/usr/share/pyshared/chaco/contour/cntr.c is in python-chaco 4.1.0-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 | /*
cntr.c
General purpose contour tracer for quadrilateral meshes.
Handles single level contours, or region between a pair of levels.
The routines that do all the work, as well as the explanatory
comments, came from gcntr.c, part of the GIST package. The
original mpl interface was also based on GIST. The present
interface uses parts of the original, but places them in
the entirely different framework of a Python type. It
was written by following the Python "Extending and Embedding"
tutorial.
$Id: cntr.c,v 1.3 2005/06/02 22:02:32 jdh2358 Exp $
*/
#include <Python.h>
#include "structmember.h"
#include <stdlib.h>
#include <stdio.h>
#ifdef NUMPY
#include "numpy/arrayobject.h"
# ifndef PyArray_SBYTE
# include "numpy/oldnumeric.h"
# include "numpy/old_defines.h"
# endif
#else
# include "Numeric/arrayobject.h"
# define PyArray_UBYTELTR 'b'
#endif
/* Note that all arrays in these routines are Fortran-style,
in the sense that the "i" index varies fastest; the dimensions
of the corresponding C array are z[jmax][imax] in the notation
used here. We can identify i and j with the x and y dimensions,
respectively.
*/
/* What is a contour?
*
* Given a quadrilateral mesh (x,y), and values of a z at the points
* of that mesh, we seek a set of polylines connecting points at a
* particular value of z. Each point on such a contour curve lies
* on an edge of the mesh, at a point linearly interpolated to the
* contour level z0 between the given values of z at the endpoints
* of the edge.
*
* Identifying these points is easy. Figuring out how to connect them
* into a curve -- or possibly a set of disjoint curves -- is difficult.
* Each disjoint curve may be either a closed circuit, or it may begin
* and end on a mesh boundary.
*
* One of the problems with a quadrilateral mesh is that when the z
* values at one pair of diagonally opposite points lie below z0, and
* the values at the other diagonal pair of the same zone lie above z0,
* all four edges of the zone are cut, and there is an ambiguity in
* how we should connect the points. I call this a saddle zone.
* The problem is that two disjoint curves cut through a saddle zone
* (I reject the alternative of connecting the opposite points to make
* a single self-intersecting curve, since those make ugly contour plots
* -- I've tried it). The real problem with saddle zones is that you
* need to communicate the connectivity decision you make back to the
* calling routine, since for the next contour level, we need to tell
* the contour tracer to make the same decision as on the previous
* level. The input/output triangulation array is the solution to this
* nasty problem.
*
* Another complicating factor is that there may be logical holes in
* the mesh -- zones which do not exist. We want our contours to stop
* if they hit the edge of such a zone, just as if they'd hit the edge
* of the whole mesh. The input region array addresses this issue.
*
* Yet another complication: We may want a list of closed polygons which
* outline the region between two contour levels z0 and z1. These may
* include sections of the mesh boundary (including edges of logical
* holes defined by the region array), in addition to sections of the
* contour curves at one or both levels. This introduces a huge
* topological problem -- if one of the closed contours (possibly
* including an interior logical hole in the mesh, but not any part of
* the boundary of the whole mesh) encloses a region which is not
* between z0 and z1, that curve must be connected by a slit (or "branch
* cut") to the enclosing curve, so that the list of disjoint polygons
* we return is each simply connected.
*
* Okay, one final stunning difficulty: For the two level case, no
* individual polygon should have more than a few thousand sides, since
* huge filled polygons place an inordinate load on rendering software,
* which needs an amount of scratch space proportional to the number
* of sides it needs to fill. So in the two level case, we want to
* chunk the mesh into rectangular pieces of no more than, say, 30x30
* zones, which keeps each returned polygon to less than a few thousand
* sides (the worst case is very very bad -- you can easily write down
* a function and two level values which produce a polygon that cuts
* every edge of the mesh twice).
*/
/*
* Here is the numbering scheme for points, edges, and zones in
* the mesh -- note that each ij corresponds to one point, one zone,
* one i-edge (i=constant edge) and one j-edge (j=constant edge):
*
* (ij-1)-------(ij)-------(ij)
* | |
* | |
* | |
* (ij-1) (ij) (ij)
* | |
* | |
* | |
* (ij-iX-1)----(ij-iX)----(ij-iX)
*
* At each point, the function value is either 0, 1, or 2, depending
* on whether it is below z0, between z0 and z1, or above z1.
* Each zone either exists (1) or not (0).
* From these three bits of data, all of the curve connectivity follows.
*
* The tracing algorithm is naturally edge-based: Either you are at a
* point where a level cuts an edge, ready to step across a zone to
* another edge, or you are drawing the edge itself, if it happens to
* be a boundary with at least one section between z0 and z1.
*
* In either case, the edge is a directed edge -- either the zone
* you are advancing into is to its left or right, or you are actually
* drawing it. I always trace curves keeping the region between z0 and
* z1 to the left of the curve. If I'm tracing a boundary, I'm always
* moving CCW (counter clockwise) around the zone that exists. And if
* I'm about to cross a zone, I'll make the direction of the edge I'm
* sitting on be such that the zone I'm crossing is to its left.
*
* I start tracing each curve near its lower left corner (mesh oriented
* as above), which is the first point I encounter scanning through the
* mesh in order. When I figure the 012 z values and zonal existence,
* I also mark the potential starting points: Each edge may harbor a
* potential starting point corresponding to either direction, so there
* are four start possibilities at each ij point. Only the following
* possibilities need to be marked as potential starting edges:
*
* +-+-+-+
* | | | |
* A-0-C-+ One or both levels cut E and have z=1 above them, and
* | EZ| | 0A is cut and either 0C is cut or CD is cut.
* +-B-D-+ Or, one or both levels cut E and E is a boundary edge.
* | | | | (and Z exists)
* +-+-+-+
*
* +-+-+-+
* | | | |
* +-A-0-C One or both levels cut E and have z=1 below them, and
* | |ZE | 0A is cut and either 0C is cut or CD is cut.
* +-+-B-D Or, one or both levels cut E and E is a boundary edge.
* | | | | (and Z exists)
* +-+-+-+
*
* +-+-+-+
* | | | |
* +-+-+-+ E is a boundary edge, Z exists, at some point on E
* | |Z| | lies between the levels.
* +-+E+-+
* | | | |
* +-+-+-+
*
* +-+-+-+
* | | | |
* +-+E+-+ E is a boundary edge, Z exists, at some point on E
* | |Z| | lies between the levels.
* +-+-+-+
* | | | |
* +-+-+-+
*
* During the first tracing pass, the start mark is erased whenever
* any non-starting edge is encountered, reducing the number of points
* that need to be considered for the second pass. The first pass
* makes the basic connectivity decisions. It figures out how many
* disjoint curves there will be, and identifies slits for the two level
* case or open contours for the single level case, and removes all but
* the actual start markers. A second tracing pass can perform the
* actual final trace.
*/
/* ------------------------------------------------------------------------ */
/* the data about edges, zones, and points -- boundary or not, exists
* or not, z value 0, 1, or 2 -- is kept in a mesh sized data array */
typedef short Cdata;
/* here is the minimum structure required to tell where we are in the
* mesh sized data array */
typedef struct Csite Csite;
struct Csite
{
long edge; /* ij of current edge */
long left; /* +-1 or +-imax as the zone is to right, left, below,
* or above the edge */
long imax; /* imax for the mesh */
long jmax; /* jmax for the mesh */
long n; /* number of points marked on this curve so far */
long count; /* count of start markers visited */
double zlevel[2]; /* contour levels, zlevel[1]<=zlevel[0]
* signals single level case */
short *triangle; /* triangulation array for the mesh */
char *reg; /* region array for the mesh (was int) */
Cdata *data; /* added by EF */
long edge0, left0; /* starting site on this curve for closure */
int level0; /* starting level for closure */
long edge00; /* site needing START_ROW mark */
/* making the actual marks requires a bunch of other stuff */
const double *x, *y, *z; /* mesh coordinates and function values */
double *xcp, *ycp; /* output contour points */
};
void print_Csite(Csite *Csite)
{
Cdata *data = Csite->data;
int i, j, ij;
int nd = Csite->imax * (Csite->jmax + 1) + 1;
printf("zlevels: %8.2lg %8.2lg\n", Csite->zlevel[0], Csite->zlevel[1]);
printf("edge %ld, left %ld, n %ld, count %ld, edge0 %ld, left0 %ld\n",
Csite->edge, Csite->left, Csite->n, Csite->count,
Csite->edge0, Csite->left0);
printf(" level0 %d, edge00 %ld\n", Csite->level0, Csite->edge00);
printf("%04x\n", data[nd-1]);
for (j = Csite->jmax; j >= 0; j--)
{
for (i=0; i < Csite->imax; i++)
{
ij = i + j * Csite->imax;
printf("%04x ", data[ij]);
}
printf("\n");
}
printf("\n");
}
/* triangle only takes values of -1, 0, 1, so it could be a signed char. */
/* most or all of the longs probably could be converted to ints with no loss */
/* the Cdata array consists of the following bits:
* Z_VALUE (2 bits) 0, 1, or 2 function value at point
* ZONE_EX 1 zone exists, 0 zone doesn't exist
* I_BNDY this i-edge (i=constant edge) is a mesh boundary
* J_BNDY this j-edge (i=constant edge) is a mesh boundary
* I0_START this i-edge is a start point into zone to left
* I1_START this i-edge is a start point into zone to right
* J0_START this j-edge is a start point into zone below
* J1_START this j-edge is a start point into zone above
* START_ROW next start point is in current row (accelerates 2nd pass)
* SLIT_UP marks this i-edge as the beginning of a slit upstroke
* SLIT_DN marks this i-edge as the beginning of a slit downstroke
* OPEN_END marks an i-edge start point whose other endpoint is
* on a boundary for the single level case
* ALL_DONE marks final start point
*/
#define Z_VALUE 0x0003
#define ZONE_EX 0x0004
#define I_BNDY 0x0008
#define J_BNDY 0x0010
#define I0_START 0x0020
#define I1_START 0x0040
#define J0_START 0x0080
#define J1_START 0x0100
#define START_ROW 0x0200
#define SLIT_UP 0x0400
#define SLIT_DN 0x0800
#define OPEN_END 0x1000
#define ALL_DONE 0x2000
/* some helpful macros to find points relative to a given directed
* edge -- points are designated 0, 1, 2, 3 CCW around zone with 0 and
* 1 the endpoints of the current edge */
#define FORWARD(left,ix) ((left)>0?((left)>1?1:-(ix)):((left)<-1?-1:(ix)))
#define POINT0(edge,fwd) ((edge)-((fwd)>0?fwd:0))
#define POINT1(edge,fwd) ((edge)+((fwd)<0?fwd:0))
#define IS_JEDGE(edge,left) ((left)>0?((left)>1?1:0):((left)<-1?1:0))
#define ANY_START (I0_START|I1_START|J0_START|J1_START)
#define START_MARK(left) \
((left)>0?((left)>1?J1_START:I1_START):((left)<-1?J0_START:I0_START))
/* ------------------------------------------------------------------------ */
/* these actually mark points */
static int zone_crosser (Csite * site, int level, int pass2);
static int edge_walker (Csite * site, int pass2);
static int slit_cutter (Csite * site, int up, int pass2);
/* this calls the first three to trace the next disjoint curve
* -- return value is number of points on this curve, or
* 0 if there are no more curves this pass
* -(number of points) on first pass if:
* this is two level case, and the curve closed on a hole
* this is single level case, curve is open, and will start from
* a different point on the second pass
* -- in both cases, this curve will be combined with another
* on the second pass */
static long curve_tracer (Csite * site, int pass2);
/* this initializes the data array for curve_tracer */
static void data_init (Csite * site, int region, long nchunk);
/* ------------------------------------------------------------------------ */
/* zone_crosser assumes you are sitting at a cut edge about to cross
* the current zone. It always marks the initial point, crosses at
* least one zone, and marks the final point. On non-boundary i-edges,
* it is responsible for removing start markers on the first pass. */
static int
zone_crosser (Csite * site, int level, int pass2)
{
Cdata * data = site->data;
long edge = site->edge;
long left = site->left;
long n = site->n;
long fwd = FORWARD (left, site->imax);
long p0, p1;
int jedge = IS_JEDGE (edge, left);
long edge0 = site->edge0;
long left0 = site->left0;
int level0 = site->level0 == level;
int two_levels = site->zlevel[1] > site->zlevel[0];
short *triangle = site->triangle;
const double *x = pass2 ? site->x : 0;
const double *y = pass2 ? site->y : 0;
const double *z = pass2 ? site->z : 0;
double zlevel = pass2 ? site->zlevel[level] : 0.0;
double *xcp = pass2 ? site->xcp : 0;
double *ycp = pass2 ? site->ycp : 0;
int z0, z1, z2, z3;
int keep_left = 0; /* flag to try to minimize curvature in saddles */
int done = 0;
if (level)
level = 2;
for (;;)
{
/* set edge endpoints */
p0 = POINT0 (edge, fwd);
p1 = POINT1 (edge, fwd);
/* always mark cut on current edge */
if (pass2)
{
/* second pass actually computes and stores the point */
double zcp = (zlevel - z[p0]) / (z[p1] - z[p0]);
xcp[n] = zcp * (x[p1] - x[p0]) + x[p0];
ycp[n] = zcp * (y[p1] - y[p0]) + y[p0];
}
if (!done && !jedge)
{
if (n)
{
/* if this is not the first point on the curve, and we're
* not done, and this is an i-edge, check several things */
if (!two_levels && !pass2 && (data[edge] & OPEN_END))
{
/* reached an OPEN_END mark, skip the n++ */
done = 4; /* same return value 4 used below */
break;
}
/* check for curve closure -- if not, erase any start mark */
if (edge == edge0 && left == left0)
{
/* may signal closure on a downstroke */
if (level0)
done = (!pass2 && two_levels && left < 0) ? 5 : 3;
}
else if (!pass2)
{
Cdata start =
data[edge] & (fwd > 0 ? I0_START : I1_START);
if (start)
{
data[edge] &= ~start;
site->count--;
}
if (!two_levels)
{
start = data[edge] & (fwd > 0 ? I1_START : I0_START);
if (start)
{
data[edge] &= ~start;
site->count--;
}
}
}
}
}
n++;
if (done)
break;
/* cross current zone to another cut edge */
z0 = (data[p0] & Z_VALUE) != level; /* 1 if fill toward p0 */
z1 = !z0; /* know level cuts edge */
z2 = (data[p1 + left] & Z_VALUE) != level;
z3 = (data[p0 + left] & Z_VALUE) != level;
if (z0 == z2)
{
if (z1 == z3)
{
/* this is a saddle zone, need triangle to decide
* -- set triangle if not already decided for this zone */
long zone = edge + (left > 0 ? left : 0);
if (triangle)
{
if (!triangle[zone])
{
if (keep_left)
triangle[zone] = jedge ? -1 : 1;
else
triangle[zone] = jedge ? 1 : -1;
}
if (triangle[zone] > 0 ? !jedge : jedge)
goto bkwd;
}
else
{
if (keep_left)
goto bkwd;
}
}
/* bend forward (right along curve) */
keep_left = 1;
jedge = !jedge;
edge = p1 + (left > 0 ? left : 0);
{
long tmp = fwd;
fwd = -left;
left = tmp;
}
}
else if (z1 == z3)
{
bkwd:
/* bend backward (left along curve) */
keep_left = 0;
jedge = !jedge;
edge = p0 + (left > 0 ? left : 0);
{
long tmp = fwd;
fwd = left;
left = -tmp;
}
}
else
{
/* straight across to opposite edge */
edge += left;
}
/* after crossing zone, edge/left/fwd is oriented CCW relative to
* the next zone, assuming we will step there */
/* now that we've taken a step, check for the downstroke
* of a slit on the second pass (upstroke checked above)
* -- taking step first avoids a race condition */
if (pass2 && two_levels && !jedge)
{
if (left > 0)
{
if (data[edge] & SLIT_UP)
done = 6;
}
else
{
if (data[edge] & SLIT_DN)
done = 5;
}
}
if (!done)
{
/* finally, check if we are on a boundary */
if (data[edge] & (jedge ? J_BNDY : I_BNDY))
{
done = two_levels ? 2 : 4;
/* flip back into the zone that exists */
left = -left;
fwd = -fwd;
if (!pass2 && (edge != edge0 || left != left0))
{
Cdata start = data[edge] & START_MARK (left);
if (start)
{
data[edge] &= ~start;
site->count--;
}
}
}
}
}
site->edge = edge;
site->n = n;
site->left = left;
return done > 4 ? slit_cutter (site, done - 5, pass2) : done;
}
/* edge_walker assumes that the current edge is being drawn CCW
* around the current zone. Since only boundary edges are drawn
* and we always walk around with the filled region to the left,
* no edge is ever drawn CW. We attempt to advance to the next
* edge on this boundary, but if current second endpoint is not
* between the two contour levels, we exit back to zone_crosser.
* Note that we may wind up marking no points.
* -- edge_walker is never called for single level case */
static int
edge_walker (Csite * site, int pass2)
{
Cdata * data = site->data;
long edge = site->edge;
long left = site->left;
long n = site->n;
long fwd = FORWARD (left, site->imax);
long p0 = POINT0 (edge, fwd);
long p1 = POINT1 (edge, fwd);
int jedge = IS_JEDGE (edge, left);
long edge0 = site->edge0;
long left0 = site->left0;
int level0 = site->level0 == 2;
int marked;
const double *x = pass2 ? site->x : 0;
const double *y = pass2 ? site->y : 0;
double *xcp = pass2 ? site->xcp : 0;
double *ycp = pass2 ? site->ycp : 0;
int z0, z1, heads_up = 0;
for (;;)
{
/* mark endpoint 0 only if value is 1 there, and this is a
* two level task */
z0 = data[p0] & Z_VALUE;
z1 = data[p1] & Z_VALUE;
marked = 0;
if (z0 == 1)
{
/* mark current boundary point */
if (pass2)
{
xcp[n] = x[p0];
ycp[n] = y[p0];
}
marked = 1;
}
else if (!n)
{
/* if this is the first point is not between the levels
* must do the job of the zone_crosser and mark the first cut here,
* so that it will be marked again by zone_crosser as it closes */
if (pass2)
{
double zcp = site->zlevel[(z0 != 0)];
zcp = (zcp - site->z[p0]) / (site->z[p1] - site->z[p0]);
xcp[n] = zcp * (x[p1] - x[p0]) + x[p0];
ycp[n] = zcp * (y[p1] - y[p0]) + y[p0];
}
marked = 1;
}
if (n)
{
/* check for closure */
if (level0 && edge == edge0 && left == left0)
{
site->edge = edge;
site->left = left;
site->n = n + marked;
/* if the curve is closing on a hole, need to make a downslit */
if (fwd < 0 && !(data[edge] & (jedge ? J_BNDY : I_BNDY)))
return slit_cutter (site, 0, pass2);
return 3;
}
else if (pass2)
{
if (heads_up || (fwd < 0 && (data[edge] & SLIT_DN)))
{
site->edge = edge;
site->left = left;
site->n = n + marked;
return slit_cutter (site, heads_up, pass2);
}
}
else
{
/* if this is not first point, clear start mark for this edge */
Cdata start = data[edge] & START_MARK (left);
if (start)
{
data[edge] &= ~start;
site->count--;
}
}
}
if (marked)
n++;
/* if next endpoint not between levels, need to exit to zone_crosser */
if (z1 != 1)
{
site->edge = edge;
site->left = left;
site->n = n;
return (z1 != 0); /* return level closest to p1 */
}
/* step to p1 and find next edge
* -- turn left if possible, else straight, else right
* -- check for upward slit beginning at same time */
edge = p1 + (left > 0 ? left : 0);
if (pass2 && jedge && fwd > 0 && (data[edge] & SLIT_UP))
{
jedge = !jedge;
heads_up = 1;
}
else if (data[edge] & (jedge ? I_BNDY : J_BNDY))
{
long tmp = fwd;
fwd = left;
left = -tmp;
jedge = !jedge;
}
else
{
edge = p1 + (fwd > 0 ? fwd : 0);
if (pass2 && !jedge && fwd > 0 && (data[edge] & SLIT_UP))
{
heads_up = 1;
}
else if (!(data[edge] & (jedge ? J_BNDY : I_BNDY)))
{
edge = p1 - (left < 0 ? left : 0);
jedge = !jedge;
{
long tmp = fwd;
fwd = -left;
left = tmp;
}
}
}
p0 = p1;
p1 = POINT1 (edge, fwd);
}
}
/* -- slit_cutter is never called for single level case */
static int
slit_cutter (Csite * site, int up, int pass2)
{
Cdata * data = site->data;
long imax = site->imax;
long n = site->n;
const double *x = pass2 ? site->x : 0;
const double *y = pass2 ? site->y : 0;
double *xcp = pass2 ? site->xcp : 0;
double *ycp = pass2 ? site->ycp : 0;
if (up)
{
/* upward stroke of slit proceeds up left side of slit until
* it hits a boundary or a point not between the contour levels
* -- this never happens on the first pass */
long p1 = site->edge;
int z1;
for (;;)
{
z1 = data[p1] & Z_VALUE;
if (z1 != 1)
{
site->edge = p1;
site->left = -1;
site->n = n;
return (z1 != 0);
}
else if (data[p1] & J_BNDY)
{
/* this is very unusual case of closing on a mesh hole */
site->edge = p1;
site->left = -imax;
site->n = n;
return 2;
}
xcp[n] = x[p1];
ycp[n] = y[p1];
n++;
p1 += imax;
}
}
else
{
/* downward stroke proceeds down right side of slit until it
* hits a boundary or point not between the contour levels */
long p0 = site->edge;
int z0;
/* at beginning of first pass, mark first i-edge with SLIT_DN */
data[p0] |= SLIT_DN;
p0 -= imax;
for (;;)
{
z0 = data[p0] & Z_VALUE;
if (!pass2)
{
if (z0 != 1 || (data[p0] & I_BNDY) || (data[p0 + 1] & J_BNDY))
{
/* at end of first pass, mark final i-edge with SLIT_UP */
data[p0 + imax] |= SLIT_UP;
/* one extra count for splicing at outer curve */
site->n = n + 1;
return 4; /* return same special value as for OPEN_END */
}
}
else
{
if (z0 != 1)
{
site->edge = p0 + imax;
site->left = 1;
site->n = n;
return (z0 != 0);
}
else if (data[p0 + 1] & J_BNDY)
{
site->edge = p0 + 1;
site->left = imax;
site->n = n;
return 2;
}
else if (data[p0] & I_BNDY)
{
site->edge = p0;
site->left = 1;
site->n = n;
return 2;
}
}
if (pass2)
{
xcp[n] = x[p0];
ycp[n] = y[p0];
n++;
}
else
{
/* on first pass need to count for upstroke as well */
n += 2;
}
p0 -= imax;
}
}
}
/* ------------------------------------------------------------------------ */
/* curve_tracer finds the next starting point, then traces the curve,
* returning the number of points on this curve
* -- in a two level trace, the return value is negative on the
* first pass if the curve closed on a hole
* -- in a single level trace, the return value is negative on the
* first pass if the curve is an incomplete open curve
* -- a return value of 0 indicates no more curves */
static long
curve_tracer (Csite * site, int pass2)
{
Cdata * data = site->data;
long imax = site->imax;
long edge0 = site->edge0;
long left0 = site->left0;
long edge00 = site->edge00;
int two_levels = site->zlevel[1] > site->zlevel[0];
int level, level0, mark_row;
long n;
/* it is possible for a single i-edge to serve as two actual start
* points, one to the right and one to the left
* -- for the two level case, this happens on the first pass for
* a doubly cut edge, or on a chunking boundary
* -- for single level case, this is impossible, but a similar
* situation involving open curves is handled below
* a second two start possibility is when the edge0 zone does not
* exist and both the i-edge and j-edge boundaries are cut
* yet another possibility is three start points at a junction
* of chunk cuts
* -- sigh, several other rare possibilities,
* allow for general case, just go in order i1, i0, j1, j0 */
int two_starts;
/* printf("curve_tracer pass %d\n", pass2); */
/* print_Csite(site); */
if (left0 == 1)
two_starts = data[edge0] & (I0_START | J1_START | J0_START);
else if (left0 == -1)
two_starts = data[edge0] & (J1_START | J0_START);
else if (left0 == imax)
two_starts = data[edge0] & J0_START;
else
two_starts = 0;
if (pass2 || edge0 == 0)
{
/* zip up to row marked on first pass (or by data_init if edge0==0)
* -- but not for double start case */
if (!two_starts)
{
/* final start point marked by ALL_DONE marker */
int first = (edge0 == 0 && !pass2);
long e0 = edge0;
if (data[edge0] & ALL_DONE)
return 0;
while (!(data[edge0] & START_ROW))
edge0 += imax;
if (e0 == edge0)
edge0++; /* two starts handled specially */
if (first)
/* if this is the very first start point, we want to remove
* the START_ROW marker placed by data_init */
data[edge0 - edge0 % imax] &= ~START_ROW;
}
}
else
{
/* first pass ends when all potential start points visited */
if (site->count <= 0)
{
/* place ALL_DONE marker for second pass */
data[edge00] |= ALL_DONE;
/* reset initial site for second pass */
site->edge0 = site->edge00 = site->left0 = 0;
return 0;
}
if (!two_starts)
edge0++;
}
if (two_starts)
{
/* trace second curve with this start immediately */
if (left0 == 1 && (data[edge0] & I0_START))
{
left0 = -1;
level = (data[edge0] & I_BNDY) ? 2 : 0;
}
else if ((left0 == 1 || left0 == -1) && (data[edge0] & J1_START))
{
left0 = imax;
level = 2;
}
else
{
left0 = -imax;
level = 2;
}
}
else
{
/* usual case is to scan for next start marker
* -- on second pass, this is at most one row of mesh, but first
* pass hits nearly every point of the mesh, since it can't
* know in advance which potential start marks removed */
while (!(data[edge0] & ANY_START))
edge0++;
if (data[edge0] & I1_START)
left0 = 1;
else if (data[edge0] & I0_START)
left0 = -1;
else if (data[edge0] & J1_START)
left0 = imax;
else /*data[edge0]&J0_START */
left0 = -imax;
if (data[edge0] & (I1_START | I0_START))
level = (data[edge0] & I_BNDY) ? 2 : 0;
else
level = 2;
}
/* this start marker will not be unmarked, but it has been visited */
if (!pass2)
site->count--;
/* if this curve starts on a non-boundary i-edge, we need to
* determine the level */
if (!level && two_levels)
level = left0 > 0 ?
((data[edge0 - imax] & Z_VALUE) !=
0) : ((data[edge0] & Z_VALUE) != 0);
/* initialize site for this curve */
site->edge = site->edge0 = edge0;
site->left = site->left0 = left0;
site->level0 = level0 = level; /* for open curve detection only */
/* single level case just uses zone_crosser */
if (!two_levels)
level = 0;
/* to generate the curve, alternate between zone_crosser and
* edge_walker until closure or first call to edge_walker in
* single level case */
site->n = 0;
for (;;)
{
if (level < 2)
level = zone_crosser (site, level, pass2);
else if (level < 3)
level = edge_walker (site, pass2);
else
break;
}
n = site->n;
/* single level case may have ended at a boundary rather than closing
* -- need to recognize this case here in order to place the
* OPEN_END mark for zone_crosser, remove this start marker,
* and be sure not to make a START_ROW mark for this case
* two level case may close with slit_cutter, in which case start
* must also be removed and no START_ROW mark made
* -- change sign of return n to inform caller */
if (!pass2 && level > 3 && (two_levels || level0 == 0))
{
if (!two_levels)
data[edge0] |= OPEN_END;
data[edge0] &= ~(left0 > 0 ? I1_START : I0_START);
mark_row = 0; /* do not mark START_ROW */
n = -n;
}
else
{
if (two_levels)
mark_row = !two_starts;
else
mark_row = 1;
}
/* on first pass, must apply START_ROW mark in column above previous
* start marker
* -- but skip if we just did second of two start case */
if (!pass2 && mark_row)
{
data[edge0 - (edge0 - edge00) % imax] |= START_ROW;
site->edge00 = edge0;
}
return n;
}
/* ------------------------------------------------------------------------ */
/* The sole function of the "region" argument is to specify the
value in Csite.reg that denotes a missing zone. We always
use zero.
*/
static void
data_init (Csite * site, int region, long nchunk)
{
Cdata * data = site->data;
long imax = site->imax;
long jmax = site->jmax;
long ijmax = imax * jmax;
const double *z = site->z;
double zlev0 = site->zlevel[0];
double zlev1 = site->zlevel[1];
int two_levels = zlev1 > zlev0;
char *reg = site->reg;
long count = 0;
int started = 0;
int ibndy, jbndy, i_was_chunk;
long icsize = imax - 1;
long jcsize = jmax - 1;
long ichunk, jchunk, irem, jrem, i, j, ij;
if (nchunk && two_levels)
{
/* figure out chunk sizes
* -- input nchunk is square root of maximum allowed zones per chunk
* -- start points for single level case are wrong, so don't try it */
long inum = (nchunk * nchunk) / (jmax - 1);
long jnum = (nchunk * nchunk) / (imax - 1);
if (inum < nchunk)
inum = nchunk;
if (jnum < nchunk)
jnum = nchunk;
/* ijnum= actual number of chunks,
* ijrem= number of those chunks needing one more zone (ijcsize+1) */
inum = (imax - 2) / inum + 1;
icsize = (imax - 1) / inum;
irem = (imax - 1) % inum;
jnum = (jmax - 2) / jnum + 1;
jcsize = (jmax - 1) / jnum;
jrem = (jmax - 1) % jnum;
/* convert ijrem into value of i or j at which to begin adding an
* extra zone */
irem = (inum - irem) * icsize;
jrem = (jnum - jrem) * jcsize;
}
else
{
irem = imax;
jrem = jmax;
}
/* do everything in a single pass through the data array to
* minimize cache faulting (z, reg, and data are potentially
* very large arrays)
* access to the z and reg arrays is strictly sequential,
* but we need two rows (+-imax) of the data array at a time */
if (z[0] > zlev0)
data[0] = (two_levels && z[0] > zlev1) ? 2 : 1;
else
data[0] = 0;
jchunk = 0;
for (j = ij = 0; j < jmax; j++)
{
ichunk = i_was_chunk = 0;
for (i = 0; i < imax; i++, ij++)
{
/* transfer zonal existence from reg to data array
* -- get these for next row so we can figure existence of
* points and j-edges for this row */
data[ij + imax + 1] = 0;
if (reg)
{
if (region ? (reg[ij + imax + 1] == region)
: (reg[ij + imax + 1] != 0))
data[ij + imax + 1] = ZONE_EX;
}
else
{
if (i < imax - 1 && j < jmax - 1)
data[ij + imax + 1] = ZONE_EX;
}
/* translate z values to 0, 1, 2 flags */
if (ij < imax)
data[ij + 1] = 0;
if (ij < ijmax - 1 && z[ij + 1] > zlev0)
data[ij + 1] |= (two_levels && z[ij + 1] > zlev1) ? 2 : 1;
/* apply edge boundary marks */
ibndy = i == ichunk
|| (data[ij] & ZONE_EX) != (data[ij + 1] & ZONE_EX);
jbndy = j == jchunk
|| (data[ij] & ZONE_EX) != (data[ij + imax] & ZONE_EX);
if (ibndy)
data[ij] |= I_BNDY;
if (jbndy)
data[ij] |= J_BNDY;
/* apply i-edge start marks
* -- i-edges are only marked when actually cut
* -- no mark is necessary if one of the j-edges which share
* the lower endpoint is also cut
* -- no I0 mark necessary unless filled region below some cut,
* no I1 mark necessary unless filled region above some cut */
if (j)
{
int v0 = (data[ij] & Z_VALUE);
int vb = (data[ij - imax] & Z_VALUE);
if (v0 != vb)
{ /* i-edge is cut */
if (ibndy)
{
if (data[ij] & ZONE_EX)
{
data[ij] |= I0_START;
count++;
}
if (data[ij + 1] & ZONE_EX)
{
data[ij] |= I1_START;
count++;
}
}
else
{
int va = (data[ij - 1] & Z_VALUE);
int vc = (data[ij + 1] & Z_VALUE);
int vd = (data[ij - imax + 1] & Z_VALUE);
if (v0 != 1 && va != v0
&& (vc != v0 || vd != v0) && (data[ij] & ZONE_EX))
{
data[ij] |= I0_START;
count++;
}
if (vb != 1 && va == vb
&& (vc == vb || vd == vb)
&& (data[ij + 1] & ZONE_EX))
{
data[ij] |= I1_START;
count++;
}
}
}
}
/* apply j-edge start marks
* -- j-edges are only marked when they are boundaries
* -- all cut boundary edges marked
* -- for two level case, a few uncut edges must be marked
*/
if (i && jbndy)
{
int v0 = (data[ij] & Z_VALUE);
int vb = (data[ij - 1] & Z_VALUE);
if (v0 != vb)
{
if (data[ij] & ZONE_EX)
{
data[ij] |= J0_START;
count++;
}
if (data[ij + imax] & ZONE_EX)
{
data[ij] |= J1_START;
count++;
}
}
else if (two_levels && v0 == 1)
{
if (data[ij + imax] & ZONE_EX)
{
if (i_was_chunk || !(data[ij + imax - 1] & ZONE_EX))
{
/* lower left is a drawn part of boundary */
data[ij] |= J1_START;
count++;
}
}
else if (data[ij] & ZONE_EX)
{
if (data[ij + imax - 1] & ZONE_EX)
{
/* weird case of open hole at lower left */
data[ij] |= J0_START;
count++;
}
}
}
}
i_was_chunk = (i == ichunk);
if (i_was_chunk)
ichunk += icsize + (ichunk >= irem);
}
if (j == jchunk)
jchunk += jcsize + (jchunk >= jrem);
/* place first START_ROW marker */
if (count && !started)
{
data[ij - imax] |= START_ROW;
started = 1;
}
}
/* place immediate stop mark if nothing found */
if (!count)
data[0] |= ALL_DONE;
/* initialize site */
site->edge0 = site->edge00 = site->edge = 0;
site->left0 = site->left = 0;
site->n = 0;
site->count = count;
}
/* ------------------------------------------------------------------------
Original (slightly modified) core contour generation routines are above;
below are new routines for interfacing to mpl.
------------------------------------------------------------------------ */
/* Note: index order gets switched in the Python interface;
python Z[i,j] -> C z[j,i]
so if the array has shape Mi, Nj in python,
we have iMax = Nj, jMax = Mi in gcntr.c.
On the Python side: Ny, Nx = shape(z),
so in C, the x-dimension is the first index, the y-dimension
the second.
*/
/* reg should have the same dimensions as data, which
has an extra iMax + 1 points relative to Z.
It differs from mask in being the opposite (True
where a region exists, versus the mask, which is True
where a data point is bad), and in that it marks
zones, not points. All four zones sharing a bad
point must be marked as not existing.
*/
void
mask_zones (long iMax, long jMax, char *mask, char *reg)
{
long i, j, ij;
long nreg = iMax * jMax + iMax + 1;
for (ij = iMax+1; ij < iMax*jMax; ij++)
{
reg[ij] = 1;
}
ij = 0;
for (j = 0; j < jMax; j++)
{
for (i = 0; i < iMax; i++, ij++)
{
if (i == 0 || j == 0) reg[ij] = 0;
if (mask[ij] != 0)
{
reg[ij] = 0;
reg[ij + 1] = 0;
reg[ij + iMax] = 0;
reg[ij + iMax + 1] = 0;
}
}
}
for (; ij < nreg; ij++)
{
reg[ij] = 0;
}
}
static Csite *
cntr_new(void)
{
Csite *site;
site = (Csite *) PyMem_Malloc(sizeof(Csite));
if (site == NULL) return NULL;
site->data = NULL;
site->reg = NULL;
site->triangle = NULL;
site->xcp = NULL;
site->ycp = NULL;
site->x = NULL;
site->y = NULL;
site->z = NULL;
return site;
}
static int
cntr_init(Csite *site, long iMax, long jMax, double *x, double *y,
double *z, char *mask)
{
long ijmax = iMax * jMax;
long nreg = iMax * jMax + iMax + 1;
long i;
site->imax = iMax;
site->jmax = jMax;
site->data = (Cdata *) PyMem_Malloc(sizeof(Cdata) * nreg);
if (site->data == NULL)
{
PyMem_Free(site);
return -1;
}
site->triangle = (short *) PyMem_Malloc(sizeof(short) * ijmax);
if (site->triangle == NULL)
{
PyMem_Free(site->data);
PyMem_Free(site);
return -1;
}
for (i = 0; i < ijmax; i++) site->triangle[i] = 0;
site->reg = NULL;
if (mask != NULL)
{
site->reg = (char *) PyMem_Malloc(sizeof(char) * nreg);
if (site->reg == NULL)
{
PyMem_Free(site->triangle);
PyMem_Free(site->data);
PyMem_Free(site);
return -1;
}
mask_zones(iMax, jMax, mask, site->reg);
}
/* I don't think we need to initialize site->data. */
site->x = x;
site->y = y;
site->z = z;
site->xcp = NULL;
site->ycp = NULL;
return 0;
}
void cntr_del(Csite *site)
{
PyMem_Free(site->triangle);
PyMem_Free(site->reg);
PyMem_Free(site->data);
PyMem_Free(site);
site = NULL;
}
/* Build a list of lists of points, where each point is an (x,y)
tuple.
*/
static PyObject *
build_cntr_list_p(long *np, double *xp, double *yp, int nparts, long ntotal)
{
PyObject *point, *contourList, *all_contours;
int start = 0, end = 0;
int i, j, k;
all_contours = PyList_New(nparts);
for (i = 0; i < nparts; i++)
{
start = end;
end += np[i];
contourList = PyList_New(np[i]);
for (k = 0, j = start; j < end; j++, k++)
{
point = Py_BuildValue("(dd)", xp[j], yp[j]);
if (PyList_SetItem(contourList, k, point)) goto error;
}
if (PyList_SetItem(all_contours, i, contourList)) goto error;
}
return all_contours;
error:
Py_XDECREF(all_contours);
return NULL;
}
/* Build a list of tuples (X, Y), where X and Y are 1-D arrays. */
static PyObject *
build_cntr_list_v(long *np, double *xp, double *yp, int nparts, long ntotal)
{
PyObject *point, *all_contours;
PyArrayObject *xv, *yv;
int dims[1];
int i;
long j, k;
all_contours = PyList_New(nparts);
k = 0;
for (i = 0; i < nparts; i++)
{
dims[0] = np[i];
xv = (PyArrayObject *) PyArray_FromDims(1, dims, 'd');
yv = (PyArrayObject *) PyArray_FromDims(1, dims, 'd');
if (xv == NULL || yv == NULL) goto error;
for (j = 0; j < dims[0]; j++)
{
((double *)xv->data)[j] = xp[k];
((double *)yv->data)[j] = yp[k];
k++;
}
point = Py_BuildValue("(NN)", xv, yv);
/* "O" increments ref count; "N" does not. */
if (PyList_SetItem(all_contours, i, point)) goto error;
}
return all_contours;
error:
Py_XDECREF(all_contours);
return NULL;
}
/* cntr_trace is called once per contour level or level pair.
If nlevels is 1, a set of contour lines will be returned; if nlevels
is 2, the set of polygons bounded by the levels will be returned.
If points is True, the lines will be returned as a list of list
of points; otherwise, as a list of tuples of vectors.
*/
PyObject *
cntr_trace(Csite *site, double levels[], int nlevels, int points)
{
PyObject *c_list;
double *xp0;
double *yp0;
long *nseg0;
int iseg;
long nchunk = 300; /* hardwired for now */
long n;
long nparts = 0;
long ntotal = 0;
long nparts2 = 0;
long ntotal2 = 0;
site->zlevel[0] = levels[0];
site->zlevel[1] = levels[0];
if (nlevels == 2)
{
site->zlevel[1] = levels[1];
}
site->n = site->count = 0;
data_init (site, 0, nchunk);
/* make first pass to compute required sizes for second pass */
for (;;)
{
n = curve_tracer (site, 0);
if (!n)
break;
if (n > 0)
{
nparts++;
ntotal += n;
}
else
{
ntotal -= n;
}
}
xp0 = (double *) PyMem_Malloc(ntotal * sizeof(double));
yp0 = (double *) PyMem_Malloc(ntotal * sizeof(double));
nseg0 = (long *) PyMem_Malloc(nparts * sizeof(long));
if (xp0 == NULL || yp0 == NULL || nseg0 == NULL) goto error;
/* second pass */
site->xcp = xp0;
site->ycp = yp0;
iseg = 0;
for (;;iseg++)
{
n = curve_tracer (site, 1);
if (ntotal2 + n > ntotal)
{
PyErr_SetString(PyExc_RuntimeError,
"curve_tracer: ntotal2, pass 2 exceeds ntotal, pass 1");
goto error;
}
if (n == 0)
break;
if (n > 0)
{
/* could add array bounds checking */
nseg0[iseg] = n;
site->xcp += n;
site->ycp += n;
ntotal2 += n;
nparts2++;
}
else
{
PyErr_SetString(PyExc_RuntimeError,
"Negative n from curve_tracer in pass 2");
goto error;
}
}
if (points)
{
c_list = build_cntr_list_p(nseg0, xp0, yp0, nparts, ntotal);
}
else
{
c_list = build_cntr_list_v(nseg0, xp0, yp0, nparts, ntotal);
}
PyMem_Free(xp0); PyMem_Free(yp0); PyMem_Free(nseg0);
site->xcp = NULL; site->ycp = NULL;
return c_list;
error:
PyMem_Free(xp0); PyMem_Free(yp0); PyMem_Free(nseg0);
site->xcp = NULL; site->ycp = NULL;
return NULL;
}
/******* Make an extension type. Based on the tutorial.************/
/* site points to the data arrays in the arrays pointed to
by xpa, ypa, zpa, and mpa, so we include them in the
structure so we can ensure they are not deleted until
we have finished using them.
*/
typedef struct {
PyObject_HEAD
PyArrayObject *xpa, *ypa, *zpa, *mpa;
Csite *site;
} Cntr;
static int
Cntr_clear(Cntr* self)
{
PyArrayObject *tmp;
cntr_del(self->site);
tmp = self->xpa;
self->xpa = NULL;
Py_XDECREF(tmp);
tmp = self->ypa;
self->ypa = NULL;
Py_XDECREF(tmp);
tmp = self->zpa;
self->zpa = NULL;
Py_XDECREF(tmp);
tmp = self->mpa;
self->mpa = NULL;
Py_XDECREF(tmp);
return 0;
}
static void
Cntr_dealloc(Cntr* self)
{
Cntr_clear(self);
self->ob_type->tp_free((PyObject*)self);
}
static PyObject *
Cntr_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
{
Cntr *self;
self = (Cntr *)type->tp_alloc(type, 0);
if (self != NULL)
{
self->site = cntr_new();
if (self->site == NULL)
{
PyErr_SetString(PyExc_MemoryError,
"Memory allocation failed in cntr_new.");
Py_XDECREF(self);
return NULL;
}
self->xpa = NULL;
self->ypa = NULL;
self->zpa = NULL;
self->mpa = NULL;
}
return (PyObject *)self;
}
static int
Cntr_init(Cntr *self, PyObject *args, PyObject *kwds)
{
PyObject *xarg, *yarg, *zarg, *marg;
PyArrayObject *xpa, *ypa, *zpa, *mpa;
long iMax, jMax;
char *mask;
static char *kwlist[] = {"x", "y", "z", "mask", NULL};
marg = NULL;
if (! PyArg_ParseTupleAndKeywords(args, kwds, "OOO|O", kwlist,
&xarg, &yarg, &zarg, &marg))
return -1;
if (marg == Py_None)
marg = NULL;
if (!PyArray_Check(xarg) || !PyArray_Check(yarg) ||
!PyArray_Check(zarg) || (marg && !PyArray_Check(marg)))
{
PyErr_SetString(PyExc_TypeError,
"Arguments x, y, z, (optional) mask must be arrays.");
return -1;
}
xpa = (PyArrayObject *) PyArray_ContiguousFromObject(xarg, 'd', 2, 2);
ypa = (PyArrayObject *) PyArray_ContiguousFromObject(yarg, 'd', 2, 2);
zpa = (PyArrayObject *) PyArray_ContiguousFromObject(zarg, 'd', 2, 2);
if (marg)
mpa = (PyArrayObject *) PyArray_ContiguousFromObject(marg, '1', 2, 2);
else
mpa = NULL;
if (xpa == NULL || ypa == NULL || zpa == NULL || (marg && mpa == NULL))
{
PyErr_SetString(PyExc_ValueError,
"Arguments x, y, z, mask (if present) must be 2D arrays.");
goto error;
}
iMax = zpa->dimensions[1];
jMax = zpa->dimensions[0];
if (xpa->dimensions[0] != jMax || xpa->dimensions[1] != iMax ||
ypa->dimensions[0] != jMax || ypa->dimensions[1] != iMax ||
(mpa && (mpa->dimensions[0] != jMax || mpa->dimensions[1] != iMax)))
{
PyErr_SetString(PyExc_ValueError,
"Arguments x, y, z, mask (if present)"
" must have the same dimensions.");
goto error;
}
if (mpa) mask = mpa->data;
else mask = NULL;
if ( cntr_init(self->site, iMax, jMax, (double *)xpa->data,
(double *)ypa->data,
(double *)zpa->data, mask))
{
PyErr_SetString(PyExc_MemoryError,
"Memory allocation failure in cntr_init");
goto error;
}
self->xpa = xpa;
self->ypa = ypa;
self->zpa = zpa;
self->mpa = mpa;
return 0;
error:
Py_XDECREF(xpa);
Py_XDECREF(ypa);
Py_XDECREF(zpa);
Py_XDECREF(mpa);
return -1;
}
static PyObject *
Cntr_trace(Cntr *self, PyObject *args, PyObject *kwds)
{
double levels[2] = {0.0, -1e100};
int nlevels = 2;
int points = 0;
static char *kwlist[] = {"level0", "level1", "points", NULL};
if (! PyArg_ParseTupleAndKeywords(args, kwds, "d|di", kwlist,
levels, levels+1, &points))
{
return NULL;
}
if (levels[1] == -1e100 || levels[1] <= levels[0])
nlevels = 1;
return cntr_trace(self->site, levels, nlevels, points);
}
static PyMethodDef Cntr_methods[] = {
{"trace", (PyCFunction)Cntr_trace, METH_VARARGS | METH_KEYWORDS,
"Return a list of contour line segments or polygons.\n\n"
" Required argument: level0, a contour level\n"
" Optional argument: level1; if given, and if level1 > level0,\n"
" then the contours will be polygons surrounding areas between\n"
" the levels.\n"
" Optional argument: points; if 0 (default), return a list of\n"
" vector pairs; otherwise, return a list of lists of points.\n"
},
{NULL} /* Sentinel */
};
static PyTypeObject CntrType = {
PyObject_HEAD_INIT(NULL)
0, /*ob_size*/
"cntr.Cntr", /*tp_name*/
sizeof(Cntr), /*tp_basicsize*/
0, /*tp_itemsize*/
(destructor)Cntr_dealloc, /*tp_dealloc*/
0, /*tp_print*/
0, /*tp_getattr*/
0, /*tp_setattr*/
0, /*tp_compare*/
0, /*tp_repr*/
0, /*tp_as_number*/
0, /*tp_as_sequence*/
0, /*tp_as_mapping*/
0, /*tp_hash */
0, /*tp_call*/
0, /*tp_str*/
0, /*tp_getattro*/
0, /*tp_setattro*/
0, /*tp_as_buffer*/
Py_TPFLAGS_DEFAULT, /*tp_flags*/
"Contour engine", /* tp_doc */
0, /* tp_traverse */
(inquiry)Cntr_clear, /* tp_clear */
0, /* tp_richcompare */
0, /* tp_weaklistoffset */
0, /* tp_iter */
0, /* tp_iternext */
Cntr_methods, /* tp_methods */
0, /* tp_members */
0, /* tp_getset */
0, /* tp_base */
0, /* tp_dict */
0, /* tp_descr_get */
0, /* tp_descr_set */
0, /* tp_dictoffset */
(initproc)Cntr_init, /* tp_init */
0, /* tp_alloc */
Cntr_new, /* tp_new */
};
static PyMethodDef module_methods[] = {
{NULL} /* Sentinel */
};
#ifdef NUMARRAY
PyMODINIT_FUNC
initcontour(void)
{
PyObject* m;
if (PyType_Ready(&CntrType) < 0)
return;
m = Py_InitModule3("contour", module_methods,
"Contouring engine as an extension type (numarray).");
if (m == NULL)
return;
import_array();
Py_INCREF(&CntrType);
PyModule_AddObject(m, "Cntr", (PyObject *)&CntrType);
}
#else
PyMODINIT_FUNC
initcontour(void)
{
PyObject* m;
if (PyType_Ready(&CntrType) < 0)
return;
m = Py_InitModule3("contour", module_methods,
"Contouring engine as an extension type (Numeric).");
if (m == NULL)
return;
import_array();
Py_INCREF(&CntrType);
PyModule_AddObject(m, "Cntr", (PyObject *)&CntrType);
}
#endif
|