_common_unique))

                # We can tell all of the unique searchers to start at these
                # nodes, and tell all of the common searchers to *stop*
                # searching these nodes
                for searcher in unique_searchers:
                    searcher.start_searching(new_common_unique)
                for searcher in common_searchers:
                    searcher.stop_searching_any(new_common_unique)
                ancestor_all_unique.update(new_common_unique)

                # Filter out searchers that don't actually search different
                # nodes. We already have the ancestry intersection for them
                next_unique_searchers = []
                unique_search_sets = set()
                for searcher in unique_searchers:
                    will_search_set = frozenset(searcher._next_query)
                    if will_search_set not in unique_search_sets:
                        # This searcher is searching a unique set of nodes, let it
                        unique_search_sets.add(will_search_set)
                        next_unique_searchers.append(searcher)
                unique_searchers = next_unique_searchers
            for searcher in common_searchers:
                if searcher._next_query:
                    break
            else:
                # All common searcher have stopped searching
                return

    def _remove_simple_descendants(self, revisions, parent_map):
        """remove revisions which are children of other ones in the set

        This doesn't do any graph searching, it just checks the immediate
        parent_map to find if there are any children which can be removed.

        :param revisions: A set of revision_ids
        :return: A set of revision_ids with the children removed
        """
        simple_ancestors = revisions.copy()
        # TODO: jam 20071214 we *could* restrict it to searching only the
        #       parent_map of revisions already present in 'revisions', but
        #       considering the general use case, I think this is actually
        #       better.

        # This is the same as the following loop. I don't know that it is any
        # faster.
        ## simple_ancestors.difference_update(r for r, p_ids in parent_map.iteritems()
        ##     if p_ids is not None and revisions.intersection(p_ids))
        ## return simple_ancestors

        # Yet Another Way, invert the parent map (which can be cached)
        ## descendants = {}
        ## for revision_id, parent_ids in parent_map.iteritems():
        ##   for p_id in parent_ids:
        ##       descendants.setdefault(p_id, []).append(revision_id)
        ## for revision in revisions.intersection(descendants):
        ##   simple_ancestors.difference_update(descendants[revision])
        ## return simple_ancestors
        for revision, parent_ids in parent_map.iteritems():
            if parent_ids is None:
                continue
            for parent_id in parent_ids:
                if parent_id in revisions:
                    # This node has a parent present in the set, so we can
                    # remove it
                    simple_ancestors.discard(revision)
                    break
        return simple_ancestors


class HeadsCache(object):
    """A cache of results for graph heads calls."""

    def __init__(self, graph):
        self.graph = graph
        self._heads = {}

    def heads(self, keys):
        """Return the heads of keys.

        This matches the API of Graph.heads(), specifically the return value is
        a set which can be mutated, and ordering of the input is not preserved
        in the output.

        :see also: Graph.heads.
        :param keys: The keys to calculate heads for.
        :return: A set containing the heads, which may be mutated without
            affecting future lookups.
        """
        keys = frozenset(keys)
        try:
            return set(self._heads[keys])
        except KeyError:
            heads = self.graph.heads(keys)
            self._heads[keys] = heads
            return set(heads)


class FrozenHeadsCache(object):
    """Cache heads() calls, assuming the caller won't modify them."""

    def __init__(self, graph):
        self.graph = graph
        self._heads = {}

    def heads(self, keys):
        """Return the heads of keys.

        Similar to Graph.heads(). The main difference is that the return value
        is a frozen set which cannot be mutated.

        :see also: Graph.heads.
        :param keys: The keys to calculate heads for.
        :return: A frozenset containing the heads.
        """
        keys = frozenset(keys)
        try:
            return self._heads[keys]
        except KeyError:
            heads = frozenset(self.graph.heads(keys))
            self._heads[keys] = heads
            return heads

    def cache(self, keys, heads):
        """Store a known value."""
        self._heads[frozenset(keys)] = frozenset(heads)


class _BreadthFirstSearcher(object):
    """Parallel search breadth-first the ancestry of revisions.

    This class implements the iterator protocol, but additionally
    1. provides a set of seen ancestors, and
    2. allows some ancestries to be unsearched, via stop_searching_any
    """

    def __init__(self, revisions, parents_provider):
        self._iterations = 0
        self._next_query = set(revisions)
        self.seen = set()
        self._started_keys = set(self._next_query)
        self._stopped_keys = set()
        self._parents_provider = parents_provider
        self._returning = 'next_with_ghosts'
        self._current_present = set()
        self._current_ghosts = set()
        self._current_parents = {}

    def __repr__(self):
        if self._iterations:
            prefix = "searching"
        else:
            prefix = "starting"
        search = '%s=%r' % (prefix, list(self._next_query))
        return ('_BreadthFirstSearcher(iterations=%d, %s,'
                ' seen=%r)' % (self._iterations, search, list(self.seen)))

    def get_state(self):
        """Get the current state of this searcher.

        :return: Tuple with started keys, excludes and included keys
        """
        if self._returning == 'next':
            # We have to know the current nodes children to be able to list the
            # exclude keys for them. However, while we could have a second
            # look-ahead result buffer and shuffle things around, this method
            # is typically only called once per search - when memoising the
            # results of the search.
            found, ghosts, next, parents = self._do_query(self._next_query)
            # pretend we didn't query: perhaps we should tweak _do_query to be
            # entirely stateless?
            self.seen.difference_update(next)
            next_query = next.union(ghosts)
        else:
            next_query = self._next_query
        excludes = self._stopped_keys.union(next_query)
        included_keys = self.seen.difference(excludes)
        return self._started_keys, excludes, included_keys

    def _get_result(self):
        """Get a SearchResult for the current state of this searcher.

        :return: A SearchResult for this search so far. The SearchResult is
            static - the search can be advanced and the search result will not
            be invalidated or altered.
        """
        from bzrlib.vf_search import SearchResult
        (started_keys, excludes, included_keys) = self.get_state()
        return SearchResult(started_keys, excludes, len(included_keys),
            included_keys)

    def step(self):
        try:
            return self.next()
        except StopIteration:
            return ()

    def next(self):
        """Return the next ancestors of this revision.

        Ancestors are returned in the order they are seen in a breadth-first
        traversal.  No ancestor will be returned more than once. Ancestors are
        returned before their parentage is queried, so ghosts and missing
        revisions (including the start revisions) are included in the result.
        This can save a round trip in LCA style calculation by allowing
        convergence to be detected without reading the data for the revision
        the convergence occurs on.

        :return: A set of revision_ids.
        """
        if self._returning != 'next':
            # switch to returning the query, not the results.
            self._returning = 'next'
            self._iterations += 1
        else:
            self._advance()
        if len(self._next_query) == 0:
            raise StopIteration()
        # We have seen what we're querying at this point as we are returning
        # the query, not the results.
        self.seen.update(self._next_query)
        return self._next_query

    def next_with_ghosts(self):
        """Return the next found ancestors, with ghosts split out.

        Ancestors are returned in the order they are seen in a breadth-first
        traversal.  No ancestor will be returned more than once. Ancestors are
        returned only after asking for their parents, which allows us to detect
        which revisions are ghosts and which are not.

        :return: A tuple with (present ancestors, ghost ancestors) sets.
        """
        if self._returning != 'next_with_ghosts':
            # switch to returning the results, not the current query.
            self._returning = 'next_with_ghosts'
            self._advance()
        if len(self._next_query) == 0:
            raise StopIteration()
        self._advance()
        return self._current_present, self._current_ghosts

    def _advance(self):
        """Advance the search.

        Updates self.seen, self._next_query, self._current_present,
        self._current_ghosts, self._current_parents and self._iterations.
        """
        self._iterations += 1
        found, ghosts, next, parents = self._do_query(self._next_query)
        self._current_present = found
        self._current_ghosts = ghosts
        self._next_query = next
        self._current_parents = parents
        # ghosts are implicit stop points, otherwise the search cannot be
        # repeated when ghosts are filled.
        self._stopped_keys.update(ghosts)

    def _do_query(self, revisions):
        """Query for revisions.

        Adds revisions to the seen set.

        :param revisions: Revisions to query.
        :return: A tuple: (set(found_revisions), set(ghost_revisions),
           set(parents_of_found_revisions), dict(found_revisions:parents)).
        """
        found_revisions = set()
        parents_of_found = set()
        # revisions may contain nodes that point to other nodes in revisions:
        # we want to filter them out.
        seen = self.seen
        seen.update(revisions)
        parent_map = self._parents_provider.get_parent_map(revisions)
        found_revisions.update(parent_map)
        for rev_id, parents in parent_map.iteritems():
            if parents is None:
                continue
            new_found_parents = [p for p in parents if p not in seen]
            if new_found_parents:
                # Calling set.update() with an empty generator is actually
                # rather expensive.
                parents_of_found.update(new_found_parents)
        ghost_revisions = revisions - found_revisions
        return found_revisions, ghost_revisions, parents_of_found, parent_map

    def __iter__(self):
        return self

    def find_seen_ancestors(self, revisions):
        """Find ancestors of these revisions that have already been seen.

        This function generally makes the assumption that querying for the
        parents of a node that has already been queried is reasonably cheap.
        (eg, not a round trip to a remote host).
        """
        # TODO: Often we might ask one searcher for its seen ancestors, and
        #       then ask another searcher the same question. This can result in
        #       searching the same revisions repeatedly if the two searchers
        #       have a lot of overlap.
        all_seen = self.seen
        pending = set(revisions).intersection(all_seen)
        seen_ancestors = set(pending)

        if self._returning == 'next':
            # self.seen contains what nodes have been returned, not what nodes
            # have been queried. We don't want to probe for nodes that haven't
            # been searched yet.
            not_searched_yet = self._next_query
        else:
            not_searched_yet = ()
        pending.difference_update(not_searched_yet)
        get_parent_map = self._parents_provider.get_parent_map
        while pending:
            parent_map = get_parent_map(pending)
            all_parents = []
            # We don't care if it is a ghost, since it can't be seen if it is
            # a ghost
            for parent_ids in parent_map.itervalues():
                all_parents.extend(parent_ids)
            next_pending = all_seen.intersection(all_parents).difference(seen_ancestors)
            seen_ancestors.update(next_pending)
            next_pending.difference_update(not_searched_yet)
            pending = next_pending

        return seen_ancestors

    def stop_searching_any(self, revisions):
        """
        Remove any of the specified revisions from the search list.

        None of the specified revisions are required to be present in the
        search list.

        It is okay to call stop_searching_any() for revisions which were seen
        in previous iterations. It is the callers responsibility to call
        find_seen_ancestors() to make sure that current search tips that are
        ancestors of those revisions are also stopped.  All explicitly stopped
        revisions will be excluded from the search result's get_keys(), though.
        """
        # TODO: does this help performance?
        # if not revisions:
        #     return set()
        revisions = frozenset(revisions)
        if self._returning == 'next':
            stopped = self._next_query.intersection(revisions)
            self._next_query = self._next_query.difference(revisions)
        else:
            stopped_present = self._current_present.intersection(revisions)
            stopped = stopped_present.union(
                self._current_ghosts.intersection(revisions))
            self._current_present.difference_update(stopped)
            self._current_ghosts.difference_update(stopped)
            # stopping 'x' should stop returning parents of 'x', but
            # not if 'y' always references those same parents
            stop_rev_references = {}
            for rev in stopped_present:
                for parent_id in self._current_parents[rev]:
                    if parent_id not in stop_rev_references:
                        stop_rev_references[parent_id] = 0
                    stop_rev_references[parent_id] += 1
            # if only the stopped revisions reference it, the ref count will be
            # 0 after this loop
            for parents in self._current_parents.itervalues():
                for parent_id in parents:
                    try:
                        stop_rev_references[parent_id] -= 1
                    except KeyError:
                        pass
            stop_parents = set()
            for rev_id, refs in stop_rev_references.iteritems():
                if refs == 0:
                    stop_parents.add(rev_id)
            self._next_query.difference_update(stop_parents)
        self._stopped_keys.update(stopped)
        self._stopped_keys.update(revisions)
        return stopped

    def start_searching(self, revisions):
        """Add revisions to the search.

        The parents of revisions will be returned from the next call to next()
        or next_with_ghosts(). If next_with_ghosts was the most recently used
        next* call then the return value is the result of looking up the
        ghost/not ghost status of revisions. (A tuple (present, ghosted)).
        """
        revisions = frozenset(revisions)
        self._started_keys.update(revisions)
        new_revisions = revisions.difference(self.seen)
        if self._returning == 'next':
            self._next_query.update(new_revisions)
            self.seen.update(new_revisions)
        else:
            # perform a query on revisions
            revs, ghosts, query, parents = self._do_query(revisions)
            self._stopped_keys.update(ghosts)
            self._current_present.update(revs)
            self._current_ghosts.update(ghosts)
            self._next_query.update(query)
            self._current_parents.update(parents)
            return revs, ghosts


def invert_parent_map(parent_map):
    """Given a map from child => parents, create a map of parent=>children"""
    child_map = {}
    for child, parents in parent_map.iteritems():
        for p in parents:
            # Any given parent is likely to have only a small handful
            # of children, many will have only one. So we avoid mem overhead of
            # a list, in exchange for extra copying of tuples
            if p not in child_map:
                child_map[p] = (child,)
            else:
                child_map[p] = child_map[p] + (child,)
    return child_map


def collapse_linear_regions(parent_map):
    """Collapse regions of the graph that are 'linear'.

    For example::

      A:[B], B:[C]

    can be collapsed by removing B and getting::

      A:[C]

    :param parent_map: A dictionary mapping children to their parents
    :return: Another dictionary with 'linear' chains collapsed
    """
    # Note: this isn't a strictly minimal collapse. For example:
    #   A
    #  / \
    # B   C
    #  \ /
    #   D
    #   |
    #   E
    # Will not have 'D' removed, even though 'E' could fit. Also:
    #   A
    #   |    A
    #   B => |
    #   |    C
    #   C
    # A and C are both kept because they are edges of the graph. We *could* get
    # rid of A if we wanted.
    #   A
    #  / \
    # B   C
    # |   |
    # D   E
    #  \ /
    #   F
    # Will not have any nodes removed, even though you do have an
    # 'uninteresting' linear D->B and E->C
    children = {}
    for child, parents in parent_map.iteritems():
        children.setdefault(child, [])
        for p in parents:
            children.setdefault(p, []).append(child)

    orig_children = dict(children)
    removed = set()
    result = dict(parent_map)
    for node in parent_map:
        parents = result[node]
        if len(parents) == 1:
            parent_children = children[parents[0]]
            if len(parent_children) != 1:
                # This is not the only child
                continue
            node_children = children[node]
            if len(node_children) != 1:
                continue
            child_parents = result.get(node_children[0], None)
            if len(child_parents) != 1:
                # This is not its only parent
                continue
            # The child of this node only points at it, and the parent only has
            # this as a child. remove this node, and join the others together
            result[node_children[0]] = parents
            children[parents[0]] = node_children
            del result[node]
            del children[node]
            removed.add(node)

    return result


class GraphThunkIdsToKeys(object):
    """Forwards calls about 'ids' to be about keys internally."""

    def __init__(self, graph):
        self._graph = graph

    def topo_sort(self):
        return [r for (r,) in self._graph.topo_sort()]

    def heads(self, ids):
        """See Graph.heads()"""
        as_keys = [(i,) for i in ids]
        head_keys = self._graph.heads(as_keys)
        return set([h[0] for h in head_keys])

    def merge_sort(self, tip_revision):
        nodes = self._graph.merge_sort((tip_revision,))
        for node in nodes:
            node.key = node.key[0]
        return nodes

    def add_node(self, revision, parents):
        self._graph.add_node((revision,), [(p,) for p in parents])


_counters = [0,0,0,0,0,0,0]
try:
    from bzrlib._known_graph_pyx import KnownGraph
except ImportError, e:
    osutils.failed_to_load_extension(e)
    from bzrlib._known_graph_py import KnownGraph