This file is indexed.

/usr/share/pyshared/chaco/plot_containers.py is in python-chaco 4.1.0-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
""" Defines various plot container classes, including stacked, grid, and overlay.
"""
# Major library imports
from numpy import amax, any, arange, array, cumsum, hstack, sum, zeros, zeros_like

# Enthought library imports
from traits.api import Any, Array, Either, Enum, Float, Instance, \
    List, Property, Trait, Tuple, Int
from enable.simple_layout import simple_container_get_preferred_size, \
                                            simple_container_do_layout

# Local relative imports
from base_plot_container import BasePlotContainer


__all__ = ["OverlayPlotContainer", "HPlotContainer", "VPlotContainer", \
           "GridPlotContainer"]

DEFAULT_DRAWING_ORDER = ["background", "image", "underlay",      "plot",
                         "selection", "border", "annotation", "overlay"]

class OverlayPlotContainer(BasePlotContainer):
    """
    A plot container that stretches all its components to fit within its
    space.  All of its components must therefore be resizable.
    """

    draw_order = Instance(list, args=(DEFAULT_DRAWING_ORDER,))

    # Do not use an off-screen backbuffer.
    use_backbuffer = False

    # Cache (width, height) of the container's preferred size.
    _cached_preferred_size = Tuple

    def get_preferred_size(self, components=None):
        """ Returns the size (width,height) that is preferred for this component.

        Overrides PlotComponent
        """
        return simple_container_get_preferred_size(self, components=components)

    def _do_layout(self):
        """ Actually performs a layout (called by do_layout()).
        """
        simple_container_do_layout(self)
        return

class StackedPlotContainer(BasePlotContainer):
    """
    Base class for 1-D stacked plot containers, both horizontal and vertical.
    """

    draw_order = Instance(list, args=(DEFAULT_DRAWING_ORDER,))

    # The dimension along which to stack components that are added to
    # this container.
    stack_dimension = Enum("h", "v")

    # The "other" dimension, i.e., the dual of the stack dimension.
    other_dimension = Enum("v", "h")

    # The index into obj.position and obj.bounds that corresponds to
    # **stack_dimension**.  This is a class-level and not an instance-level
    # attribute. It must be 0 or 1.
    stack_index = 0

    def get_preferred_size(self, components=None):
        """ Returns the size (width,height) that is preferred for this component.

        Overrides PlotComponent.
        """
        if self.fixed_preferred_size is not None:
            self._cached_preferred_size = self.fixed_preferred_size
            return self.fixed_preferred_size

        if self.resizable == "":
            self._cached_preferred_size = self.outer_bounds[:]
            return self.outer_bounds

        if components is None:
            components = self.components

        ndx = self.stack_index
        other_ndx = 1 - ndx

        no_visible_components = True
        total_size = 0
        max_other_size = 0
        for component in components:
            if not self._should_layout(component):
                continue

            no_visible_components = False

            pref_size = component.get_preferred_size()
            total_size += pref_size[ndx] + self.spacing
            if pref_size[other_ndx] > max_other_size:
                max_other_size = pref_size[other_ndx]

        if total_size >= self.spacing:
            total_size -= self.spacing

        if (self.stack_dimension not in self.resizable) and \
           (self.stack_dimension not in self.fit_components):
            total_size = self.bounds[ndx]
        elif no_visible_components or (total_size == 0):
            total_size = self.default_size[ndx]

        if (self.other_dimension not in self.resizable) and \
           (self.other_dimension not in self.fit_components):
            max_other_size = self.bounds[other_ndx]
        elif no_visible_components or (max_other_size == 0):
            max_other_size = self.default_size[other_ndx]

        if ndx == 0:
            self._cached_preferred_size = (total_size + self.hpadding,
                                           max_other_size + self.vpadding)
        else:
            self._cached_preferred_size = (max_other_size + self.hpadding,
                                           total_size + self.vpadding)

        return self._cached_preferred_size


    def _do_stack_layout(self, components, align):
        """ Helper method that does the actual work of layout.
        """


        size = list(self.bounds)
        if self.fit_components != "":
            self.get_preferred_size()
            if "h" in self.fit_components:
                size[0] = self._cached_preferred_size[0] - self.hpadding
            if "v" in self.fit_components:
                size[1] = self._cached_preferred_size[1] - self.vpadding

        ndx = self.stack_index
        other_ndx = 1 - ndx
        other_dim = self.other_dimension

        # Assign sizes of non-resizable components, and compute the total size
        # used by them (along the stack dimension).
        total_fixed_size = 0
        resizable_components = []
        size_prefs = {}
        total_resizable_size = 0

        for component in components:
            if not self._should_layout(component):
                continue
            if self.stack_dimension not in component.resizable:
                total_fixed_size += component.outer_bounds[ndx]
            else:
                preferred_size = component.get_preferred_size()
                size_prefs[component] = preferred_size
                total_resizable_size += preferred_size[ndx]
                resizable_components.append(component)

        new_bounds_dict = {}

        # Assign sizes of all the resizable components along the stack dimension
        if resizable_components:
            space = self.spacing * (len(self.components) - 1)
            avail_size = size[ndx] - total_fixed_size - space
            if total_resizable_size > 0:
                scale = avail_size / float(total_resizable_size)
                for component in resizable_components:
                    tmp = list(component.outer_bounds)
                    tmp[ndx] = int(size_prefs[component][ndx] * scale)
                    new_bounds_dict[component] = tmp
            else:
                each_size = int(avail_size / len(resizable_components))
                for component in resizable_components:
                    tmp = list(component.outer_bounds)
                    tmp[ndx] = each_size
                    new_bounds_dict[component] = tmp

        # Loop over all the components, assigning position and computing the
        # size in the other dimension and its position.
        cur_pos = 0
        for component in components:
            if not self._should_layout(component):
                continue

            position = list(component.outer_position)
            position[ndx] = cur_pos

            bounds = new_bounds_dict.get(component, list(component.outer_bounds))
            cur_pos += bounds[ndx] + self.spacing

            if (bounds[other_ndx] > size[other_ndx]) or \
                    (other_dim in component.resizable):
                # If the component is resizable in the other dimension or it exceeds the
                # container bounds, set it to the maximum size of the container

                #component.set_outer_position(other_ndx, 0)
                #component.set_outer_bounds(other_ndx, size[other_ndx])
                position[other_ndx] = 0
                bounds[other_ndx] = size[other_ndx]
            else:
                #component.set_outer_position(other_ndx, 0)
                #old_coord = component.outer_position[other_ndx]
                position[other_ndx] = 0
                if align == "min":
                    pass
                elif align == "max":
                    position[other_ndx] = size[other_ndx] - bounds[other_ndx]
                elif align == "center":
                    position[other_ndx] = (size[other_ndx] - bounds[other_ndx]) / 2.0

            component.outer_position = position
            component.outer_bounds = bounds
            component.do_layout()
        return

    ### Persistence ###########################################################

    # PICKLE FIXME: blocked with _pickles, but not sure that was correct.
    def __getstate__(self):
        state = super(StackedPlotContainer,self).__getstate__()
        for key in ['stack_dimension', 'other_dimension', 'stack_index']:
            if state.has_key(key):
                del state[key]
        return state


class HPlotContainer(StackedPlotContainer):
    """
    A plot container that stacks all of its components horizontally. Resizable
    components share the free space evenly. All components are stacked from
    according to **stack_order* in the same order that they appear in the
    **components** list.
    """

    draw_order = Instance(list, args=(DEFAULT_DRAWING_ORDER,))

    # The order in which components in the plot container are laid out.
    stack_order = Enum("left_to_right", "right_to_left")

    # The amount of space to put between components.
    spacing = Float(0.0)

    # The vertical alignment of objects that don't span the full height.
    valign = Enum("bottom", "top", "center")

    _cached_preferred_size = Tuple

    def _do_layout(self):
        """ Actually performs a layout (called by do_layout()).
        """
        if self.stack_order == "left_to_right":
            components = self.components
        else:
            components = self.components[::-1]

        if self.valign == "bottom":
            align = "min"
        elif self.valign == "center":
            align = "center"
        else:
            align = "max"

        return self._do_stack_layout(components, align)

    ### Persistence ###########################################################
    #_pickles = ("stack_order", "spacing")

    def __getstate__(self):
        state = super(HPlotContainer,self).__getstate__()
        for key in ['_cached_preferred_size']:
            if state.has_key(key):
                del state[key]
        return state



class VPlotContainer(StackedPlotContainer):
    """
    A plot container that stacks plot components vertically.
    """

    draw_order = Instance(list, args=(DEFAULT_DRAWING_ORDER,))

    # Overrides StackedPlotContainer.
    stack_dimension = "v"
    # Overrides StackedPlotContainer.
    other_dimension = "h"
    # Overrides StackedPlotContainer.
    stack_index = 1

    # VPlotContainer attributes

    # The horizontal alignment of objects that don't span the full width.
    halign = Enum("left", "right", "center")

    # The order in which components in the plot container are laid out.
    stack_order = Enum("bottom_to_top", "top_to_bottom")

    # The amount of space to put between components.
    spacing = Float(0.0)

    def _do_layout(self):
        """ Actually performs a layout (called by do_layout()).
        """
        if self.stack_order == "bottom_to_top":
            components = self.components
        else:
            components = self.components[::-1]
        if self.halign == "left":
            align = "min"
        elif self.halign == "center":
            align = "center"
        else:
            align = "max"

        #import pdb; pdb.set_trace()
        return self._do_stack_layout(components, align)


class GridPlotContainer(BasePlotContainer):
    """ A GridPlotContainer consists of rows and columns in a tabular format.

    Each cell's width is the same as all other cells in its column, and each
    cell's height is the same as all other cells in its row.

    Although grid layout requires more layout information than a simple
    ordered list, this class keeps components as a simple list and exposes a
    **shape** trait.
    """

    draw_order = Instance(list, args=(DEFAULT_DRAWING_ORDER,))

    # The amount of space to put on either side of each component, expressed
    # as a tuple (h_spacing, v_spacing).
    spacing = Either(Tuple, List, Array)

    # The vertical alignment of objects that don't span the full height.
    valign = Enum("bottom", "top", "center")

    # The horizontal alignment of objects that don't span the full width.
    halign = Enum("left", "right", "center")

    # The shape of this container, i.e, (rows, columns).  The items in
    # **components** are shuffled appropriately to match this
    # specification.  If there are fewer components than cells, the remaining
    # cells are filled in with spaces.  If there are more components than cells,
    # the remainder wrap onto new rows as appropriate.
    shape = Trait((0,0), Either(Tuple, List, Array))

    # This property exposes the underlying grid structure of the container,
    # and is the preferred way of setting and reading its contents.
    # When read, this property returns a Numpy array with dtype=object; values
    # for setting it can be nested tuples, lists, or 2-D arrays.
    # The array is in row-major order, so that component_grid[0] is the first
    # row, and component_grid[:,0] is the first column.  The rows are ordered
    # from top to bottom.
    component_grid = Property

    # The internal component grid, in row-major order.  This gets updated
    # when any of the following traits change: shape, components, grid_components
    _grid = Array

    _cached_total_size = Any
    _h_size_prefs = Any
    _v_size_prefs = Any

    class SizePrefs(object):
        """ Object to hold size preferences across spans in a particular
        dimension.  For instance, if SizePrefs is being used for the row
        axis, then each element in the arrays below express sizing information
        about the corresponding column.
        """

        # The maximum size of non-resizable elements in the span.  If an
        # element of this array is 0, then its corresponding span had no
        # non-resizable components.
        fixed_lengths = Array

        # The maximum preferred size of resizable elements in the span.
        # If an element of this array is 0, then its corresponding span
        # had no resizable components with a non-zero preferred size.
        resizable_lengths = Array

        # The direction of resizability associated with this SizePrefs
        # object.  If this SizePrefs is sizing along the X-axis, then
        # direction should be "h", and correspondingly for the Y-axis.
        direction = Enum("h", "v")

        # The index into a size tuple corresponding to our orientation
        # (0 for horizontal, 1 for vertical).  This is derived from
        # **direction** in the constructor.
        index = Int(0)

        def __init__(self, length, direction):
            """ Initializes this prefs object with empty arrays of the given
            length and with the given direction. """
            self.fixed_lengths = zeros(length)
            self.resizable_lengths = zeros(length)
            self.direction = direction
            if direction == "h":
                self.index = 0
            else:
                self.index = 1
            return

        def update_from_component(self, component, index):
            """ Given a component at a particular index along this SizePref's
            axis, integrates the component's resizability and sizing information
            into self.fixed_lengths and self.resizable_lengths. """
            resizable = self.direction in component.resizable
            pref_size = component.get_preferred_size()
            self.update_from_pref_size(pref_size[self.index], index, resizable)

        def update_from_pref_size(self, pref_length, index, resizable):
            if resizable:
                if pref_length > self.resizable_lengths[index]:
                    self.resizable_lengths[index] = pref_length
            else:
                if pref_length > self.fixed_lengths[index]:
                    self.fixed_lengths[index] = pref_length
            return

        def get_preferred_size(self):
            return amax((self.fixed_lengths, self.resizable_lengths), axis=0)

        def compute_size_array(self, size):
            """ Given a length along the axis corresponding to this SizePref,
            returns an array of lengths to assign each cell, taking into account
            resizability and preferred sizes.
            """
            # There are three basic cases for each column:
            #   1. size < total fixed size
            #   2. total fixed size < size < fixed size + resizable preferred size
            #   3. fixed size + resizable preferred size < size
            #
            # In all cases, non-resizable components get their full width.
            #
            # For resizable components with non-zero preferred size, the following
            # actions are taken depending on case:
            #   case 1: They get sized to 0.
            #   case 2: They get a fraction of their preferred size, scaled based on
            #           the amount of remaining space after non-resizable components
            #           get their full size.
            #   case 3: They get their full preferred size.
            #
            # For resizable components with no preferred size (indicated in our scheme
            # by having a preferred size of 0), the following actions are taken
            # depending on case:
            #   case 1: They get sized to 0.
            #   case 2: They get sized to 0.
            #   case 3: All resizable components with no preferred size split the
            #           remaining space evenly, after fixed width and resizable
            #           components with preferred size get their full size.
            fixed_lengths = self.fixed_lengths
            resizable_lengths = self.resizable_lengths
            return_lengths = zeros_like(fixed_lengths)

            fixed_size = sum(fixed_lengths)
            fixed_length_indices = fixed_lengths > resizable_lengths
            resizable_indices = resizable_lengths > fixed_lengths
            fully_resizable_indices = (resizable_lengths + fixed_lengths == 0)
            preferred_size = sum(fixed_lengths[fixed_length_indices]) + \
                                    sum(resizable_lengths[~fixed_length_indices])

            # Regardless of the relationship between available space and
            # resizable preferred sizes, columns/rows where the non-resizable
            # component is largest will always get that amount of space.
            return_lengths[fixed_length_indices] = fixed_lengths[fixed_length_indices]

            if size <= fixed_size:
                # We don't use fixed_length_indices here because that mask is
                # just where non-resizable components were larger than resizable
                # ones.  If our allotted size is less than the total fixed size,
                # then we should give all non-resizable components their desired
                # size.
                indices = fixed_lengths > 0
                return_lengths[indices] = fixed_lengths[indices]
                return_lengths[~indices] = 0

            elif size > fixed_size and (fixed_lengths > resizable_lengths).all():
                # If we only have to consider non-resizable lengths, and we have
                # extra space available, then we need to give each column an
                # amount of extra space corresponding to its size.
                desired_space = sum(fixed_lengths)
                if desired_space > 0:
                    scale = size / desired_space
                    return_lengths = (fixed_lengths * scale).astype(int)

            elif size <= preferred_size or not fully_resizable_indices.any():
                # If we don't have enough room to give all the non-fully resizable
                # components their preferred size, or we have more than enough
                # room for them and no fully resizable components to take up
                # the extra space, then we just scale the resizable components
                # up or down based on the amount of extra space available.
                delta_lengths = resizable_lengths[resizable_indices] - \
                                        fixed_lengths[resizable_indices]
                desired_space = sum(delta_lengths)
                if desired_space > 0:
                    avail_space = size - sum(fixed_lengths) #[fixed_length_indices])
                    scale = avail_space / desired_space
                    return_lengths[resizable_indices] = (fixed_lengths[resizable_indices] + \
                            scale * delta_lengths).astype(int)

            elif fully_resizable_indices.any():
                # We have enough room to fit all the non-resizable components
                # as well as components with preferred sizes, and room left
                # over for the fully resizable components.  Give the resizable
                # components their desired amount of space, and then give the
                # remaining space to the fully resizable components.
                return_lengths[resizable_indices] = resizable_lengths[resizable_indices]
                avail_space = size - preferred_size
                count = sum(fully_resizable_indices)
                space = avail_space / count
                return_lengths[fully_resizable_indices] = space

            else:
                raise RuntimeError("Unhandled sizing case in GridContainer")

            return return_lengths


    def get_preferred_size(self, components=None):
        """ Returns the size (width,height) that is preferred for this component.

        Overrides PlotComponent.
        """
        if self.fixed_preferred_size is not None:
            return self.fixed_preferred_size

        if components is None:
            components = self.component_grid
        else:
            # Convert to array; hopefully it is a list or tuple of list/tuples
            components = array(components)

        # These arrays track the maximum widths in each column and maximum
        # height in each row.
        numrows, numcols = self.shape

        no_visible_components = True
        self._h_size_prefs = GridPlotContainer.SizePrefs(numcols, "h")
        self._v_size_prefs = GridPlotContainer.SizePrefs(numrows, "v")
        self._pref_size_cache = {}
        for i, row in enumerate(components):
            for j, component in enumerate(row):
                if not self._should_layout(component):
                    continue
                else:
                    no_visible_components = False
                    self._h_size_prefs.update_from_component(component, j)
                    self._v_size_prefs.update_from_component(component, i)

        total_width = sum(self._h_size_prefs.get_preferred_size()) + self.hpadding
        total_height = sum(self._v_size_prefs.get_preferred_size()) + self.vpadding
        total_size = array([total_width, total_height])

        # Account for spacing.  There are N+1 of spaces, where N is the size in
        # each dimension.
        if self.spacing is None:
            spacing = zeros(2)
        else:
            spacing = array(self.spacing)
        total_spacing = array(components.shape[::-1]) * spacing * 2 * (total_size>0)
        total_size += total_spacing

        for orientation, ndx in (("h", 0), ("v", 1)):
            if (orientation not in self.resizable) and \
               (orientation not in self.fit_components):
                total_size[ndx] = self.outer_bounds[ndx]
            elif no_visible_components or (total_size[ndx] == 0):
                total_size[ndx] = self.default_size[ndx]

        self._cached_total_size = total_size
        if self.resizable == "":
            return self.outer_bounds
        else:
            return self._cached_total_size

    def _do_layout(self):
        # If we don't have cached size_prefs, then we need to call
        # get_preferred_size to build them.
        if self._cached_total_size is None:
            self.get_preferred_size()

        # If we need to fit our components, then rather than using our
        # currently assigned size to do layout, we use the preferred
        # size we computed from our components.
        size = array(self.bounds)
        if self.fit_components != "":
            self.get_preferred_size()
            if "h" in self.fit_components:
                size[0] = self._cached_total_size[0] - self.hpadding
            if "v" in self.fit_components:
                size[1] = self._cached_total_size[1] - self.vpadding

        # Compute total_spacing and spacing, which are used in computing
        # the bounds and positions of all the components.
        shape = array(self._grid.shape).transpose()
        if self.spacing is None:
            spacing = array([0,0])
        else:
            spacing = array(self.spacing)
        total_spacing = spacing * 2 * shape

        # Compute the total space used by non-resizable and resizable components
        # with non-zero preferred sizes.
        widths = self._h_size_prefs.compute_size_array(size[0] - total_spacing[0])
        heights = self._v_size_prefs.compute_size_array(size[1] - total_spacing[1])

        # Set the baseline h and v positions for each cell.  Resizable components
        # will get these as their position, but non-resizable components will have
        # to be aligned in H and V.
        summed_widths = cumsum(hstack(([0], widths[:-1])))
        summed_heights = cumsum(hstack(([0], heights[-1:0:-1])))
        h_positions = (2*(arange(self._grid.shape[1])+1) - 1) * spacing[0] + summed_widths
        v_positions = (2*(arange(self._grid.shape[0])+1) - 1) * spacing[1] + summed_heights
        v_positions = v_positions[::-1]

        # Loop over all rows and columns, assigning position, setting bounds for
        # resizable components, and aligning non-resizable ones
        valign = self.valign
        halign = self.halign
        for j, row in enumerate(self._grid):
            for i, component in enumerate(row):
                if not self._should_layout(component):
                    continue

                r = component.resizable
                x = h_positions[i]
                y = v_positions[j]
                w = widths[i]
                h = heights[j]

                if "v" not in r:
                    # Component is not vertically resizable
                    if valign == "top":
                        y += h - component.outer_height
                    elif valign == "center":
                        y += (h - component.outer_height) / 2
                if "h" not in r:
                    # Component is not horizontally resizable
                    if halign == "right":
                        x += w - component.outer_width
                    elif halign == "center":
                        x += (w - component.outer_width) / 2

                component.outer_position = [x,y]
                bounds = list(component.outer_bounds)
                if "h" in r:
                    bounds[0] = w
                if "v" in r:
                    bounds[1] = h

                component.outer_bounds = bounds
                component.do_layout()

        return


    def _reflow_layout(self):
        """ Re-computes self._grid based on self.components and self.shape.
        Adjusts self.shape accordingly.
        """
        numcells = self.shape[0] * self.shape[1]
        if numcells < len(self.components):
            numrows, numcols = divmod(len(self.components), self.shape[0])
            self.shape = (numrows, numcols)
        grid = array(self.components, dtype=object)
        grid.resize(self.shape)
        grid[grid==0] = None
        self._grid = grid
        self._layout_needed = True
        return

    def _shape_changed(self, old, new):
        self._reflow_layout()

    def __components_changed(self, old, new):
        self._reflow_layout()

    def __components_items_changed(self, event):
        self._reflow_layout()

    def _get_component_grid(self):
        return self._grid

    def _set_component_grid(self, val):
        grid = array(val)
        grid_set = set(grid.flatten())

        # Figure out which of the components in the component_grid are new,
        # and which have been removed.
        existing = set(array(self._grid).flatten())
        new = grid_set - existing
        removed = existing - grid_set

        for component in removed:
            if component is not None:
                component.container = None
        for component in new:
            if component is not None:
                if component.container is not None:
                    component.container.remove(component)
                component.container = self

        self.set(shape=grid.shape, trait_change_notify=False)
        self._components = list(grid.flatten())

        if self._should_compact():
            self.compact()

        self.invalidate_draw()
        return


### EOF