/usr/share/pyshared/chaco/lineplot.py is in python-chaco 4.1.0-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 | """ Defines the LinePlot class.
"""
from __future__ import with_statement
# Standard library imports
import warnings
# Major library imports
from numpy import argsort, array, concatenate, inf, invert, isnan, \
take, transpose, zeros
# Enthought library imports
from enable.api import black_color_trait, ColorTrait, LineStyle
from traits.api import Enum, Float, List, Str
from traitsui.api import Item, View
# Local relative imports
from base import arg_find_runs, bin_search, reverse_map_1d
from base_xy_plot import BaseXYPlot
class LinePlot(BaseXYPlot):
""" A plot consisting of a line.
This is the most fundamental object to use to create line plots. However,
it is somewhat low-level and therefore creating one properly to do what
you want can require some verbose code. The create_line_plot() function
in plot_factory.py can hide some of this verbosity for common cases.
"""
# The color of the line.
color = black_color_trait
# The color to use to highlight the line when selected.
selected_color = ColorTrait("lightyellow")
# The style of the selected line.
selected_line_style = LineStyle("solid")
# The name of the key in self.metadata that holds the selection mask
metadata_name = Str("selections")
# The thickness of the line.
line_width = Float(1.0)
# The line dash style.
line_style = LineStyle
# The rendering style of the line plot.
#
# connectedpoints
# "normal" style (default); each point is connected to subsequent and
# prior points by line segments
# hold
# each point is represented by a line segment parallel to the abscissa
# (index axis) and spanning the length between the point and its
# subsequent point.
# connectedhold
# like "hold" style, but line segments are drawn at each point of the
# plot to connect the hold lines of the prior point and the current
# point. Also called a "right angle plot".
render_style = Enum("connectedpoints", "hold", "connectedhold")
# Traits UI View for customizing the plot.
traits_view = View(Item("color", style="custom"), "line_width", "line_style",
buttons=["OK", "Cancel"])
#------------------------------------------------------------------------
# Private traits
#------------------------------------------------------------------------
# Cached list of non-NaN arrays of (x,y) data-space points; regardless of
# self.orientation, this is always stored as (index_pt, value_pt). This is
# different from the default BaseXYPlot definition.
_cached_data_pts = List
# Cached list of non-NaN arrays of (x,y) screen-space points.
_cached_screen_pts = List
def hittest(self, screen_pt, threshold=7.0):
"""
Tests whether the given screen point is within *threshold* pixels of
any data points on the line. If so, then it returns the (x,y) value of
a data point near the screen point. If not, then it returns None.
Note: This only checks data points and *not* the actual line segments
connecting them.
"""
ndx = self.map_index(screen_pt, threshold)
if ndx is not None:
return (self.index.get_data()[ndx], self.value.get_data()[ndx])
else:
data_x = self.map_data(screen_pt)
xmin, xmax = self.index.get_bounds()
if xmin <= data_x <= xmax:
if self.orientation == "h":
sy = screen_pt[1]
else:
sy = screen_pt[0]
interp_val = self.interpolate(data_x)
interp_y = self.value_mapper.map_screen(interp_val)
if abs(sy - interp_y) <= threshold:
return reverse_map_1d(self.index.get_data(), data_x,
self.index.sort_order)
return None
def interpolate(self, index_value):
"""
Returns the value of the plot at the given index value in screen space.
Raises an IndexError when *index_value* exceeds the bounds of indexes on
the value.
"""
if self.index is None or self.value is None:
raise IndexError, "cannot index when data source index or value is None"
index_data = self.index.get_data()
value_data = self.value.get_data()
ndx = reverse_map_1d(index_data, index_value, self.index.sort_order)
# quick test to see if this value is already in the index array
if index_value == index_data[ndx]:
return value_data[ndx]
# get x and y values to interpolate between
if index_value < index_data[ndx]:
x0 = index_data[ndx - 1]
y0 = value_data[ndx - 1]
x1 = index_data[ndx]
y1 = value_data[ndx]
else:
x0 = index_data[ndx]
y0 = value_data[ndx]
x1 = index_data[ndx + 1]
y1 = value_data[ndx + 1]
if x1 != x0:
slope = float(y1 - y0)/float(x1 - x0)
dx = index_value - x0
yp = y0 + slope * dx
else:
yp = inf
return yp
def get_screen_points(self):
self._gather_points()
return [self.map_screen(ary) for ary in self._cached_data_pts]
#------------------------------------------------------------------------
# Private methods; implements the BaseXYPlot stub methods
#------------------------------------------------------------------------
def _gather_points(self):
"""
Collects the data points that are within the bounds of the plot and
caches them.
"""
if not self._cache_valid:
if not self.index or not self.value:
return
index = self.index.get_data()
value = self.value.get_data()
# Check to see if the data is completely outside the view region
for ds, rng in ((self.index, self.index_range), (self.value, self.value_range)):
low, high = ds.get_bounds()
if low > rng.high or high < rng.low:
self._cached_data_pts = []
self._cached_valid = True
return
if len(index) == 0 or len(value) == 0 or len(index) != len(value):
self._cached_data_pts = []
self._cache_valid = True
size_diff = len(value) - len(index)
if size_diff > 0:
warnings.warn('Chaco.LinePlot: len(value) %d - len(index) %d = %d\n' \
% (len(value), len(index), size_diff))
index_max = len(index)
value = value[:index_max]
else:
index_max = len(value)
index = index[:index_max]
# TODO: restore the functionality of rendering highlighted portions
# of the line
#selection = self.index.metadata.get(self.metadata_name, None)
#if selection is not None and type(selection) in (ndarray, list) and \
# len(selection) > 0:
# Split the index and value raw data into non-NaN chunks
nan_mask = invert(isnan(value)) & invert(isnan(index))
blocks = [b for b in arg_find_runs(nan_mask, "flat") if nan_mask[b[0]] != 0]
points = []
for block in blocks:
start, end = block
block_index = index[start:end]
block_value = value[start:end]
index_mask = self.index_mapper.range.mask_data(block_index)
runs = [r for r in arg_find_runs(index_mask, "flat") \
if index_mask[r[0]] != 0]
# Check to see if our data view region is between two points in the
# index data. If so, then we have to reverse map our current view
# into the appropriate index and draw the bracketing points.
if runs == []:
data_pt = self.map_data((self.x_mapper.low_pos, self.y_mapper.low_pos))
if self.index.sort_order == "none":
indices = argsort(index)
sorted_index = take(index, indices)
sorted_value = take(value, indices)
sort = 1
else:
sorted_index = index
sorted_value = value
if self.index.sort_order == "ascending":
sort = 1
else:
sort = -1
ndx = bin_search(sorted_index, data_pt, sort)
if ndx == -1:
# bin_search can return -1 if data_pt is outside the bounds
# of the source data
continue
points.append(transpose(array((sorted_index[ndx:ndx+2],
sorted_value[ndx:ndx+2]))))
else:
# Expand the width of every group of points so we draw the lines
# up to their next point, outside the plot area
data_end = len(index_mask)
for run in runs:
start, end = run
if start != 0:
start -= 1
if end != data_end:
end += 1
run_data = transpose(array((block_index[start:end],
block_value[start:end])))
points.append(run_data)
self._cached_data_pts = points
self._cache_valid = True
return
def _downsample(self):
if not self._screen_cache_valid:
self._cached_screen_pts = [self.map_screen(p) for p in self._cached_data_pts]
self._screen_cache_valid = True
pt_arrays = self._cached_screen_pts
# some boneheaded short-circuits
m = self.index_mapper
total_numpoints = sum([p.shape for p in pt_arrays])
if (total_numpoints < 400) or (total_numpoints < m.high_pos - m.low_pos):
return self._cached_screen_pts
# the new point array and a counter of how many actual points we've added
# to it
new_arrays = []
for pts in pt_arrays:
new_pts = zeros(pts.shape, "d")
numpoints = 1
new_pts[0] = pts[0]
last_x, last_y = pts[0]
for x, y in pts[1:]:
if (x-last_x)**2 + (y-last_y)**2 > 2:
new_pts[numpoints] = (x,y)
last_x = x
last_y = y
numpoints += 1
new_arrays.append(new_pts[:numpoints])
return self._cached_screen_pts
def _render(self, gc, points, selected_points=None):
if len(points) == 0:
return
with gc:
gc.set_antialias(True)
gc.clip_to_rect(self.x, self.y, self.width, self.height)
render_method_dict = {
"hold": self._render_hold,
"connectedhold": self._render_connected_hold,
"connectedpoints": self._render_normal
}
render = render_method_dict.get(self.render_style, self._render_normal)
if selected_points is not None:
gc.set_stroke_color(self.selected_color_)
gc.set_line_width(self.line_width+10.0)
gc.set_line_dash(self.selected_line_style_)
render(gc, selected_points, self.orientation)
# Render using the normal style
gc.set_stroke_color(self.color_)
gc.set_line_width(self.line_width)
gc.set_line_dash(self.line_style_)
render(gc, points, self.orientation)
# Draw the default axes, if necessary
self._draw_default_axes(gc)
@classmethod
def _render_normal(cls, gc, points, orientation):
for ary in points:
if len(ary) > 0:
gc.begin_path()
gc.lines(ary)
gc.stroke_path()
return
@classmethod
def _render_hold(cls, gc, points, orientation):
for starts in points:
x,y = starts.T
if orientation == "h":
ends = transpose(array( (x[1:], y[:-1]) ))
else:
ends = transpose(array( (x[:-1], y[1:]) ))
gc.begin_path()
gc.line_set(starts[:-1], ends)
gc.stroke_path()
return
@classmethod
def _render_connected_hold(cls, gc, points, orientation):
for starts in points:
x,y = starts.T
if orientation == "h":
ends = transpose(array( (x[1:], y[:-1]) ))
else:
ends = transpose(array( (x[:-1], y[1:]) ))
gc.begin_path()
gc.line_set(starts[:-1], ends)
gc.line_set(ends, starts[1:])
gc.stroke_path()
return
def _render_icon(self, gc, x, y, width, height):
with gc:
gc.set_stroke_color(self.color_)
gc.set_line_width(self.line_width)
gc.set_line_dash(self.line_style_)
gc.set_antialias(0)
gc.move_to(x, y+height/2)
gc.line_to(x+width, y+height/2)
gc.stroke_path()
return
def _downsample_vectorized(self):
"""
Analyzes the screen-space points stored in self._cached_data_pts
and replaces them with a downsampled set.
"""
pts = self._cached_screen_pts #.astype(int)
# some boneheaded short-circuits
m = self.index_mapper
if (pts.shape[0] < 400) or (pts.shape[0] < m.high_pos - m.low_pos):
return
pts2 = concatenate((array([[0.0,0.0]]), pts[:-1]))
z = abs(pts - pts2)
d = z[:,0] + z[:,1]
#... TODO ...
return
def _alpha_changed(self):
self.color_ = self.color_[0:3] + (self.alpha,)
self.invalidate_draw()
self.request_redraw()
return
def _color_changed(self):
self.invalidate_draw()
self.request_redraw()
return
def _line_style_changed(self):
self.invalidate_draw()
self.request_redraw()
return
def _line_width_changed(self):
self.invalidate_draw()
self.request_redraw()
return
def __getstate__(self):
state = super(LinePlot,self).__getstate__()
for key in ['traits_view']:
if state.has_key(key):
del state[key]
return state
# EOF
|