This file is indexed.

/usr/share/pyshared/bzrlib/index.py is in python-bzrlib 2.6.0~bzr6526-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
# Copyright (C) 2007-2011 Canonical Ltd
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA

"""Indexing facilities."""

from __future__ import absolute_import

__all__ = [
    'CombinedGraphIndex',
    'GraphIndex',
    'GraphIndexBuilder',
    'GraphIndexPrefixAdapter',
    'InMemoryGraphIndex',
    ]

from bisect import bisect_right
from cStringIO import StringIO
import re
import sys

from bzrlib.lazy_import import lazy_import
lazy_import(globals(), """
from bzrlib import (
    bisect_multi,
    revision as _mod_revision,
    trace,
    )
""")
from bzrlib import (
    debug,
    errors,
    )
from bzrlib.static_tuple import StaticTuple

_HEADER_READV = (0, 200)
_OPTION_KEY_ELEMENTS = "key_elements="
_OPTION_LEN = "len="
_OPTION_NODE_REFS = "node_ref_lists="
_SIGNATURE = "Bazaar Graph Index 1\n"


_whitespace_re = re.compile('[\t\n\x0b\x0c\r\x00 ]')
_newline_null_re = re.compile('[\n\0]')


def _has_key_from_parent_map(self, key):
    """Check if this index has one key.

    If it's possible to check for multiple keys at once through
    calling get_parent_map that should be faster.
    """
    return (key in self.get_parent_map([key]))


def _missing_keys_from_parent_map(self, keys):
    return set(keys) - set(self.get_parent_map(keys))


class GraphIndexBuilder(object):
    """A builder that can build a GraphIndex.

    The resulting graph has the structure::

      _SIGNATURE OPTIONS NODES NEWLINE
      _SIGNATURE     := 'Bazaar Graph Index 1' NEWLINE
      OPTIONS        := 'node_ref_lists=' DIGITS NEWLINE
      NODES          := NODE*
      NODE           := KEY NULL ABSENT? NULL REFERENCES NULL VALUE NEWLINE
      KEY            := Not-whitespace-utf8
      ABSENT         := 'a'
      REFERENCES     := REFERENCE_LIST (TAB REFERENCE_LIST){node_ref_lists - 1}
      REFERENCE_LIST := (REFERENCE (CR REFERENCE)*)?
      REFERENCE      := DIGITS  ; digits is the byte offset in the index of the
                                ; referenced key.
      VALUE          := no-newline-no-null-bytes
    """

    def __init__(self, reference_lists=0, key_elements=1):
        """Create a GraphIndex builder.

        :param reference_lists: The number of node references lists for each
            entry.
        :param key_elements: The number of bytestrings in each key.
        """
        self.reference_lists = reference_lists
        # A dict of {key: (absent, ref_lists, value)}
        self._nodes = {}
        # Keys that are referenced but not actually present in this index
        self._absent_keys = set()
        self._nodes_by_key = None
        self._key_length = key_elements
        self._optimize_for_size = False
        self._combine_backing_indices = True

    def _check_key(self, key):
        """Raise BadIndexKey if key is not a valid key for this index."""
        if type(key) not in (tuple, StaticTuple):
            raise errors.BadIndexKey(key)
        if self._key_length != len(key):
            raise errors.BadIndexKey(key)
        for element in key:
            if not element or _whitespace_re.search(element) is not None:
                raise errors.BadIndexKey(element)

    def _external_references(self):
        """Return references that are not present in this index.
        """
        keys = set()
        refs = set()
        # TODO: JAM 2008-11-21 This makes an assumption about how the reference
        #       lists are used. It is currently correct for pack-0.92 through
        #       1.9, which use the node references (3rd column) second
        #       reference list as the compression parent. Perhaps this should
        #       be moved into something higher up the stack, since it
        #       makes assumptions about how the index is used.
        if self.reference_lists > 1:
            for node in self.iter_all_entries():
                keys.add(node[1])
                refs.update(node[3][1])
            return refs - keys
        else:
            # If reference_lists == 0 there can be no external references, and
            # if reference_lists == 1, then there isn't a place to store the
            # compression parent
            return set()

    def _get_nodes_by_key(self):
        if self._nodes_by_key is None:
            nodes_by_key = {}
            if self.reference_lists:
                for key, (absent, references, value) in self._nodes.iteritems():
                    if absent:
                        continue
                    key_dict = nodes_by_key
                    for subkey in key[:-1]:
                        key_dict = key_dict.setdefault(subkey, {})
                    key_dict[key[-1]] = key, value, references
            else:
                for key, (absent, references, value) in self._nodes.iteritems():
                    if absent:
                        continue
                    key_dict = nodes_by_key
                    for subkey in key[:-1]:
                        key_dict = key_dict.setdefault(subkey, {})
                    key_dict[key[-1]] = key, value
            self._nodes_by_key = nodes_by_key
        return self._nodes_by_key

    def _update_nodes_by_key(self, key, value, node_refs):
        """Update the _nodes_by_key dict with a new key.

        For a key of (foo, bar, baz) create
        _nodes_by_key[foo][bar][baz] = key_value
        """
        if self._nodes_by_key is None:
            return
        key_dict = self._nodes_by_key
        if self.reference_lists:
            key_value = StaticTuple(key, value, node_refs)
        else:
            key_value = StaticTuple(key, value)
        for subkey in key[:-1]:
            key_dict = key_dict.setdefault(subkey, {})
        key_dict[key[-1]] = key_value

    def _check_key_ref_value(self, key, references, value):
        """Check that 'key' and 'references' are all valid.

        :param key: A key tuple. Must conform to the key interface (be a tuple,
            be of the right length, not have any whitespace or nulls in any key
            element.)
        :param references: An iterable of reference lists. Something like
            [[(ref, key)], [(ref, key), (other, key)]]
        :param value: The value associate with this key. Must not contain
            newlines or null characters.
        :return: (node_refs, absent_references)
        
            * node_refs: basically a packed form of 'references' where all
              iterables are tuples
            * absent_references: reference keys that are not in self._nodes.
              This may contain duplicates if the same key is referenced in
              multiple lists.
        """
        as_st = StaticTuple.from_sequence
        self._check_key(key)
        if _newline_null_re.search(value) is not None:
            raise errors.BadIndexValue(value)
        if len(references) != self.reference_lists:
            raise errors.BadIndexValue(references)
        node_refs = []
        absent_references = []
        for reference_list in references:
            for reference in reference_list:
                # If reference *is* in self._nodes, then we know it has already
                # been checked.
                if reference not in self._nodes:
                    self._check_key(reference)
                    absent_references.append(reference)
            reference_list = as_st([as_st(ref).intern()
                                    for ref in reference_list])
            node_refs.append(reference_list)
        return as_st(node_refs), absent_references

    def add_node(self, key, value, references=()):
        """Add a node to the index.

        :param key: The key. keys are non-empty tuples containing
            as many whitespace-free utf8 bytestrings as the key length
            defined for this index.
        :param references: An iterable of iterables of keys. Each is a
            reference to another key.
        :param value: The value to associate with the key. It may be any
            bytes as long as it does not contain \\0 or \\n.
        """
        (node_refs,
         absent_references) = self._check_key_ref_value(key, references, value)
        if key in self._nodes and self._nodes[key][0] != 'a':
            raise errors.BadIndexDuplicateKey(key, self)
        for reference in absent_references:
            # There may be duplicates, but I don't think it is worth worrying
            # about
            self._nodes[reference] = ('a', (), '')
        self._absent_keys.update(absent_references)
        self._absent_keys.discard(key)
        self._nodes[key] = ('', node_refs, value)
        if self._nodes_by_key is not None and self._key_length > 1:
            self._update_nodes_by_key(key, value, node_refs)

    def clear_cache(self):
        """See GraphIndex.clear_cache()

        This is a no-op, but we need the api to conform to a generic 'Index'
        abstraction.
        """
        
    def finish(self):
        """Finish the index.

        :returns: cStringIO holding the full context of the index as it 
        should be written to disk.
        """
        lines = [_SIGNATURE]
        lines.append(_OPTION_NODE_REFS + str(self.reference_lists) + '\n')
        lines.append(_OPTION_KEY_ELEMENTS + str(self._key_length) + '\n')
        key_count = len(self._nodes) - len(self._absent_keys)
        lines.append(_OPTION_LEN + str(key_count) + '\n')
        prefix_length = sum(len(x) for x in lines)
        # references are byte offsets. To avoid having to do nasty
        # polynomial work to resolve offsets (references to later in the
        # file cannot be determined until all the inbetween references have
        # been calculated too) we pad the offsets with 0's to make them be
        # of consistent length. Using binary offsets would break the trivial
        # file parsing.
        # to calculate the width of zero's needed we do three passes:
        # one to gather all the non-reference data and the number of references.
        # one to pad all the data with reference-length and determine entry
        # addresses.
        # One to serialise.

        # forward sorted by key. In future we may consider topological sorting,
        # at the cost of table scans for direct lookup, or a second index for
        # direct lookup
        nodes = sorted(self._nodes.items())
        # if we do not prepass, we don't know how long it will be up front.
        expected_bytes = None
        # we only need to pre-pass if we have reference lists at all.
        if self.reference_lists:
            key_offset_info = []
            non_ref_bytes = prefix_length
            total_references = 0
            # TODO use simple multiplication for the constants in this loop.
            for key, (absent, references, value) in nodes:
                # record the offset known *so far* for this key:
                # the non reference bytes to date, and the total references to
                # date - saves reaccumulating on the second pass
                key_offset_info.append((key, non_ref_bytes, total_references))
                # key is literal, value is literal, there are 3 null's, 1 NL
                # key is variable length tuple, \x00 between elements
                non_ref_bytes += sum(len(element) for element in key)
                if self._key_length > 1:
                    non_ref_bytes += self._key_length - 1
                # value is literal bytes, there are 3 null's, 1 NL.
                non_ref_bytes += len(value) + 3 + 1
                # one byte for absent if set.
                if absent:
                    non_ref_bytes += 1
                elif self.reference_lists:
                    # (ref_lists -1) tabs
                    non_ref_bytes += self.reference_lists - 1
                    # (ref-1 cr's per ref_list)
                    for ref_list in references:
                        # how many references across the whole file?
                        total_references += len(ref_list)
                        # accrue reference separators
                        if ref_list:
                            non_ref_bytes += len(ref_list) - 1
            # how many digits are needed to represent the total byte count?
            digits = 1
            possible_total_bytes = non_ref_bytes + total_references*digits
            while 10 ** digits < possible_total_bytes:
                digits += 1
                possible_total_bytes = non_ref_bytes + total_references*digits
            expected_bytes = possible_total_bytes + 1 # terminating newline
            # resolve key addresses.
            key_addresses = {}
            for key, non_ref_bytes, total_references in key_offset_info:
                key_addresses[key] = non_ref_bytes + total_references*digits
            # serialise
            format_string = '%%0%sd' % digits
        for key, (absent, references, value) in nodes:
            flattened_references = []
            for ref_list in references:
                ref_addresses = []
                for reference in ref_list:
                    ref_addresses.append(format_string % key_addresses[reference])
                flattened_references.append('\r'.join(ref_addresses))
            string_key = '\x00'.join(key)
            lines.append("%s\x00%s\x00%s\x00%s\n" % (string_key, absent,
                '\t'.join(flattened_references), value))
        lines.append('\n')
        result = StringIO(''.join(lines))
        if expected_bytes and len(result.getvalue()) != expected_bytes:
            raise errors.BzrError('Failed index creation. Internal error:'
                ' mismatched output length and expected length: %d %d' %
                (len(result.getvalue()), expected_bytes))
        return result

    def set_optimize(self, for_size=None, combine_backing_indices=None):
        """Change how the builder tries to optimize the result.

        :param for_size: Tell the builder to try and make the index as small as
            possible.
        :param combine_backing_indices: If the builder spills to disk to save
            memory, should the on-disk indices be combined. Set to True if you
            are going to be probing the index, but to False if you are not. (If
            you are not querying, then the time spent combining is wasted.)
        :return: None
        """
        # GraphIndexBuilder itself doesn't pay attention to the flag yet, but
        # other builders do.
        if for_size is not None:
            self._optimize_for_size = for_size
        if combine_backing_indices is not None:
            self._combine_backing_indices = combine_backing_indices

    def find_ancestry(self, keys, ref_list_num):
        """See CombinedGraphIndex.find_ancestry()"""
        pending = set(keys)
        parent_map = {}
        missing_keys = set()
        while pending:
            next_pending = set()
            for _, key, value, ref_lists in self.iter_entries(pending):
                parent_keys = ref_lists[ref_list_num]
                parent_map[key] = parent_keys
                next_pending.update([p for p in parent_keys if p not in
                                     parent_map])
                missing_keys.update(pending.difference(parent_map))
            pending = next_pending
        return parent_map, missing_keys


class GraphIndex(object):
    """An index for data with embedded graphs.

    The index maps keys to a list of key reference lists, and a value.
    Each node has the same number of key reference lists. Each key reference
    list can be empty or an arbitrary length. The value is an opaque NULL
    terminated string without any newlines. The storage of the index is
    hidden in the interface: keys and key references are always tuples of
    bytestrings, never the internal representation (e.g. dictionary offsets).

    It is presumed that the index will not be mutated - it is static data.

    Successive iter_all_entries calls will read the entire index each time.
    Additionally, iter_entries calls will read the index linearly until the
    desired keys are found. XXX: This must be fixed before the index is
    suitable for production use. :XXX
    """

    def __init__(self, transport, name, size, unlimited_cache=False, offset=0):
        """Open an index called name on transport.

        :param transport: A bzrlib.transport.Transport.
        :param name: A path to provide to transport API calls.
        :param size: The size of the index in bytes. This is used for bisection
            logic to perform partial index reads. While the size could be
            obtained by statting the file this introduced an additional round
            trip as well as requiring stat'able transports, both of which are
            avoided by having it supplied. If size is None, then bisection
            support will be disabled and accessing the index will just stream
            all the data.
        :param offset: Instead of starting the index data at offset 0, start it
            at an arbitrary offset.
        """
        self._transport = transport
        self._name = name
        # Becomes a dict of key:(value, reference-list-byte-locations) used by
        # the bisection interface to store parsed but not resolved keys.
        self._bisect_nodes = None
        # Becomes a dict of key:(value, reference-list-keys) which are ready to
        # be returned directly to callers.
        self._nodes = None
        # a sorted list of slice-addresses for the parsed bytes of the file.
        # e.g. (0,1) would mean that byte 0 is parsed.
        self._parsed_byte_map = []
        # a sorted list of keys matching each slice address for parsed bytes
        # e.g. (None, 'foo@bar') would mean that the first byte contained no
        # key, and the end byte of the slice is the of the data for 'foo@bar'
        self._parsed_key_map = []
        self._key_count = None
        self._keys_by_offset = None
        self._nodes_by_key = None
        self._size = size
        # The number of bytes we've read so far in trying to process this file
        self._bytes_read = 0
        self._base_offset = offset

    def __eq__(self, other):
        """Equal when self and other were created with the same parameters."""
        return (
            type(self) == type(other) and
            self._transport == other._transport and
            self._name == other._name and
            self._size == other._size)

    def __ne__(self, other):
        return not self.__eq__(other)

    def __repr__(self):
        return "%s(%r)" % (self.__class__.__name__,
            self._transport.abspath(self._name))

    def _buffer_all(self, stream=None):
        """Buffer all the index data.

        Mutates self._nodes and self.keys_by_offset.
        """
        if self._nodes is not None:
            # We already did this
            return
        if 'index' in debug.debug_flags:
            trace.mutter('Reading entire index %s',
                          self._transport.abspath(self._name))
        if stream is None:
            stream = self._transport.get(self._name)
            if self._base_offset != 0:
                # This is wasteful, but it is better than dealing with
                # adjusting all the offsets, etc.
                stream = StringIO(stream.read()[self._base_offset:])
        self._read_prefix(stream)
        self._expected_elements = 3 + self._key_length
        line_count = 0
        # raw data keyed by offset
        self._keys_by_offset = {}
        # ready-to-return key:value or key:value, node_ref_lists
        self._nodes = {}
        self._nodes_by_key = None
        trailers = 0
        pos = stream.tell()
        lines = stream.read().split('\n')
        # GZ 2009-09-20: Should really use a try/finally block to ensure close
        stream.close()
        del lines[-1]
        _, _, _, trailers = self._parse_lines(lines, pos)
        for key, absent, references, value in self._keys_by_offset.itervalues():
            if absent:
                continue
            # resolve references:
            if self.node_ref_lists:
                node_value = (value, self._resolve_references(references))
            else:
                node_value = value
            self._nodes[key] = node_value
        # cache the keys for quick set intersections
        if trailers != 1:
            # there must be one line - the empty trailer line.
            raise errors.BadIndexData(self)

    def clear_cache(self):
        """Clear out any cached/memoized values.

        This can be called at any time, but generally it is used when we have
        extracted some information, but don't expect to be requesting any more
        from this index.
        """

    def external_references(self, ref_list_num):
        """Return references that are not present in this index.
        """
        self._buffer_all()
        if ref_list_num + 1 > self.node_ref_lists:
            raise ValueError('No ref list %d, index has %d ref lists'
                % (ref_list_num, self.node_ref_lists))
        refs = set()
        nodes = self._nodes
        for key, (value, ref_lists) in nodes.iteritems():
            ref_list = ref_lists[ref_list_num]
            refs.update([ref for ref in ref_list if ref not in nodes])
        return refs

    def _get_nodes_by_key(self):
        if self._nodes_by_key is None:
            nodes_by_key = {}
            if self.node_ref_lists:
                for key, (value, references) in self._nodes.iteritems():
                    key_dict = nodes_by_key
                    for subkey in key[:-1]:
                        key_dict = key_dict.setdefault(subkey, {})
                    key_dict[key[-1]] = key, value, references
            else:
                for key, value in self._nodes.iteritems():
                    key_dict = nodes_by_key
                    for subkey in key[:-1]:
                        key_dict = key_dict.setdefault(subkey, {})
                    key_dict[key[-1]] = key, value
            self._nodes_by_key = nodes_by_key
        return self._nodes_by_key

    def iter_all_entries(self):
        """Iterate over all keys within the index.

        :return: An iterable of (index, key, value) or (index, key, value, reference_lists).
            The former tuple is used when there are no reference lists in the
            index, making the API compatible with simple key:value index types.
            There is no defined order for the result iteration - it will be in
            the most efficient order for the index.
        """
        if 'evil' in debug.debug_flags:
            trace.mutter_callsite(3,
                "iter_all_entries scales with size of history.")
        if self._nodes is None:
            self._buffer_all()
        if self.node_ref_lists:
            for key, (value, node_ref_lists) in self._nodes.iteritems():
                yield self, key, value, node_ref_lists
        else:
            for key, value in self._nodes.iteritems():
                yield self, key, value

    def _read_prefix(self, stream):
        signature = stream.read(len(self._signature()))
        if not signature == self._signature():
            raise errors.BadIndexFormatSignature(self._name, GraphIndex)
        options_line = stream.readline()
        if not options_line.startswith(_OPTION_NODE_REFS):
            raise errors.BadIndexOptions(self)
        try:
            self.node_ref_lists = int(options_line[len(_OPTION_NODE_REFS):-1])
        except ValueError:
            raise errors.BadIndexOptions(self)
        options_line = stream.readline()
        if not options_line.startswith(_OPTION_KEY_ELEMENTS):
            raise errors.BadIndexOptions(self)
        try:
            self._key_length = int(options_line[len(_OPTION_KEY_ELEMENTS):-1])
        except ValueError:
            raise errors.BadIndexOptions(self)
        options_line = stream.readline()
        if not options_line.startswith(_OPTION_LEN):
            raise errors.BadIndexOptions(self)
        try:
            self._key_count = int(options_line[len(_OPTION_LEN):-1])
        except ValueError:
            raise errors.BadIndexOptions(self)

    def _resolve_references(self, references):
        """Return the resolved key references for references.

        References are resolved by looking up the location of the key in the
        _keys_by_offset map and substituting the key name, preserving ordering.

        :param references: An iterable of iterables of key locations. e.g.
            [[123, 456], [123]]
        :return: A tuple of tuples of keys.
        """
        node_refs = []
        for ref_list in references:
            node_refs.append(tuple([self._keys_by_offset[ref][0] for ref in ref_list]))
        return tuple(node_refs)

    def _find_index(self, range_map, key):
        """Helper for the _parsed_*_index calls.

        Given a range map - [(start, end), ...], finds the index of the range
        in the map for key if it is in the map, and if it is not there, the
        immediately preceeding range in the map.
        """
        result = bisect_right(range_map, key) - 1
        if result + 1 < len(range_map):
            # check the border condition, it may be in result + 1
            if range_map[result + 1][0] == key[0]:
                return result + 1
        return result

    def _parsed_byte_index(self, offset):
        """Return the index of the entry immediately before offset.

        e.g. if the parsed map has regions 0,10 and 11,12 parsed, meaning that
        there is one unparsed byte (the 11th, addressed as[10]). then:
        asking for 0 will return 0
        asking for 10 will return 0
        asking for 11 will return 1
        asking for 12 will return 1
        """
        key = (offset, 0)
        return self._find_index(self._parsed_byte_map, key)

    def _parsed_key_index(self, key):
        """Return the index of the entry immediately before key.

        e.g. if the parsed map has regions (None, 'a') and ('b','c') parsed,
        meaning that keys from None to 'a' inclusive, and 'b' to 'c' inclusive
        have been parsed, then:
        asking for '' will return 0
        asking for 'a' will return 0
        asking for 'b' will return 1
        asking for 'e' will return 1
        """
        search_key = (key, None)
        return self._find_index(self._parsed_key_map, search_key)

    def _is_parsed(self, offset):
        """Returns True if offset has been parsed."""
        index = self._parsed_byte_index(offset)
        if index == len(self._parsed_byte_map):
            return offset < self._parsed_byte_map[index - 1][1]
        start, end = self._parsed_byte_map[index]
        return offset >= start and offset < end

    def _iter_entries_from_total_buffer(self, keys):
        """Iterate over keys when the entire index is parsed."""
        # Note: See the note in BTreeBuilder.iter_entries for why we don't use
        #       .intersection() here
        nodes = self._nodes
        keys = [key for key in keys if key in nodes]
        if self.node_ref_lists:
            for key in keys:
                value, node_refs = nodes[key]
                yield self, key, value, node_refs
        else:
            for key in keys:
                yield self, key, nodes[key]

    def iter_entries(self, keys):
        """Iterate over keys within the index.

        :param keys: An iterable providing the keys to be retrieved.
        :return: An iterable as per iter_all_entries, but restricted to the
            keys supplied. No additional keys will be returned, and every
            key supplied that is in the index will be returned.
        """
        keys = set(keys)
        if not keys:
            return []
        if self._size is None and self._nodes is None:
            self._buffer_all()

        # We fit about 20 keys per minimum-read (4K), so if we are looking for
        # more than 1/20th of the index its likely (assuming homogenous key
        # spread) that we'll read the entire index. If we're going to do that,
        # buffer the whole thing. A better analysis might take key spread into
        # account - but B+Tree indices are better anyway.
        # We could look at all data read, and use a threshold there, which will
        # trigger on ancestry walks, but that is not yet fully mapped out.
        if self._nodes is None and len(keys) * 20 > self.key_count():
            self._buffer_all()
        if self._nodes is not None:
            return self._iter_entries_from_total_buffer(keys)
        else:
            return (result[1] for result in bisect_multi.bisect_multi_bytes(
                self._lookup_keys_via_location, self._size, keys))

    def iter_entries_prefix(self, keys):
        """Iterate over keys within the index using prefix matching.

        Prefix matching is applied within the tuple of a key, not to within
        the bytestring of each key element. e.g. if you have the keys ('foo',
        'bar'), ('foobar', 'gam') and do a prefix search for ('foo', None) then
        only the former key is returned.

        WARNING: Note that this method currently causes a full index parse
        unconditionally (which is reasonably appropriate as it is a means for
        thunking many small indices into one larger one and still supplies
        iter_all_entries at the thunk layer).

        :param keys: An iterable providing the key prefixes to be retrieved.
            Each key prefix takes the form of a tuple the length of a key, but
            with the last N elements 'None' rather than a regular bytestring.
            The first element cannot be 'None'.
        :return: An iterable as per iter_all_entries, but restricted to the
            keys with a matching prefix to those supplied. No additional keys
            will be returned, and every match that is in the index will be
            returned.
        """
        keys = set(keys)
        if not keys:
            return
        # load data - also finds key lengths
        if self._nodes is None:
            self._buffer_all()
        if self._key_length == 1:
            for key in keys:
                # sanity check
                if key[0] is None:
                    raise errors.BadIndexKey(key)
                if len(key) != self._key_length:
                    raise errors.BadIndexKey(key)
                if self.node_ref_lists:
                    value, node_refs = self._nodes[key]
                    yield self, key, value, node_refs
                else:
                    yield self, key, self._nodes[key]
            return
        nodes_by_key = self._get_nodes_by_key()
        for key in keys:
            # sanity check
            if key[0] is None:
                raise errors.BadIndexKey(key)
            if len(key) != self._key_length:
                raise errors.BadIndexKey(key)
            # find what it refers to:
            key_dict = nodes_by_key
            elements = list(key)
            # find the subdict whose contents should be returned.
            try:
                while len(elements) and elements[0] is not None:
                    key_dict = key_dict[elements[0]]
                    elements.pop(0)
            except KeyError:
                # a non-existant lookup.
                continue
            if len(elements):
                dicts = [key_dict]
                while dicts:
                    key_dict = dicts.pop(-1)
                    # can't be empty or would not exist
                    item, value = key_dict.iteritems().next()
                    if type(value) == dict:
                        # push keys
                        dicts.extend(key_dict.itervalues())
                    else:
                        # yield keys
                        for value in key_dict.itervalues():
                            # each value is the key:value:node refs tuple
                            # ready to yield.
                            yield (self, ) + value
            else:
                # the last thing looked up was a terminal element
                yield (self, ) + key_dict

    def _find_ancestors(self, keys, ref_list_num, parent_map, missing_keys):
        """See BTreeIndex._find_ancestors."""
        # The api can be implemented as a trivial overlay on top of
        # iter_entries, it is not an efficient implementation, but it at least
        # gets the job done.
        found_keys = set()
        search_keys = set()
        for index, key, value, refs in self.iter_entries(keys):
            parent_keys = refs[ref_list_num]
            found_keys.add(key)
            parent_map[key] = parent_keys
            search_keys.update(parent_keys)
        # Figure out what, if anything, was missing
        missing_keys.update(set(keys).difference(found_keys))
        search_keys = search_keys.difference(parent_map)
        return search_keys

    def key_count(self):
        """Return an estimate of the number of keys in this index.

        For GraphIndex the estimate is exact.
        """
        if self._key_count is None:
            self._read_and_parse([_HEADER_READV])
        return self._key_count

    def _lookup_keys_via_location(self, location_keys):
        """Public interface for implementing bisection.

        If _buffer_all has been called, then all the data for the index is in
        memory, and this method should not be called, as it uses a separate
        cache because it cannot pre-resolve all indices, which buffer_all does
        for performance.

        :param location_keys: A list of location(byte offset), key tuples.
        :return: A list of (location_key, result) tuples as expected by
            bzrlib.bisect_multi.bisect_multi_bytes.
        """
        # Possible improvements:
        #  - only bisect lookup each key once
        #  - sort the keys first, and use that to reduce the bisection window
        # -----
        # this progresses in three parts:
        # read data
        # parse it
        # attempt to answer the question from the now in memory data.
        # build the readv request
        # for each location, ask for 800 bytes - much more than rows we've seen
        # anywhere.
        readv_ranges = []
        for location, key in location_keys:
            # can we answer from cache?
            if self._bisect_nodes and key in self._bisect_nodes:
                # We have the key parsed.
                continue
            index = self._parsed_key_index(key)
            if (len(self._parsed_key_map) and
                self._parsed_key_map[index][0] <= key and
                (self._parsed_key_map[index][1] >= key or
                 # end of the file has been parsed
                 self._parsed_byte_map[index][1] == self._size)):
                # the key has been parsed, so no lookup is needed even if its
                # not present.
                continue
            # - if we have examined this part of the file already - yes
            index = self._parsed_byte_index(location)
            if (len(self._parsed_byte_map) and
                self._parsed_byte_map[index][0] <= location and
                self._parsed_byte_map[index][1] > location):
                # the byte region has been parsed, so no read is needed.
                continue
            length = 800
            if location + length > self._size:
                length = self._size - location
            # todo, trim out parsed locations.
            if length > 0:
                readv_ranges.append((location, length))
        # read the header if needed
        if self._bisect_nodes is None:
            readv_ranges.append(_HEADER_READV)
        self._read_and_parse(readv_ranges)
        result = []
        if self._nodes is not None:
            # _read_and_parse triggered a _buffer_all because we requested the
            # whole data range
            for location, key in location_keys:
                if key not in self._nodes: # not present
                    result.append(((location, key), False))
                elif self.node_ref_lists:
                    value, refs = self._nodes[key]
                    result.append(((location, key),
                        (self, key, value, refs)))
                else:
                    result.append(((location, key),
                        (self, key, self._nodes[key])))
            return result
        # generate results:
        #  - figure out <, >, missing, present
        #  - result present references so we can return them.
        # keys that we cannot answer until we resolve references
        pending_references = []
        pending_locations = set()
        for location, key in location_keys:
            # can we answer from cache?
            if key in self._bisect_nodes:
                # the key has been parsed, so no lookup is needed
                if self.node_ref_lists:
                    # the references may not have been all parsed.
                    value, refs = self._bisect_nodes[key]
                    wanted_locations = []
                    for ref_list in refs:
                        for ref in ref_list:
                            if ref not in self._keys_by_offset:
                                wanted_locations.append(ref)
                    if wanted_locations:
                        pending_locations.update(wanted_locations)
                        pending_references.append((location, key))
                        continue
                    result.append(((location, key), (self, key,
                        value, self._resolve_references(refs))))
                else:
                    result.append(((location, key),
                        (self, key, self._bisect_nodes[key])))
                continue
            else:
                # has the region the key should be in, been parsed?
                index = self._parsed_key_index(key)
                if (self._parsed_key_map[index][0] <= key and
                    (self._parsed_key_map[index][1] >= key or
                     # end of the file has been parsed
                     self._parsed_byte_map[index][1] == self._size)):
                    result.append(((location, key), False))
                    continue
            # no, is the key above or below the probed location:
            # get the range of the probed & parsed location
            index = self._parsed_byte_index(location)
            # if the key is below the start of the range, its below
            if key < self._parsed_key_map[index][0]:
                direction = -1
            else:
                direction = +1
            result.append(((location, key), direction))
        readv_ranges = []
        # lookup data to resolve references
        for location in pending_locations:
            length = 800
            if location + length > self._size:
                length = self._size - location
            # TODO: trim out parsed locations (e.g. if the 800 is into the
            # parsed region trim it, and dont use the adjust_for_latency
            # facility)
            if length > 0:
                readv_ranges.append((location, length))
        self._read_and_parse(readv_ranges)
        if self._nodes is not None:
            # The _read_and_parse triggered a _buffer_all, grab the data and
            # return it
            for location, key in pending_references:
                value, refs = self._nodes[key]
                result.append(((location, key), (self, key, value, refs)))
            return result
        for location, key in pending_references:
            # answer key references we had to look-up-late.
            value, refs = self._bisect_nodes[key]
            result.append(((location, key), (self, key,
                value, self._resolve_references(refs))))
        return result

    def _parse_header_from_bytes(self, bytes):
        """Parse the header from a region of bytes.

        :param bytes: The data to parse.
        :return: An offset, data tuple such as readv yields, for the unparsed
            data. (which may length 0).
        """
        signature = bytes[0:len(self._signature())]
        if not signature == self._signature():
            raise errors.BadIndexFormatSignature(self._name, GraphIndex)
        lines = bytes[len(self._signature()):].splitlines()
        options_line = lines[0]
        if not options_line.startswith(_OPTION_NODE_REFS):
            raise errors.BadIndexOptions(self)
        try:
            self.node_ref_lists = int(options_line[len(_OPTION_NODE_REFS):])
        except ValueError:
            raise errors.BadIndexOptions(self)
        options_line = lines[1]
        if not options_line.startswith(_OPTION_KEY_ELEMENTS):
            raise errors.BadIndexOptions(self)
        try:
            self._key_length = int(options_line[len(_OPTION_KEY_ELEMENTS):])
        except ValueError:
            raise errors.BadIndexOptions(self)
        options_line = lines[2]
        if not options_line.startswith(_OPTION_LEN):
            raise errors.BadIndexOptions(self)
        try:
            self._key_count = int(options_line[len(_OPTION_LEN):])
        except ValueError:
            raise errors.BadIndexOptions(self)
        # calculate the bytes we have processed
        header_end = (len(signature) + len(lines[0]) + len(lines[1]) +
            len(lines[2]) + 3)
        self._parsed_bytes(0, None, header_end, None)
        # setup parsing state
        self._expected_elements = 3 + self._key_length
        # raw data keyed by offset
        self._keys_by_offset = {}
        # keys with the value and node references
        self._bisect_nodes = {}
        return header_end, bytes[header_end:]

    def _parse_region(self, offset, data):
        """Parse node data returned from a readv operation.

        :param offset: The byte offset the data starts at.
        :param data: The data to parse.
        """
        # trim the data.
        # end first:
        end = offset + len(data)
        high_parsed = offset
        while True:
            # Trivial test - if the current index's end is within the
            # low-matching parsed range, we're done.
            index = self._parsed_byte_index(high_parsed)
            if end < self._parsed_byte_map[index][1]:
                return
            # print "[%d:%d]" % (offset, end), \
            #     self._parsed_byte_map[index:index + 2]
            high_parsed, last_segment = self._parse_segment(
                offset, data, end, index)
            if last_segment:
                return

    def _parse_segment(self, offset, data, end, index):
        """Parse one segment of data.

        :param offset: Where 'data' begins in the file.
        :param data: Some data to parse a segment of.
        :param end: Where data ends
        :param index: The current index into the parsed bytes map.
        :return: True if the parsed segment is the last possible one in the
            range of data.
        :return: high_parsed_byte, last_segment.
            high_parsed_byte is the location of the highest parsed byte in this
            segment, last_segment is True if the parsed segment is the last
            possible one in the data block.
        """
        # default is to use all data
        trim_end = None
        # accomodate overlap with data before this.
        if offset < self._parsed_byte_map[index][1]:
            # overlaps the lower parsed region
            # skip the parsed data
            trim_start = self._parsed_byte_map[index][1] - offset
            # don't trim the start for \n
            start_adjacent = True
        elif offset == self._parsed_byte_map[index][1]:
            # abuts the lower parsed region
            # use all data
            trim_start = None
            # do not trim anything
            start_adjacent = True
        else:
            # does not overlap the lower parsed region
            # use all data
            trim_start = None
            # but trim the leading \n
            start_adjacent = False
        if end == self._size:
            # lines up to the end of all data:
            # use it all
            trim_end = None
            # do not strip to the last \n
            end_adjacent = True
            last_segment = True
        elif index + 1 == len(self._parsed_byte_map):
            # at the end of the parsed data
            # use it all
            trim_end = None
            # but strip to the last \n
            end_adjacent = False
            last_segment = True
        elif end == self._parsed_byte_map[index + 1][0]:
            # buts up against the next parsed region
            # use it all
            trim_end = None
            # do not strip to the last \n
            end_adjacent = True
            last_segment = True
        elif end > self._parsed_byte_map[index + 1][0]:
            # overlaps into the next parsed region
            # only consider the unparsed data
            trim_end = self._parsed_byte_map[index + 1][0] - offset
            # do not strip to the last \n as we know its an entire record
            end_adjacent = True
            last_segment = end < self._parsed_byte_map[index + 1][1]
        else:
            # does not overlap into the next region
            # use it all
            trim_end = None
            # but strip to the last \n
            end_adjacent = False
            last_segment = True
        # now find bytes to discard if needed
        if not start_adjacent:
            # work around python bug in rfind
            if trim_start is None:
                trim_start = data.find('\n') + 1
            else:
                trim_start = data.find('\n', trim_start) + 1
            if not (trim_start != 0):
                raise AssertionError('no \n was present')
            # print 'removing start', offset, trim_start, repr(data[:trim_start])
        if not end_adjacent:
            # work around python bug in rfind
            if trim_end is None:
                trim_end = data.rfind('\n') + 1
            else:
                trim_end = data.rfind('\n', None, trim_end) + 1
            if not (trim_end != 0):
                raise AssertionError('no \n was present')
            # print 'removing end', offset, trim_end, repr(data[trim_end:])
        # adjust offset and data to the parseable data.
        trimmed_data = data[trim_start:trim_end]
        if not (trimmed_data):
            raise AssertionError('read unneeded data [%d:%d] from [%d:%d]'
                % (trim_start, trim_end, offset, offset + len(data)))
        if trim_start:
            offset += trim_start
        # print "parsing", repr(trimmed_data)
        # splitlines mangles the \r delimiters.. don't use it.
        lines = trimmed_data.split('\n')
        del lines[-1]
        pos = offset
        first_key, last_key, nodes, _ = self._parse_lines(lines, pos)
        for key, value in nodes:
            self._bisect_nodes[key] = value
        self._parsed_bytes(offset, first_key,
            offset + len(trimmed_data), last_key)
        return offset + len(trimmed_data), last_segment

    def _parse_lines(self, lines, pos):
        key = None
        first_key = None
        trailers = 0
        nodes = []
        for line in lines:
            if line == '':
                # must be at the end
                if self._size:
                    if not (self._size == pos + 1):
                        raise AssertionError("%s %s" % (self._size, pos))
                trailers += 1
                continue
            elements = line.split('\0')
            if len(elements) != self._expected_elements:
                raise errors.BadIndexData(self)
            # keys are tuples. Each element is a string that may occur many
            # times, so we intern them to save space. AB, RC, 200807
            key = tuple([intern(element) for element in elements[:self._key_length]])
            if first_key is None:
                first_key = key
            absent, references, value = elements[-3:]
            ref_lists = []
            for ref_string in references.split('\t'):
                ref_lists.append(tuple([
                    int(ref) for ref in ref_string.split('\r') if ref
                    ]))
            ref_lists = tuple(ref_lists)
            self._keys_by_offset[pos] = (key, absent, ref_lists, value)
            pos += len(line) + 1 # +1 for the \n
            if absent:
                continue
            if self.node_ref_lists:
                node_value = (value, ref_lists)
            else:
                node_value = value
            nodes.append((key, node_value))
            # print "parsed ", key
        return first_key, key, nodes, trailers

    def _parsed_bytes(self, start, start_key, end, end_key):
        """Mark the bytes from start to end as parsed.

        Calling self._parsed_bytes(1,2) will mark one byte (the one at offset
        1) as parsed.

        :param start: The start of the parsed region.
        :param end: The end of the parsed region.
        """
        index = self._parsed_byte_index(start)
        new_value = (start, end)
        new_key = (start_key, end_key)
        if index == -1:
            # first range parsed is always the beginning.
            self._parsed_byte_map.insert(index, new_value)
            self._parsed_key_map.insert(index, new_key)
            return
        # four cases:
        # new region
        # extend lower region
        # extend higher region
        # combine two regions
        if (index + 1 < len(self._parsed_byte_map) and
            self._parsed_byte_map[index][1] == start and
            self._parsed_byte_map[index + 1][0] == end):
            # combine two regions
            self._parsed_byte_map[index] = (self._parsed_byte_map[index][0],
                self._parsed_byte_map[index + 1][1])
            self._parsed_key_map[index] = (self._parsed_key_map[index][0],
                self._parsed_key_map[index + 1][1])
            del self._parsed_byte_map[index + 1]
            del self._parsed_key_map[index + 1]
        elif self._parsed_byte_map[index][1] == start:
            # extend the lower entry
            self._parsed_byte_map[index] = (
                self._parsed_byte_map[index][0], end)
            self._parsed_key_map[index] = (
                self._parsed_key_map[index][0], end_key)
        elif (index + 1 < len(self._parsed_byte_map) and
            self._parsed_byte_map[index + 1][0] == end):
            # extend the higher entry
            self._parsed_byte_map[index + 1] = (
                start, self._parsed_byte_map[index + 1][1])
            self._parsed_key_map[index + 1] = (
                start_key, self._parsed_key_map[index + 1][1])
        else:
            # new entry
            self._parsed_byte_map.insert(index + 1, new_value)
            self._parsed_key_map.insert(index + 1, new_key)

    def _read_and_parse(self, readv_ranges):
        """Read the ranges and parse the resulting data.

        :param readv_ranges: A prepared readv range list.
        """
        if not readv_ranges:
            return
        if self._nodes is None and self._bytes_read * 2 >= self._size:
            # We've already read more than 50% of the file and we are about to
            # request more data, just _buffer_all() and be done
            self._buffer_all()
            return

        base_offset = self._base_offset
        if base_offset != 0:
            # Rewrite the ranges for the offset
            readv_ranges = [(start+base_offset, size)
                            for start, size in readv_ranges]
        readv_data = self._transport.readv(self._name, readv_ranges, True,
            self._size + self._base_offset)
        # parse
        for offset, data in readv_data:
            offset -= base_offset
            self._bytes_read += len(data)
            if offset < 0:
                # transport.readv() expanded to extra data which isn't part of
                # this index
                data = data[-offset:]
                offset = 0
            if offset == 0 and len(data) == self._size:
                # We read the whole range, most likely because the
                # Transport upcast our readv ranges into one long request
                # for enough total data to grab the whole index.
                self._buffer_all(StringIO(data))
                return
            if self._bisect_nodes is None:
                # this must be the start
                if not (offset == 0):
                    raise AssertionError()
                offset, data = self._parse_header_from_bytes(data)
            # print readv_ranges, "[%d:%d]" % (offset, offset + len(data))
            self._parse_region(offset, data)

    def _signature(self):
        """The file signature for this index type."""
        return _SIGNATURE

    def validate(self):
        """Validate that everything in the index can be accessed."""
        # iter_all validates completely at the moment, so just do that.
        for node in self.iter_all_entries():
            pass


class CombinedGraphIndex(object):
    """A GraphIndex made up from smaller GraphIndices.

    The backing indices must implement GraphIndex, and are presumed to be
    static data.

    Queries against the combined index will be made against the first index,
    and then the second and so on. The order of indices can thus influence
    performance significantly. For example, if one index is on local disk and a
    second on a remote server, the local disk index should be before the other
    in the index list.
    
    Also, queries tend to need results from the same indices as previous
    queries.  So the indices will be reordered after every query to put the
    indices that had the result(s) of that query first (while otherwise
    preserving the relative ordering).
    """

    def __init__(self, indices, reload_func=None):
        """Create a CombinedGraphIndex backed by indices.

        :param indices: An ordered list of indices to query for data.
        :param reload_func: A function to call if we find we are missing an
            index. Should have the form reload_func() => True/False to indicate
            if reloading actually changed anything.
        """
        self._indices = indices
        self._reload_func = reload_func
        # Sibling indices are other CombinedGraphIndex that we should call
        # _move_to_front_by_name on when we auto-reorder ourself.
        self._sibling_indices = []
        # A list of names that corresponds to the instances in self._indices,
        # so _index_names[0] is always the name for _indices[0], etc.  Sibling
        # indices must all use the same set of names as each other.
        self._index_names = [None] * len(self._indices)

    def __repr__(self):
        return "%s(%s)" % (
                self.__class__.__name__,
                ', '.join(map(repr, self._indices)))

    def clear_cache(self):
        """See GraphIndex.clear_cache()"""
        for index in self._indices:
            index.clear_cache()

    def get_parent_map(self, keys):
        """See graph.StackedParentsProvider.get_parent_map"""
        search_keys = set(keys)
        if _mod_revision.NULL_REVISION in search_keys:
            search_keys.discard(_mod_revision.NULL_REVISION)
            found_parents = {_mod_revision.NULL_REVISION:[]}
        else:
            found_parents = {}
        for index, key, value, refs in self.iter_entries(search_keys):
            parents = refs[0]
            if not parents:
                parents = (_mod_revision.NULL_REVISION,)
            found_parents[key] = parents
        return found_parents

    has_key = _has_key_from_parent_map

    def insert_index(self, pos, index, name=None):
        """Insert a new index in the list of indices to query.

        :param pos: The position to insert the index.
        :param index: The index to insert.
        :param name: a name for this index, e.g. a pack name.  These names can
            be used to reflect index reorderings to related CombinedGraphIndex
            instances that use the same names.  (see set_sibling_indices)
        """
        self._indices.insert(pos, index)
        self._index_names.insert(pos, name)

    def iter_all_entries(self):
        """Iterate over all keys within the index

        Duplicate keys across child indices are presumed to have the same
        value and are only reported once.

        :return: An iterable of (index, key, reference_lists, value).
            There is no defined order for the result iteration - it will be in
            the most efficient order for the index.
        """
        seen_keys = set()
        while True:
            try:
                for index in self._indices:
                    for node in index.iter_all_entries():
                        if node[1] not in seen_keys:
                            yield node
                            seen_keys.add(node[1])
                return
            except errors.NoSuchFile:
                self._reload_or_raise()

    def iter_entries(self, keys):
        """Iterate over keys within the index.

        Duplicate keys across child indices are presumed to have the same
        value and are only reported once.

        :param keys: An iterable providing the keys to be retrieved.
        :return: An iterable of (index, key, reference_lists, value). There is
            no defined order for the result iteration - it will be in the most
            efficient order for the index.
        """
        keys = set(keys)
        hit_indices = []
        while True:
            try:
                for index in self._indices:
                    if not keys:
                        break
                    index_hit = False
                    for node in index.iter_entries(keys):
                        keys.remove(node[1])
                        yield node
                        index_hit = True
                    if index_hit:
                        hit_indices.append(index)
                break
            except errors.NoSuchFile:
                self._reload_or_raise()
        self._move_to_front(hit_indices)

    def iter_entries_prefix(self, keys):
        """Iterate over keys within the index using prefix matching.

        Duplicate keys across child indices are presumed to have the same
        value and are only reported once.

        Prefix matching is applied within the tuple of a key, not to within
        the bytestring of each key element. e.g. if you have the keys ('foo',
        'bar'), ('foobar', 'gam') and do a prefix search for ('foo', None) then
        only the former key is returned.

        :param keys: An iterable providing the key prefixes to be retrieved.
            Each key prefix takes the form of a tuple the length of a key, but
            with the last N elements 'None' rather than a regular bytestring.
            The first element cannot be 'None'.
        :return: An iterable as per iter_all_entries, but restricted to the
            keys with a matching prefix to those supplied. No additional keys
            will be returned, and every match that is in the index will be
            returned.
        """
        keys = set(keys)
        if not keys:
            return
        seen_keys = set()
        hit_indices = []
        while True:
            try:
                for index in self._indices:
                    index_hit = False
                    for node in index.iter_entries_prefix(keys):
                        if node[1] in seen_keys:
                            continue
                        seen_keys.add(node[1])
                        yield node
                        index_hit = True
                    if index_hit:
                        hit_indices.append(index)
                break
            except errors.NoSuchFile:
                self._reload_or_raise()
        self._move_to_front(hit_indices)

    def _move_to_front(self, hit_indices):
        """Rearrange self._indices so that hit_indices are first.

        Order is maintained as much as possible, e.g. the first unhit index
        will be the first index in _indices after the hit_indices, and the
        hit_indices will be present in exactly the order they are passed to
        _move_to_front.

        _move_to_front propagates to all objects in self._sibling_indices by
        calling _move_to_front_by_name.
        """
        if self._indices[:len(hit_indices)] == hit_indices:
            # The 'hit_indices' are already at the front (and in the same
            # order), no need to re-order
            return
        hit_names = self._move_to_front_by_index(hit_indices)
        for sibling_idx in self._sibling_indices:
            sibling_idx._move_to_front_by_name(hit_names)

    def _move_to_front_by_index(self, hit_indices):
        """Core logic for _move_to_front.
        
        Returns a list of names corresponding to the hit_indices param.
        """
        indices_info = zip(self._index_names, self._indices)
        if 'index' in debug.debug_flags:
            trace.mutter('CombinedGraphIndex reordering: currently %r, '
                         'promoting %r', indices_info, hit_indices)
        hit_names = []
        unhit_names = []
        new_hit_indices = []
        unhit_indices = []

        for offset, (name, idx) in enumerate(indices_info):
            if idx in hit_indices:
                hit_names.append(name)
                new_hit_indices.append(idx)
                if len(new_hit_indices) == len(hit_indices):
                    # We've found all of the hit entries, everything else is
                    # unhit
                    unhit_names.extend(self._index_names[offset+1:])
                    unhit_indices.extend(self._indices[offset+1:])
                    break
            else:
                unhit_names.append(name)
                unhit_indices.append(idx)

        self._indices = new_hit_indices + unhit_indices
        self._index_names = hit_names + unhit_names
        if 'index' in debug.debug_flags:
            trace.mutter('CombinedGraphIndex reordered: %r', self._indices)
        return hit_names

    def _move_to_front_by_name(self, hit_names):
        """Moves indices named by 'hit_names' to front of the search order, as
        described in _move_to_front.
        """
        # Translate names to index instances, and then call
        # _move_to_front_by_index.
        indices_info = zip(self._index_names, self._indices)
        hit_indices = []
        for name, idx in indices_info:
            if name in hit_names:
                hit_indices.append(idx)
        self._move_to_front_by_index(hit_indices)

    def find_ancestry(self, keys, ref_list_num):
        """Find the complete ancestry for the given set of keys.

        Note that this is a whole-ancestry request, so it should be used
        sparingly.

        :param keys: An iterable of keys to look for
        :param ref_list_num: The reference list which references the parents
            we care about.
        :return: (parent_map, missing_keys)
        """
        # XXX: make this call _move_to_front?
        missing_keys = set()
        parent_map = {}
        keys_to_lookup = set(keys)
        generation = 0
        while keys_to_lookup:
            # keys that *all* indexes claim are missing, stop searching them
            generation += 1
            all_index_missing = None
            # print 'gen\tidx\tsub\tn_keys\tn_pmap\tn_miss'
            # print '%4d\t\t\t%4d\t%5d\t%5d' % (generation, len(keys_to_lookup),
            #                                   len(parent_map),
            #                                   len(missing_keys))
            for index_idx, index in enumerate(self._indices):
                # TODO: we should probably be doing something with
                #       'missing_keys' since we've already determined that
                #       those revisions have not been found anywhere
                index_missing_keys = set()
                # Find all of the ancestry we can from this index
                # keep looking until the search_keys set is empty, which means
                # things we didn't find should be in index_missing_keys
                search_keys = keys_to_lookup
                sub_generation = 0
                # print '    \t%2d\t\t%4d\t%5d\t%5d' % (
                #     index_idx, len(search_keys),
                #     len(parent_map), len(index_missing_keys))
                while search_keys:
                    sub_generation += 1
                    # TODO: ref_list_num should really be a parameter, since
                    #       CombinedGraphIndex does not know what the ref lists
                    #       mean.
                    search_keys = index._find_ancestors(search_keys,
                        ref_list_num, parent_map, index_missing_keys)
                    # print '    \t  \t%2d\t%4d\t%5d\t%5d' % (
                    #     sub_generation, len(search_keys),
                    #     len(parent_map), len(index_missing_keys))
                # Now set whatever was missing to be searched in the next index
                keys_to_lookup = index_missing_keys
                if all_index_missing is None:
                    all_index_missing = set(index_missing_keys)
                else:
                    all_index_missing.intersection_update(index_missing_keys)
                if not keys_to_lookup:
                    break
            if all_index_missing is None:
                # There were no indexes, so all search keys are 'missing'
                missing_keys.update(keys_to_lookup)
                keys_to_lookup = None
            else:
                missing_keys.update(all_index_missing)
                keys_to_lookup.difference_update(all_index_missing)
        return parent_map, missing_keys

    def key_count(self):
        """Return an estimate of the number of keys in this index.

        For CombinedGraphIndex this is approximated by the sum of the keys of
        the child indices. As child indices may have duplicate keys this can
        have a maximum error of the number of child indices * largest number of
        keys in any index.
        """
        while True:
            try:
                return sum((index.key_count() for index in self._indices), 0)
            except errors.NoSuchFile:
                self._reload_or_raise()

    missing_keys = _missing_keys_from_parent_map

    def _reload_or_raise(self):
        """We just got a NoSuchFile exception.

        Try to reload the indices, if it fails, just raise the current
        exception.
        """
        if self._reload_func is None:
            raise
        exc_type, exc_value, exc_traceback = sys.exc_info()
        trace.mutter('Trying to reload after getting exception: %s',
                     exc_value)
        if not self._reload_func():
            # We tried to reload, but nothing changed, so we fail anyway
            trace.mutter('_reload_func indicated nothing has changed.'
                         ' Raising original exception.')
            raise exc_type, exc_value, exc_traceback

    def set_sibling_indices(self, sibling_combined_graph_indices):
        """Set the CombinedGraphIndex objects to reorder after reordering self.
        """
        self._sibling_indices = sibling_combined_graph_indices

    def validate(self):
        """Validate that everything in the index can be accessed."""
        while True:
            try:
                for index in self._indices:
                    index.validate()
                return
            except errors.NoSuchFile:
                self._reload_or_raise()


class InMemoryGraphIndex(GraphIndexBuilder):
    """A GraphIndex which operates entirely out of memory and is mutable.

    This is designed to allow the accumulation of GraphIndex entries during a
    single write operation, where the accumulated entries need to be immediately
    available - for example via a CombinedGraphIndex.
    """

    def add_nodes(self, nodes):
        """Add nodes to the index.

        :param nodes: An iterable of (key, node_refs, value) entries to add.
        """
        if self.reference_lists:
            for (key, value, node_refs) in nodes:
                self.add_node(key, value, node_refs)
        else:
            for (key, value) in nodes:
                self.add_node(key, value)

    def iter_all_entries(self):
        """Iterate over all keys within the index

        :return: An iterable of (index, key, reference_lists, value). There is no
            defined order for the result iteration - it will be in the most
            efficient order for the index (in this case dictionary hash order).
        """
        if 'evil' in debug.debug_flags:
            trace.mutter_callsite(3,
                "iter_all_entries scales with size of history.")
        if self.reference_lists:
            for key, (absent, references, value) in self._nodes.iteritems():
                if not absent:
                    yield self, key, value, references
        else:
            for key, (absent, references, value) in self._nodes.iteritems():
                if not absent:
                    yield self, key, value

    def iter_entries(self, keys):
        """Iterate over keys within the index.

        :param keys: An iterable providing the keys to be retrieved.
        :return: An iterable of (index, key, value, reference_lists). There is no
            defined order for the result iteration - it will be in the most
            efficient order for the index (keys iteration order in this case).
        """
        # Note: See BTreeBuilder.iter_entries for an explanation of why we
        #       aren't using set().intersection() here
        nodes = self._nodes
        keys = [key for key in keys if key in nodes]
        if self.reference_lists:
            for key in keys:
                node = nodes[key]
                if not node[0]:
                    yield self, key, node[2], node[1]
        else:
            for key in keys:
                node = nodes[key]
                if not node[0]:
                    yield self, key, node[2]

    def iter_entries_prefix(self, keys):
        """Iterate over keys within the index using prefix matching.

        Prefix matching is applied within the tuple of a key, not to within
        the bytestring of each key element. e.g. if you have the keys ('foo',
        'bar'), ('foobar', 'gam') and do a prefix search for ('foo', None) then
        only the former key is returned.

        :param keys: An iterable providing the key prefixes to be retrieved.
            Each key prefix takes the form of a tuple the length of a key, but
            with the last N elements 'None' rather than a regular bytestring.
            The first element cannot be 'None'.
        :return: An iterable as per iter_all_entries, but restricted to the
            keys with a matching prefix to those supplied. No additional keys
            will be returned, and every match that is in the index will be
            returned.
        """
        # XXX: To much duplication with the GraphIndex class; consider finding
        # a good place to pull out the actual common logic.
        keys = set(keys)
        if not keys:
            return
        if self._key_length == 1:
            for key in keys:
                # sanity check
                if key[0] is None:
                    raise errors.BadIndexKey(key)
                if len(key) != self._key_length:
                    raise errors.BadIndexKey(key)
                node = self._nodes[key]
                if node[0]:
                    continue
                if self.reference_lists:
                    yield self, key, node[2], node[1]
                else:
                    yield self, key, node[2]
            return
        nodes_by_key = self._get_nodes_by_key()
        for key in keys:
            # sanity check
            if key[0] is None:
                raise errors.BadIndexKey(key)
            if len(key) != self._key_length:
                raise errors.BadIndexKey(key)
            # find what it refers to:
            key_dict = nodes_by_key
            elements = list(key)
            # find the subdict to return
            try:
                while len(elements) and elements[0] is not None:
                    key_dict = key_dict[elements[0]]
                    elements.pop(0)
            except KeyError:
                # a non-existant lookup.
                continue
            if len(elements):
                dicts = [key_dict]
                while dicts:
                    key_dict = dicts.pop(-1)
                    # can't be empty or would not exist
                    item, value = key_dict.iteritems().next()
                    if type(value) == dict:
                        # push keys
                        dicts.extend(key_dict.itervalues())
                    else:
                        # yield keys
                        for value in key_dict.itervalues():
                            yield (self, ) + value
            else:
                yield (self, ) + key_dict

    def key_count(self):
        """Return an estimate of the number of keys in this index.

        For InMemoryGraphIndex the estimate is exact.
        """
        return len(self._nodes) - len(self._absent_keys)

    def validate(self):
        """In memory index's have no known corruption at the moment."""


class GraphIndexPrefixAdapter(object):
    """An adapter between GraphIndex with different key lengths.

    Queries against this will emit queries against the adapted Graph with the
    prefix added, queries for all items use iter_entries_prefix. The returned
    nodes will have their keys and node references adjusted to remove the
    prefix. Finally, an add_nodes_callback can be supplied - when called the
    nodes and references being added will have prefix prepended.
    """

    def __init__(self, adapted, prefix, missing_key_length,
        add_nodes_callback=None):
        """Construct an adapter against adapted with prefix."""
        self.adapted = adapted
        self.prefix_key = prefix + (None,)*missing_key_length
        self.prefix = prefix
        self.prefix_len = len(prefix)
        self.add_nodes_callback = add_nodes_callback

    def add_nodes(self, nodes):
        """Add nodes to the index.

        :param nodes: An iterable of (key, node_refs, value) entries to add.
        """
        # save nodes in case its an iterator
        nodes = tuple(nodes)
        translated_nodes = []
        try:
            # Add prefix_key to each reference node_refs is a tuple of tuples,
            # so split it apart, and add prefix_key to the internal reference
            for (key, value, node_refs) in nodes:
                adjusted_references = (
                    tuple(tuple(self.prefix + ref_node for ref_node in ref_list)
                        for ref_list in node_refs))
                translated_nodes.append((self.prefix + key, value,
                    adjusted_references))
        except ValueError:
            # XXX: TODO add an explicit interface for getting the reference list
            # status, to handle this bit of user-friendliness in the API more
            # explicitly.
            for (key, value) in nodes:
                translated_nodes.append((self.prefix + key, value))
        self.add_nodes_callback(translated_nodes)

    def add_node(self, key, value, references=()):
        """Add a node to the index.

        :param key: The key. keys are non-empty tuples containing
            as many whitespace-free utf8 bytestrings as the key length
            defined for this index.
        :param references: An iterable of iterables of keys. Each is a
            reference to another key.
        :param value: The value to associate with the key. It may be any
            bytes as long as it does not contain \0 or \n.
        """
        self.add_nodes(((key, value, references), ))

    def _strip_prefix(self, an_iter):
        """Strip prefix data from nodes and return it."""
        for node in an_iter:
            # cross checks
            if node[1][:self.prefix_len] != self.prefix:
                raise errors.BadIndexData(self)
            for ref_list in node[3]:
                for ref_node in ref_list:
                    if ref_node[:self.prefix_len] != self.prefix:
                        raise errors.BadIndexData(self)
            yield node[0], node[1][self.prefix_len:], node[2], (
                tuple(tuple(ref_node[self.prefix_len:] for ref_node in ref_list)
                for ref_list in node[3]))

    def iter_all_entries(self):
        """Iterate over all keys within the index

        iter_all_entries is implemented against the adapted index using
        iter_entries_prefix.

        :return: An iterable of (index, key, reference_lists, value). There is no
            defined order for the result iteration - it will be in the most
            efficient order for the index (in this case dictionary hash order).
        """
        return self._strip_prefix(self.adapted.iter_entries_prefix([self.prefix_key]))

    def iter_entries(self, keys):
        """Iterate over keys within the index.

        :param keys: An iterable providing the keys to be retrieved.
        :return: An iterable of (index, key, value, reference_lists). There is no
            defined order for the result iteration - it will be in the most
            efficient order for the index (keys iteration order in this case).
        """
        return self._strip_prefix(self.adapted.iter_entries(
            self.prefix + key for key in keys))

    def iter_entries_prefix(self, keys):
        """Iterate over keys within the index using prefix matching.

        Prefix matching is applied within the tuple of a key, not to within
        the bytestring of each key element. e.g. if you have the keys ('foo',
        'bar'), ('foobar', 'gam') and do a prefix search for ('foo', None) then
        only the former key is returned.

        :param keys: An iterable providing the key prefixes to be retrieved.
            Each key prefix takes the form of a tuple the length of a key, but
            with the last N elements 'None' rather than a regular bytestring.
            The first element cannot be 'None'.
        :return: An iterable as per iter_all_entries, but restricted to the
            keys with a matching prefix to those supplied. No additional keys
            will be returned, and every match that is in the index will be
            returned.
        """
        return self._strip_prefix(self.adapted.iter_entries_prefix(
            self.prefix + key for key in keys))

    def key_count(self):
        """Return an estimate of the number of keys in this index.

        For GraphIndexPrefixAdapter this is relatively expensive - key
        iteration with the prefix is done.
        """
        return len(list(self.iter_all_entries()))

    def validate(self):
        """Call the adapted's validate."""
        self.adapted.validate()